IV. Interactive & zero-knowledge protocols

- interactive protocols formalize what can be recognized by polynomial time restricted verifiers in arbitrary protocols
- generalize NP
- generalize three round protocols
- zero-knowledge formalizes that verifiers learn nothing beyond recognizing language
- generalizes special honest verifier zero-knowledge protocols
- leads to better understanding of special honest verifier zero-knowledge protocols
- leads to four round identification protocols with all desirable security properties

Class NP and verifiers

Definition 4.1 A verifier V for language $L \subseteq \Sigma^*$ is a computable function $V : \Sigma^* \times \{0,1\}^* \rightarrow \{0,1\}$ such that $L = \left\{ x \in \Sigma^* | \exists w \in \{0,1\}^* : V(x,w) = 1 \right\}.$

Definition 4.2 V is a polynomial verifier for language $L \subseteq \Sigma^*$ if V is a verifier for L and

- 1. the running time of V on input (x, w) is polynomial in |v|,
- 2. there is a polynomial $p:\mathbb{N} \to \mathbb{N}$ such that for all $x \in L$ there is a $x \in \{0,1\}^{p(|x|)}$ with V(x,w) = 1.

If language L has a polynomial verifier we call it polynomially verifiable.

Relations

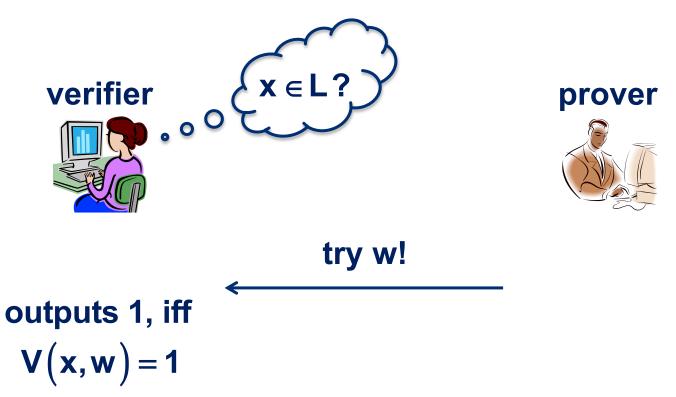
- $R \subseteq \{0,1\}^* \times \{0,1\}^*$ binary relation, $(x,y) \in R : \Leftrightarrow R(x,y) = 1$
- $x \in \{0,1\}^{*} : W(x) := \{w \in \{0,1\}^{*} : R(x,w) = 1\}, w \in W(x) \text{ called witnesses for } x.$
- $L_R := \{x \in \{0,1\}^* : W(x) \neq \emptyset\}$ language corresponding to R
- − R polynomially bounded : ⇔ there is a c ∈ N such that for all $x \in \{0,1\}^*$ and all $w \in W(x)$: $|w| \le |x|^c$
- R polynomially verifiable : $\Leftrightarrow R(\cdot, \cdot)$ can be computed in polynomial time
- R NP-relation :⇔ R polynomially bounded and polynomially verifiable

Relations and the class NP

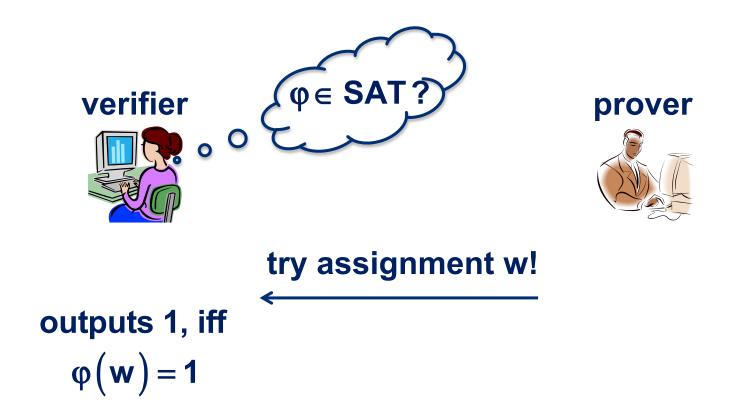
- **Observation**
 - If R is an NP-relation, then $L_R \in NP$.
 - If $L \in NP$, then there is an NP-relation R with $L = L_R$.

