
III. Authentication - identification protocols 

Definition 3.2 A cryptographic scheme is a suite of  
cryptographic algorithms and protocols, achieving certain 
security objectives. 
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Definition 3.1 A cryptographic protocol is a distributed  
algorithm describing precisely the interaction between two or 
more parties, achieving certain security objectives. 



Identification schemes and protocols 
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Definition 3.3 An identification scheme consists of two  
cryptographic protocols, called registration and identification, 
between two parties, called the prover and the verifier. 
In a symmetric identification scheme, registrations ends with 
both parties sharing a secret key.  In an asymmetric  
identification scheme, registration will end with both parties  
sharing a public key, for which only the prover knows the  
secret key. 
 
In the identification the verifier  is assured of the identity of  
the prover. 



Objective of identification protocols 

1.  If the prover P and the verifier V are honest, V will accept  
P’s identity. 

2. V cannot reuse an identification exchange to  
impersonate P to a third party C. 

3. Only with negligible probability a party C distinct from P  
is able to cause V to accept C as P’s identity. 

4. The previous points remain true even if   
-  a large number of authentications between P  

and V have been observed;  
-  C has participated in previous executions of the 

protocol (either as P or V). 
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Identification - overview 
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-  formalize security requirements for identification schemes 
-  proofs of knowledge (simplified) 
-  zero-knowledge proofs 

-  mostly ignore registration 
-  consider simplified but most important form of 

identification protocols, i.e. ∑-protocols 
-  indicate more general context 
-  see important examples 
-  Schnorr protocol 
-  Fiat-Shamir protocol 



Identification - overview 
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-  introduced witness hiding as relaxation of zero-knowledge 
property 

-  present Okamoto-Schnorr protocol as an example 



Challenge-response protocols 

In a challenge-response protocol P proves its identity to V 
by answering a challenge posed by V. Only by knowing the 
secret key should P be able to respond to the challenge 
correctly.  
 
Structure 
-  challenge 
-  response 
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Simple identification based on signatures 

P V 

 c ← 0,1{ }n

c 

r 

c is called nonce. Chosen for each execution. Guarantees 
time dependence. 

challenge 

response 

 

Π = Gen,Sign,Vrfy( )  signature scheme with message 
length n, pkP,skP( )  P's key pair.

 r ← SignskP
c( )

 

return 1 iff  
VrfypkP

c,r( )
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 Relations 
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− R ⊆ {0,1}* × {0,1}*  binary relation, (x,y) ∈R :⇔ R(x,y) = 1 

− x ∈{0,1}* : W(x) := {w ∈{0,1}* :R(x,w) = 1},w ∈W(x) called

called witnesses for x.

− LR := {x ∈{0,1}* : W(x) ≠ ∅} language corresponding to R

− R polynomially bounded:⇔ there is a c ∈N such that for all

x ∈{0,1}*  and all w ∈W(x) :| w | ≤ | x |c

− R polynomially verifiable :⇔ R(⋅,⋅) can be computed in

polynomial time

− R NP-relation:⇔ R polynomially bounded and polynomially

verifiable



Relations and the class NP 
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Observation

− If R is an NP-relation, then LR ∈NP.

− If L ∈NP, then there is an NP-relation R with L = LR.



Relations and languages - SAT 
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Example L = SAT

− x = φ Boolean formula, w assignment to varaibles

− RSAT (x,w) = 1:⇔ φ(w) = true.



Quadratic residues 

   

Definition 3.4 Let N ∈N, then 

QR N( ) := v ∈ZN
∗ ∃s ∈ZN

∗ s2 = v modN{ }  is called the set of

quadratic residues modulo N. 

QNR N( ) := ZN
∗ \ QR N( )  is called the set of quadratic non-

residues modulo N.

