III. Authentication - identification protocols

Definition 3.1 A cryptographic protocol is a distributed algorithm describing precisely the interaction between two or more parties, achieving certain security objectives.

Definition 3.2 A cryptographic scheme is a suite of cryptographic algorithms and protocols, achieving certain security objectives.

Identification schemes and protocols

- **Definition 3.3** An identification scheme consists of two cryptographic protocols, called registration and identification, between two parties, called the prover and the verifier.
- In a symmetric identification scheme, registrations ends with both parties sharing a secret key. In an asymmetric identification scheme, registration will end with both parties sharing a public key, for which only the prover knows the secret key.
- In the identification the verifier is assured of the identity of the prover.

Objective of identification protocols

- 1. If the prover P and the verifier V are honest, V will accept P's identity.
- 2. V cannot reuse an identification exchange to impersonate P to a third party C.
- 3. Only with negligible probability a party C distinct from P is able to cause V to accept C as P's identity.
- 4. The previous points remain true even if
 - a large number of authentications between P and V have been observed;
 - C has participated in previous executions of the protocol (either as P or V).

Identification - overview

- formalize security requirements for identification schemes
 - proofs of knowledge (simplified)
 - zero-knowledge proofs
- mostly ignore registration
- consider simplified but most important form of identification protocols, i.e. ∑-protocols
- indicate more general context
- see important examples
 - Schnorr protocol
 - Fiat-Shamir protocol

Identification - overview

- introduced witness hiding as relaxation of zero-knowledge property
- present Okamoto-Schnorr protocol as an example

Challenge-response protocols

In a challenge-response protocol P proves its identity to V by answering a challenge posed by V. Only by knowing the secret key should P be able to respond to the challenge correctly.

- **Structure**
 - challenge
 - response

Simple identification based on signatures $\Pi = (Gen, Sign, Vrfy)$ signature scheme with message length n, (pk_{P}, sk_{P}) P's key pair.

c is called nonce. Chosen for each execution. Guarantees time dependence.

Relations

- $R \subseteq \{0,1\}^* \times \{0,1\}^*$ binary relation, $(x,y) \in R : \Leftrightarrow R(x,y) = 1$
- $x \in \{0,1\}^{*} : W(x) := \{w \in \{0,1\}^{*} : R(x,w) = 1\}, w \in W(x) \text{ called witnesses for } x.$
- $L_R := \{x \in \{0,1\}^* : W(x) \neq \emptyset\}$ language corresponding to R
- − R polynomially bounded : ⇔ there is a c ∈ N such that for all $x \in \{0,1\}^*$ and all $w \in W(x)$: $|w| \le |x|^c$
- R polynomially verifiable : $\Leftrightarrow R(\cdot, \cdot)$ can be computed in polynomial time
- R NP-relation :⇔ R polynomially bounded and polynomially verifiable

Relations and the class NP

- **Observation**
 - If R is an NP-relation, then $L_R \in NP$.
 - If $L \in NP$, then there is an NP-relation R with $L = L_R$.

Relations and languages - SAT

- Example L = SAT
 - $\mathbf{x} = \phi$ Boolean formula, w assignment to varaibles
 - $R_{SAT}(x,w) = 1 : \Leftrightarrow \phi(w) = true.$

Quadratic residues

Definition 3.4 Let N \in N, then

 $\mathsf{QR}(\mathsf{N}) := \left\{ v \in \mathbb{Z}_{\mathsf{N}}^{*} \middle| \exists s \in \mathbb{Z}_{\mathsf{N}}^{*} \ s^{2} = v \text{ mod } \mathsf{N} \right\} \text{ is called the set of }$

- quadratic residues modulo N.
- $\label{eq:QNR(N):= Z_N^* \setminus QR(N) is called the set of quadratic non-residues modulo N.$