Class NP and verifiers

Theorem 4.3 A language L is in NP if and only if there is a polynomial verifier for L.



SAT and NP SAT:= $\{\phi | \phi \text{ is a satisfiable Boolean formula}\}$



$SAT \in NP$.

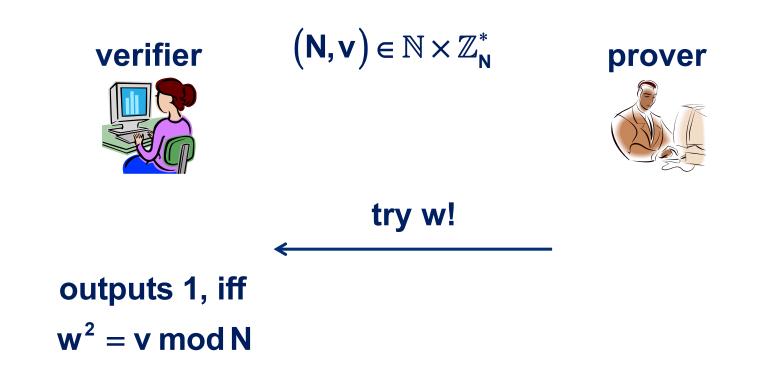
Quadratic residues

Definition 3.4 (restated) Let $N \in \mathbb{N}$, then $QR(N) := \{ v \in \mathbb{Z}_N^* | \exists s \in \mathbb{Z}_N^* \ s^2 = v \mod N \}$ is called the set of quadratic residues modulo N. $QNR(N) := \mathbb{Z}_N^* \setminus QR(N)$ is called the set of quadratic nonresidues modulo N.

- \mathbf{QR} := {(N,v) | $\mathbf{v} \in \mathbf{QR}(\mathbf{N})$ }
- $QNR := \{(N,v) | v \notin QR(N)\}$

Property If $v \in QR(N)$ and $u \in QNR(N)$, then $v \cdot u \in QNR(N)$.

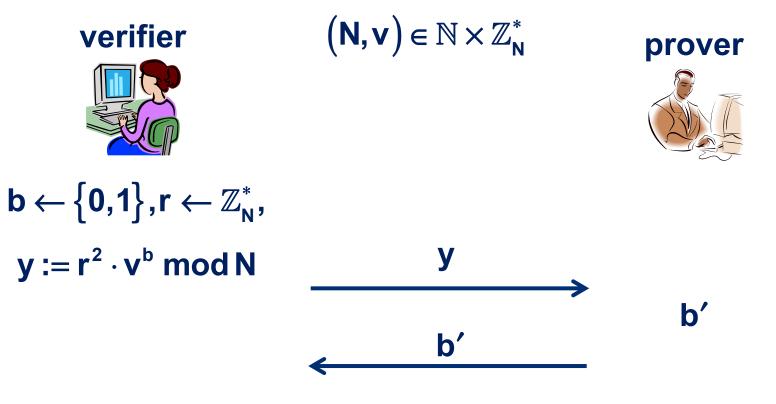
Observation QR \in **NP**.



Quadratic non-residues and protocols

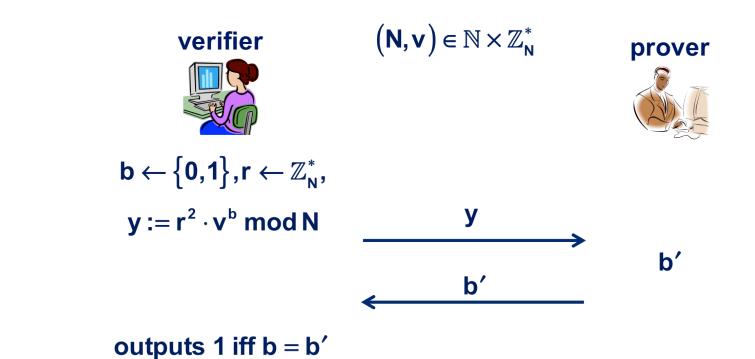
What about QNR and NP?

Don't know, but



outputs 1 iff b = b'

Quadratic non-residues and protocols



Properties

- If $(N,v) \in QNR$, then P can make V accept with prob. 1. - If $(N, v) \in QR$, then no matter what P does, V accepts only with prob. 1/2.