 

QR := N,v( ) v ∈QR N( ){ }
QNR := N,v( ) v ∉QR N( ){ }

11 



Relations and languages – Quadratic 
residues 
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Example L = QR

− x = (N,v),N ∈!,v ∈"N
* ,w ∈"N

*

− RQR (x,w) = 1:⇔ w2 = x modN.



Relations and languages – Discrete 
logarithms 
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Example L = DL

− x = (p,g,v), p ∈!  prime, g, v ∈" p
* ,w ∈" p−1

− RDL(x,w) = 1:⇔ gw = v mod p



Relations and identification 
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− Given binary relation R ⊆ {0,1}* × {0,1},  in registration P 

and V agree on x ∈LR ,  for which P knows w ∈W(x).

− In identification, P convinces V that he knows w ∈W(x).

verifier prover 

try w! 

 x ∈LR ?

 

outputs 1, iff
R x,w( ) = 1



SAT and identification 

 SAT:= ϕ ϕ is a satisfiable Boolean formula{ }

verifier prover 

try assignment c! 

 ϕ ∈SAT?

( )
outputs 1, iff

c 1ϕ =
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Identifciation reveals secret key! 



QR and identification 

verifier prover 

try s! 

  N,v( ) ∈N × ZN
∗

 

outputs 1, iff

s2 = v modN
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QR N( ) := v ∈ZN
∗ ∃s ∈ZN

∗ s2 = v modN{ }  is called the set of

quadratic residues modulo N. 

Identifciation reveals secret key! 



Three round protocols 
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a 
 a ←α(x,w;k)

 c ← Cc 

 r ← ρ(x,w,k,c) r 

 ϕ(x,a,c,r)?

 

Let C a finite set, let α,ρ be ppts, and let ϕ be a polynomial time 
computable predicate. Consider a three round protocol as below.

 P with input (x,w)  V with input x



Three round protocols 
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a 
 a ←α(x,w;k)

 c ← Cc 

 r ← ρ(x,w,k,c) r 

 ϕ(x,a,c,r)?

-  a is called announcement. 
-  c is called challenge and C is called challenge space. 
-  r is called response. 
-  (a,c,r) is called a conversation or transcript. 
-  (a,c,r) is called accepting, if 𝛗(x,a,c,r) = 1. 
-  In this case, we say that V accepts . 

 P with input (x,w)  V with input x



Three round protocols 
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a 
 a ←α(x,w;k)

 c ← Cc 

 r ← ρ(x,w,k,c) r 

 ϕ(x,a,c,r)?

 P with input (x,w)  V with input x

-  Let R be a binary relation. 
-  The protocol is called complete for R, or simply a protocol  

for R, if for (x,w)∈R verifier V always accepts. 



Fiat-Shamir protocol 

20 

P on input (N,v,w) V on input (N,v) 

a 

accepts iff 

  k ← ZN
* ,a := k2 mod N

 c ← 0,1{ }c 

 r := k ⋅wc  mod N
r 

 r
2 = a ⋅vc  mod N

 The Fiat-Shamir protocol is a complete protocol for the relation RQR.

  

Example L = QR
− x = (N,v),N ∈!,v ∈"

N

* ,w ∈"
N

*

− R
QR

(x,w) = 1:⇔ w2 = v mod N.



Schnorr protocol 
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P on input (p,g,v,w) V on input (p,g,v) 

a   k ← Zp−1,a := gk mod p

  c ← 1,…,2l{ } ,2l < p
c 

 r := k − w ⋅c mod p − 1
r 

 

accepts iff
a = gr ⋅vc  mod p

 The Schnorr protocol is a complete protocol for the relation RDL.

  

Example L = DL
− x = (p,g,v),p ∈!  prime, g,v ∈" p

* ,w ∈" p−1

− RDL(x,w) = 1:⇔ gw = v mod p



Soundness and zero-knowledge 
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Definition 3.5 A three round protocol for relation R has special 
soundness if there exists a ppt algorithm E (extractor) which 
given x ∈LR  and any two accepting transcripts (a,c,r) and 
(a,c',r') with c ≠ c' computes a witness w satisfying (x,w) ∈R.