- $QR := \{(N,v) | v \in QR(N)\}$
- $QNR := \{(N,v) | v \notin QR(N) \}$

Relations and languages – Quadratic residues

- **Example** L = QR
 - $\mathbf{x} = (\mathbf{N}, \mathbf{v}), \mathbf{N} \in \mathbb{N}, \mathbf{v} \in \mathbb{Z}_{\mathbf{N}}^{*}, \mathbf{w} \in \mathbb{Z}_{\mathbf{N}}^{*}$
 - $R_{QR}(x,w) = 1 :\Leftrightarrow w^2 = x \mod N.$

Relations and languages – Discrete logarithms

- **Example L = DL**
 - $\mathbf{x} = (\mathbf{p}, \mathbf{g}, \mathbf{v}), \mathbf{p} \in \mathbb{N}$ prime, $\mathbf{g}, \mathbf{v} \in \mathbb{Z}_{p}^{*}, \mathbf{w} \in \mathbb{Z}_{p-1}^{*}$

$$- \mathsf{R}_{\mathsf{DL}}(\mathsf{x},\mathsf{w}) = 1 :\Leftrightarrow \mathsf{g}^{\mathsf{w}} = \mathsf{v} \mod \mathsf{p}$$

Relations and identification

- Given binary relation R ⊆ {0,1}^{*} × {0,1}, in registration P and V agree on $x \in L_R$, for which P knows w ∈ W(x).
- In identification, P convinces V that he knows $w \in W(x)$.

SAT and identification

SAT:= $\{ \phi | \phi \text{ is a satisfiable Boolean formula} \}$

Identifciation reveals secret key!

QR and identification

 $\mathsf{QR}\left(\mathsf{N}\right) := \left\{ v \in \mathbb{Z}_{\mathsf{N}}^{*} \middle| \exists s \in \mathbb{Z}_{\mathsf{N}}^{*} \ s^{2} = v \text{ mod } \mathsf{N} \right\} \text{ is called the set of }$

quadratic residues modulo N.

Identifciation reveals secret key!

Let C a finite set, let α, ρ be ppts, and let ϕ be a polynomial time computable predicate. Consider a three round protocol as below.

- a is called announcement.
- c is called challenge and C is called challenge space.
- r is called response.
- (a,c,r) is called a conversation or transcript.
- (a,c,r) is called accepting, if $\varphi(x,a,c,r) = 1$.
- In this case, we say that V accepts .

- Let R be a binary relation.
- The protocol is called complete for R, or simply a protocol for R, if for (x,w)∈R verifier V always accepts.

Fiat-Shamir protocol

The Fiat-Shamir protocol is a complete protocol for the relation R_{OR}.

Example L = QR

$$- \mathbf{x} = (\mathbf{N}, \mathbf{v}), \mathbf{N} \in \mathbb{N}, \mathbf{v} \in \mathbb{Z}_{\mathbf{N}}^{*}, \mathbf{w} \in \mathbb{Z}_{\mathbf{N}}^{*}$$

$$- \mathsf{R}_{QR}(\mathbf{x},\mathbf{w}) = \mathbf{1} :\Leftrightarrow \mathbf{w}^2 = \mathbf{v} \mod \mathbf{N}$$

Schnorr protocol

The Schnorr protocol is a complete protocol for the relation R_{DI} .

Example L = DL

- $\mathbf{x} = (\mathbf{p}, \mathbf{g}, \mathbf{v}), \mathbf{p} \in \mathbb{N}$ prime, $\mathbf{g}, \mathbf{v} \in \mathbb{Z}_{p}^{*}, \mathbf{w} \in \mathbb{Z}_{p-1}^{*}$
- $R_{DL}(x,w) = 1 :\Leftrightarrow g^{w} = v \mod p$

Soundness and zero-knowledge

Definition 3.5 A three round protocol for relation R has special soundness if there exists a ppt algorithm E (extractor) which given $x \in L_R$ and any two accepting transcripts (a,c,r) and (a,c',r') with $c \neq c'$ computes a witness w satisfying (x,w) $\in R$.