Interactive protocols

- **Interactive protocols**
 - use randomness
 - use communication
 - allow error in acceptance/rejection
- **Definition 4.4 A language L is in the class IP, if there are V,P** and a protocol V/P with
 - 1. for all $x \in L$ the verifier V outputs 1 with probability $\geq 2/3$ after execution of V/P with input w,
 - 2. for all $x \notin L$ and all provers P' the verifier outputs 1 with probability $\leq 1/3$ after execution of V/P' with P' and input x,
 - 3. the overall running time of V is polynomial.

Interactive protocols

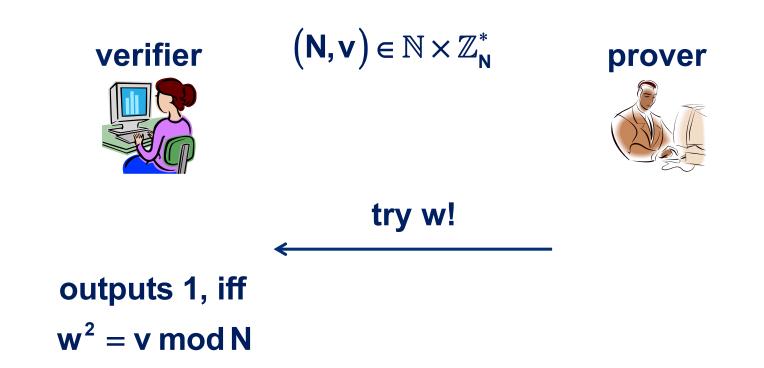
- **Definition 4.4 A language L is in the class IP, if there are V,P** and a protocol V/P with
 - 1. for all $x \in L$ the verifier V outputs 1 with probability $\geq 2/3$ after execution of V/P with input w,
 - 2. for all $x \notin L$ and all provers P' the verifier outputs 1 with probability $\leq 1/3$ after execution of V/P' with P' and input x,
 - 3. the overall running time of V is polynomial.
- Remarks
 - In protocol V/P' V behaves as in V/P, but P' may behave differently from P.
 - May assume that format of message of P' is as in V/P.
 - Constants 2/3 and 1/3 are arbitrary are arbitrary, $(1/2 + \epsilon) \& (1/2 \epsilon)$ suffice.

QR,QNR and IP

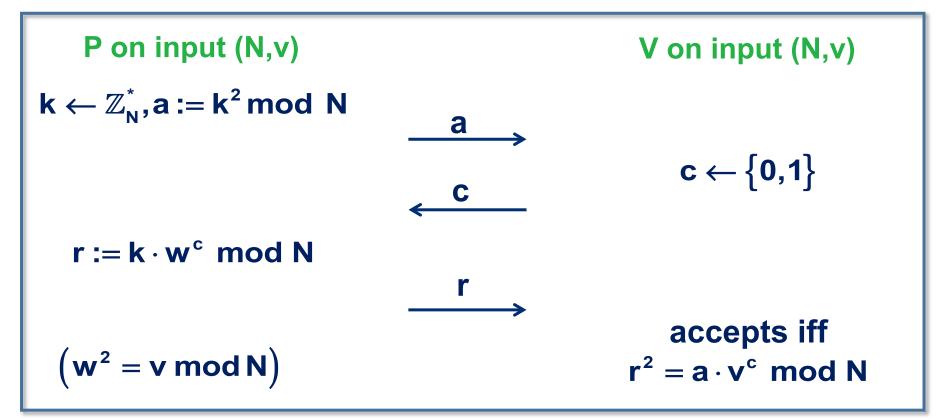
Observation QR and QNR are in IP.

Theorem 4.5 NP \subseteq IP.

Observation QR \in **NP**.



Fiat-Shamir revisited



Properties

-If $(N,v) \in QR$,then P can make V accept with prob. 1.-If $(N,v) \in QNR$,then no matter what P' does, V acceptsonly with prob. 1/2.

Transcripts

Definition 4.6 Let L be a language, $v \in L$ and V/P be an interactive protocol for L. A transcript or communication $\tau \in \{0,1\}^*$ of V/P on input v consists of all messages exchanged between V and P. By $T_{v,P}(x)$ we denote the random variable corresponding to these transcripts, i.e. $Pr[T_{v,P}(x) = \tau]$ denotes the probability that the transcript of V/P on input x is τ .