 

Definition 3.6 A three round protocol for relation R is a special 
honest verifier zero-knowledge protocol if there exists a ppt 
algorithm S (simulator) which given any x ∈LR  and any
challenge c produces transcripts (a,c,r) with the same 
distribution as in the real protocol.



∑- protocols 
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Definition 3.7 A three round protocol is a ∑- protocol for  
relation R if 
1.  it is complete for relation R, 
2.  it has special soundness, 
3.  it is a special honest verifier zero-knowledge protocol for 

R.  

 

Theorem 3.8 The  Fiat-Shamir protocol is a Σ- protocol for 
relation RQR.The Schnorr protocol is a Σ- protocol for
relation RDLrestricted to triples (p,g,v), where the order of g 
is a known prime. 



Soundness for Schnorr and Fiat-Shamir 
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Lemma 3.9 The Fiat-Shamir protocol and the Schnorr protocol 
are sound. In the later case, we need that for triples (p,g,v) the 
order  of g is a known prime. 



Schnorr protocol in prime order groups 
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P on input (G,g,v,w) V on input (G,g,v) 

a 

accepts iff 

  k ← Zp,a := gk  (in G)

  c ← 1,…,2l{ } ,2l < p
c 

 r := k − w ⋅c mod p
r 

 a = gr ⋅vc  (in G)

 Let G be a group with G = p, p prime, and let g ∈G \ 1{ }.

  

Observation The Schnorr protocol is a Σ-protocol for the relation 

RGDL : ∀ v,w( ) ∈G × Zp :RGDL v,w( ) = 1⇔ gw = v (in G).



Zero-knowledge for Schnorr and Fiat-Shamir 
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Lemma 3.11 The Schnorr protocol is a special honest verifier 
zero-knowledge protocol.

 

Lemma 3.10 The Fiat-Shamir protocol is a special honest 
verifier zero-knowledge protocol.



Soundness and security against cheating 
provers 
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Theorem 3.12 Let R be a binary relation and V/P a three round
protocol for R with special soundness and challenge space C. 
Then for any ε > 0 and any algorithm A there exists an 
algorithm ′A  with the following properties:

1. If on input x ∈LR algorithm A impersonates P with 

   probability 1/|C| + ε,ε > 0,  then ′A  on input x and with 
   probability ε 16   computes a witness w ∈W(x).

2. If A runs in time T, then ′A  runs in time O T/ε + T'( ) ,
where T '  is the runnig time of the extractor E for P/V.



Three round protocols 
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a 
 a ←α(x,w;k)

 c ← Cc 

 r ← ρ(x,w,k,c) r 

 ϕ(x,a,c,r)?

 P with input (x,w)  V with input x



From A to A‘ 

  

′A  on input x

1. repeat at most 1 ε − times

a) R ← 0,1{ }L
,c ← C

b) simulate A with random bits R and challenge c
c) if A succeeds set c 1( ): = c and goto 2) 

2. repeat at most 2 ε − times
a) c ← C
b) simulate A with random bits R and challenge c
c) if A succeeds set c 2( ): = c and goto 3)

3. Let a be the announcement that A computes with .
random bits R. Use extractor E with input a, c 1( ) , c 2( )

to compute a witness w.
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Soundness and security against cheating 
provers – the main claim 
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−  A uses bit strings in {0,1}L  as its source of randomness.
−  With R ∈{0,1}L  and c ∈C fixed, the bevaiour of A is fixed.
−  (R,c) called accepting if A, by using randomness R and  
    upon receiving challenge c, makes V accept.

−  R ∈ 0,1{ }*  called heavy if for at least a 1 | C | +ε / 2( )-fraction
    of all  c ∈C the pair (R,c) is accepting. Otherwise R is light.
−  (R,c) called heavy if R,c( )  is accepting and R is heavy .