Definition 3.6 A three round protocol for relation R is a special honest verifier zero-knowledge protocol if there exists a ppt algorithm S (simulator) which given any $x \in L_R$ and any challenge c produces transcripts (a,c,r) with the same distribution as in the real protocol.

∑- protocols

Definition 3.7 A three round protocol is a \sum **- protocol for** relation R if

- 1. it is complete for relation R,
- 2. it has special soundness,
- 3. it is a special honest verifier zero-knowledge protocol for R.

Theorem 3.8 The Fiat-Shamir protocol is a Σ - protocol for relation R_{QR} . The Schnorr protocol is a Σ - protocol for relation R_{DL} restricted to triples (p,g,v), where the order of g is a known prime.

Soundness for Schnorr and Fiat-Shamir

Lemma 3.9 The Fiat-Shamir protocol and the Schnorr protocol are sound. In the later case, we need that for triples (p,g,v) the order of g is a known prime.

Schnorr protocol in prime order groups

Let G be a group with |G| = p, p prime, and let $g \in G \setminus \{1\}$.

Observation The Schnorr protocol is a Σ -protocol for the relation R_{GDL} : $\forall (v, w) \in G \times \mathbb{Z}_p$: $R_{GDL}(v, w) = 1 \Leftrightarrow g^w = v$ (in G).

Zero-knowledge for Schnorr and Fiat-Shamir

Lemma 3.10 The Fiat-Shamir protocol is a special honest verifier zero-knowledge protocol.

Lemma 3.11 The Schnorr protocol is a special honest verifier zero-knowledge protocol.

Soundness and security against cheating provers

- Theorem 3.12 Let R be a binary relation and V/P a three round protocol for R with special soundness and challenge space C. Then for any $\varepsilon > 0$ and any algorithm A there exists an algorithm A' with the following properties:
- 1. If on input $x \in L_R$ algorithm A impersonates P with probability $1/|C| + \varepsilon, \varepsilon > 0$, then A' on input x and with probability $\varepsilon/16$ computes a witness $w \in W(x)$.
- 2. If A runs in time T, then A' runs in time $\mathcal{O}(T/\epsilon + T')$, where T' is the runnig time of the extractor E for P/V.

From A to A'

A' on input x

1. repeat at most $1/\epsilon$ – times

a)
$$\mathsf{R} \leftarrow \{\mathsf{0},\mathsf{1}\}^{\mathsf{L}},\mathsf{c} \leftarrow \mathsf{C}$$

- b) simulate A with random bits R and challenge c
- c) if A succeeds set $c^{(1)}$: = c and goto 2)
- 2. repeat at most $2/\epsilon$ times
 - a) $\mathbf{c} \leftarrow \mathbf{C}$
 - b) simulate A with random bits R and challenge c
 - c) if A succeeds set $c^{(2)}$: = c and goto 3)
- 3. Let a be the announcement that A computes with . random bits R. Use extractor E with input a, $c^{(1)}$, $c^{(2)}$

to compute a witness w.

Soundness and security against cheating provers – the main claim

- A uses bit strings in $\{0,1\}^{L}$ as its source of randomness.
- With $R \in \{0,1\}^{L}$ and $c \in C$ fixed, the bevaiour of A is fixed.
- (R,c) called accepting if A, by using randomness R and upon receiving challenge c, makes V accept.
- R ∈ $\{0,1\}^*$ called heavy if for at least a $(1/|C|+\epsilon/2)$ -fraction of all c ∈ C the pair (R,c) is accepting. Otherwise R is light.
- (R,c) called heavy if (R,c) is accepting and R is heavy .

Claim If A is as in Theorem 3.12 then for at least an $\epsilon/2$ -fraction of accepting pairs (R,c) the element R is heavy.