Remark Similarly for a probabilistic algorithm S we denote by S(x) the random variable corresponding to the output of S on input x, i.e. by $Pr[S(x) = \tau]$ we denote the probability that S on input x outputs τ .

Zero-knowledge protocols

Definition 4.7 Let L be a language and V/P be an interactive protocol for L. Protocol V/P is called a (honest verifier) zero-knowledge protocol, if there is a ppt S such that for

all
$$\mathbf{x} \in \mathbf{L}$$
 and all $\tau \in \{\mathbf{0}, \mathbf{1}\}^*$

$$\mathbf{Pr} \left[\mathsf{T}_{\mathsf{v},\mathsf{P}} \left(\mathbf{x} \right) = \tau \right] = \mathbf{Pr} \left[\mathsf{S} \left(\mathbf{x} \right) = \tau \right].$$

Remarks

- Definition only says something about $x \in L$.
- ppt verifier V learn nothing from execution of V/P since all it learns (=transcript) it can compute alone (via S).

Theorem 4.8 The Fiat-Shamir protocol is a zero-knowledge protocol for the language QR.

Theorem 4.8 The Fiat-Shamir protocol is a zero-knowledge protocol for the language QR.

Theorem 4.8 The Fiat-Shamir protocol is a zero-knowledge protocol for the language QR.

Why is zero-knowledge possible?

- Protocol and simulator compute same transcripts, but in different order.
- In Fiat-Shamir, first compute square, then square root.
- In simulator, first compute root, then square it.
- Squaring is easy, taking square roots modulo N (probably) not.

Perfect zero-knowledge protocols

- **Definition 4.9** Let L be a language and V/P be an interactive protocol for L. Protocol V/P is called a perfect zero-knowledge protocol, if for all ppt verifiers V^{*} there is a ppt S^{*} such that for all $x \in L$ and all $\tau \in \{0,1\}^*$
 - 1. with probability $\leq 1/2 S^*$ output a special symbol \perp ,

2.
$$\Pr\left[\mathsf{T}_{\mathsf{V}^*,\mathsf{P}}(\mathsf{x})=\tau\right]=\Pr\left[\mathsf{S}^*(\mathsf{x})=\tau\middle|\mathsf{S}^*(\mathsf{x})\neq\bot\right].$$

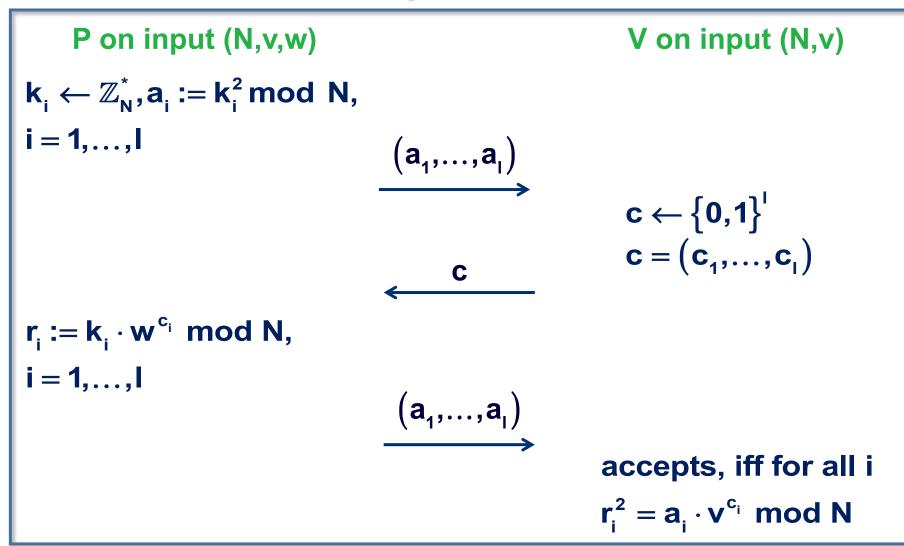
Remarks

- In protocol V*/P P behaves as in V/P, but V* may behave differently from V.
- May assume that format of message of V^* is as in V/P.

Theorem 4.10 The Fiat-Shamir protocol is a perfect zero-knowledge protocol for the language QR.