 
Claim If A is as in Theorem 3.12 then for at least an 
ε /2-fraction of accepting pairs (R,c) the element R is heavy.



Proof of the main claim 
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− Let p be the fraction of accepting pairs (R,c) with a light R.
− Hence the number of accepting pairs with light R is 

p ⋅ (1/ | C | +ε) ⋅2L ⋅ | C | .

− Since each light R appears in at most (1/ | C | +ε)⋅ | C |  such 
pairs, the number of light R's is at least 
p ⋅ (1/ | C | +ε) ⋅2L ⋅ | C |

(1/ | C | +ε / 2)⋅ | C |
= p ⋅ (1/ | C | +ε)

(1/ | C | +ε / 2)
⋅2L.

− Hence p ⋅ (1/ | C | +ε)
(1/ | C | +ε / 2)

≤ 1 or p ≤ 1/ | C | +ε / 2
1/ | C | +ε

.

− For 1/ | C | +ε ≤ 1 we have  1/ | C | +ε / 2
1/ | C | +ε

< 1− ε / 2. 

− Hence p < 1− ε / 2.



What does it mean? 
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-  Cheating provers succeed with probability at most 1/|C|, 
if computing witnesses for elements in LR is a hard  
problem. 

-   Easy to see that cheating provers can always succeed  
with probability 1/|C|. 

-  For Schnorr computing witnesses means computing  
discrete logorithms. 

-  Which, currenty, seems to be a hard problem, provided the  
prime p is chosen carefully. 

-  Schnorr can easily be generalized to other groups, where 
computation of discrete logarithm is even harder than in  
Zp. 

-  |C|=2l and can make l suffciently large. 
-  What about Fiat-Shamir? 



Security of Fiat-Shamir - factoring and 
modular square root 

   

Theorem 3.13 For any δ > 0 and any algorithm A there
exists an algorithm ′A  with the following properties:

1. If on input N = p ⋅q, p,q prime, and a ← ZN
∗ , A finds

    b ∈ZN  satisfying b2 = a mod N with probability δ,  

    then ′A  on input N computes p,q with probability δ /2;

2. If A runs in time T, then ′A  runs in time O T+log2(N)( ).
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Chinese Remainder Theorem  

   

Chinese Remainder Theorem Let m1,…,mr ∈N be pairwise 

relatively prime, i.e. gcd mi,mj( ) = 1 for i ≠ j. Let b1,…,br ∈N 
be arbitrary integers. Then the system of congruences

                                    
x = b1 mod m1

!
x = br mod mr

has a unique solution modulo M = m1"mr .

  

Corollary 3.14 Let N = p ⋅q be the product of two distinct odd 

primes. For every a ∈ZN 
∗ the equation x2 = a mod N has 

either 0 or 4 solutions.  In case of 4 solutions, these solutions
are of the form ± s1,±s2,s2 /± s1. 34 



From A to A´ 

  

′A  on input N

1. choose b ← ZN

2. if d = gcd b,N( ) ≠ 1, output d,N d

3. a := b2 modN

4. simulate A with input N,a to obtain w ∈ZN
∗

5. if w2 = a modN and w ≠ ±b modN, compute 

d = gcd w − b,N( )  and output d,N d
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Parallel Fiat-Shamir protocol 
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P on input (N,v,w) V on input (N,v) 

   

ki ← ZN
* ,ai := ki

2 mod N,

i = 1,…,l

  

c ← 0,1{ }l

c = c1,…,cl( )

  

ri := ki ⋅w
ci  mod N,

i = 1,…,l

 

accepts, iff for all i

ri
2 = ai ⋅v

ci  mod N

  a1,…,al( )

 c

  a1,…,al( )



Parallel Fiat-Shamir protocol 
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Theorem 3.15 The parallel Fiat-Shamir protocol is a Σ- protocol 
for relation RQR.