Proof of the main claim

- Let p be the fraction of accepting pairs (R,c) with a light R.
- Hence the number of accepting pairs with light R is $p \cdot (1/|C|+\epsilon) \cdot 2^{L} \cdot |C|$.
- Since each light R appears in at most $(1/|C|+\epsilon) \cdot |C|$ such pairs, the number of light R's is at least

$$\frac{\mathbf{p}\cdot(\mathbf{1}/|\mathbf{C}|+\epsilon)\cdot\mathbf{2}^{\mathsf{L}}\cdot|\mathbf{C}|}{(\mathbf{1}/|\mathbf{C}|+\epsilon/2)\cdot|\mathbf{C}|} = \frac{\mathbf{p}\cdot(\mathbf{1}/|\mathbf{C}|+\epsilon)}{(\mathbf{1}/|\mathbf{C}|+\epsilon/2)}\cdot\mathbf{2}^{\mathsf{L}}.$$

Hence
$$\frac{\mathbf{p} \cdot (1/|\mathbf{C}| + \epsilon)}{(1/|\mathbf{C}| + \epsilon/2)} \leq 1 \text{ or } \mathbf{p} \leq \frac{1/|\mathbf{C}| + \epsilon/2}{1/|\mathbf{C}| + \epsilon}.$$

- For $1/|C|+\epsilon \le 1$ we have $\frac{1/|C|+\epsilon/2}{1/|C|+\epsilon} < 1-\epsilon/2$.
- Hence $p < 1 \epsilon / 2$.

What does it mean?

- Cheating provers succeed with probability at most 1/|C|, if computing witnesses for elements in L_R is a hard problem.
- Easy to see that cheating provers can always succeed with probability 1/|C|.
- For Schnorr computing witnesses means computing discrete logorithms.
- Which, currenty, seems to be a hard problem, provided the prime p is chosen carefully.
- Schnorr can easily be generalized to other groups, where computation of discrete logarithm is even harder than in $\mathbb{Z}_{p.}$
- |C|=2^I and can make I sufficiently large.
- What about Fiat-Shamir?

Security of Fiat-Shamir - factoring and modular square root

Theorem 3.13 For any $\delta > 0$ and any algorithm A there exists an algorithm A' with the following properties:

- 1. If on input $N = p \cdot q$, p,q prime, and $a \leftarrow \mathbb{Z}_N^*$, A finds $b \in \mathbb{Z}_N$ satisfying $b^2 = a \mod N$ with probability δ , then A' on input N computes p,q with probability $\delta/2$;
- 2. If A runs in time T, then A' runs in time $\mathcal{O}(T+\log^2(N))$.

Chinese Remainder Theorem

- Chinese Remainder Theorem Let $m_1, ..., m_r \in \mathbb{N}$ be pairwise relatively prime, i.e. $gcd(m_i, m_j) = 1$ for $i \neq j$. Let $b_1, ..., b_r \in \mathbb{N}$
- be arbitrary integers. Then the system of congruences

 $x = b_1 \mod m_1$ \vdots $x = b_r \mod m_r$

- has a unique solution modulo $M = m_1 \cdots m_r$.
- Corollary 3.14 Let $N = p \cdot q$ be the product of two distinct odd primes. For every $a \in \mathbb{Z}_N^*$ the equation $x^2 = a \mod N$ has either 0 or 4 solutions. In case of 4 solutions, these solutions are of the form $\pm s_1, \pm s_2, s_2 \pm s_1$.

From A to A'

A' on input N

- 1. choose $b \leftarrow \mathbb{Z}_{N}$
- 2. if $d = gcd(b,N) \neq 1$, output d,N/d
- $3. a := b^2 \mod N$
- 4. simulate A with input N,a to obtain $w \in \mathbb{Z}_{N}^{*}$
- 5. if $w^2 = a \mod N$ and $w \neq \pm b \mod N$, compute d = gcd(w b, N) and output d, N/d

Parallel Fiat-Shamir protocol

Parallel Fiat-Shamir protocol

Theorem 3.15 The parallel Fiat-Shamir protocol is a Σ - protocol for relation R_{QR}.