- \mathbf{S}^* on input $\mathbf{v} \in \mathbb{Z}_{N}^*$
 - $c \leftarrow \{0,1\}, r \leftarrow \mathbb{Z}_N^*, a := r^2 \cdot v^{-c} \mod N$
 - simulate V^{*} with input (v,N,a), until V^{*} outputs a bit b'.
 - if b ≠ b', output \bot , else output (a,c,r)

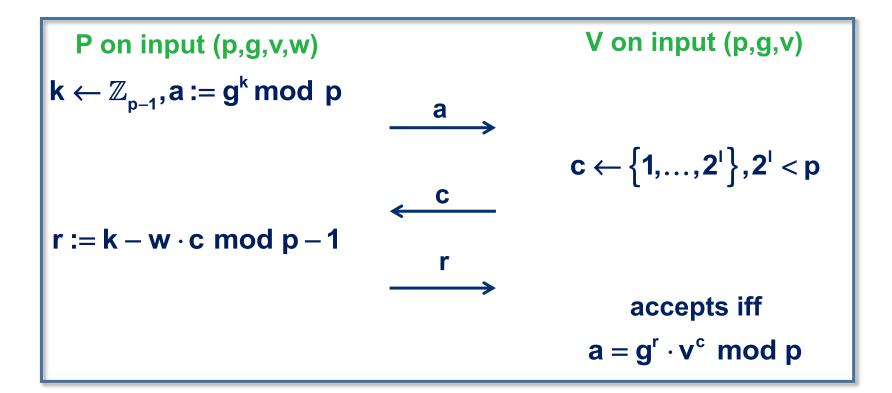
Parallel Fiat-Shamir protocol



Oberservation The parallel Fiat-Shamir protocol is not known to be perfect zero-knowledge

23

Schnorr identification protocol



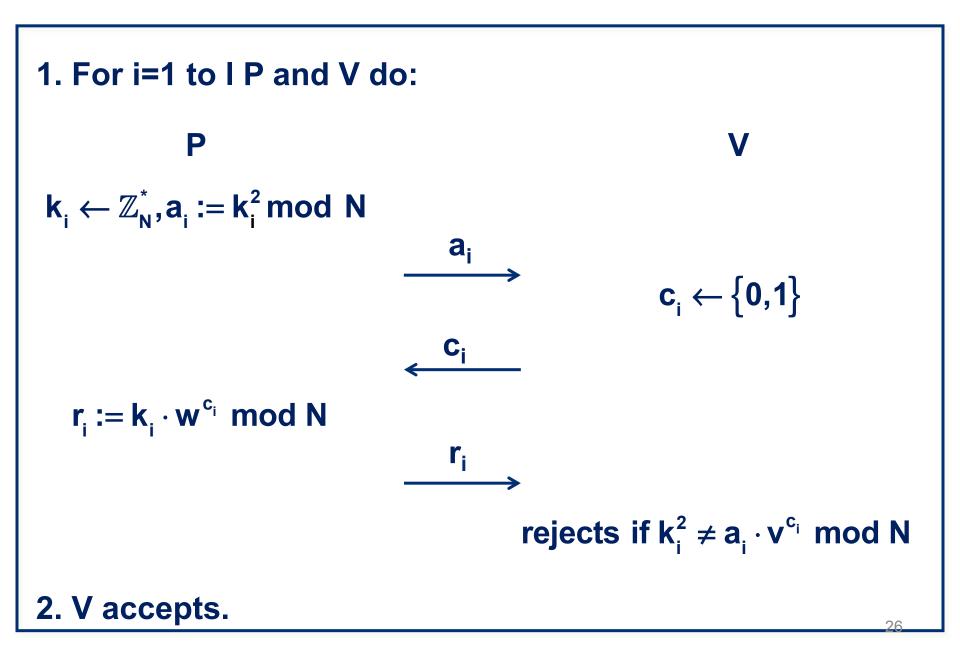
Zero-knowledge protocols and Schnorr

Theorem 4.11 The Schnorr protocol is a zero-knowledge protocol.

Observations

- The Schnorr protocol is not known to be perfect zero-knowledge unless 2¹ is small.
- No attacks against Schnorr protocol are known.

Sequential Fiat-Shamir



Sequential Fiat-Shamir

Observations

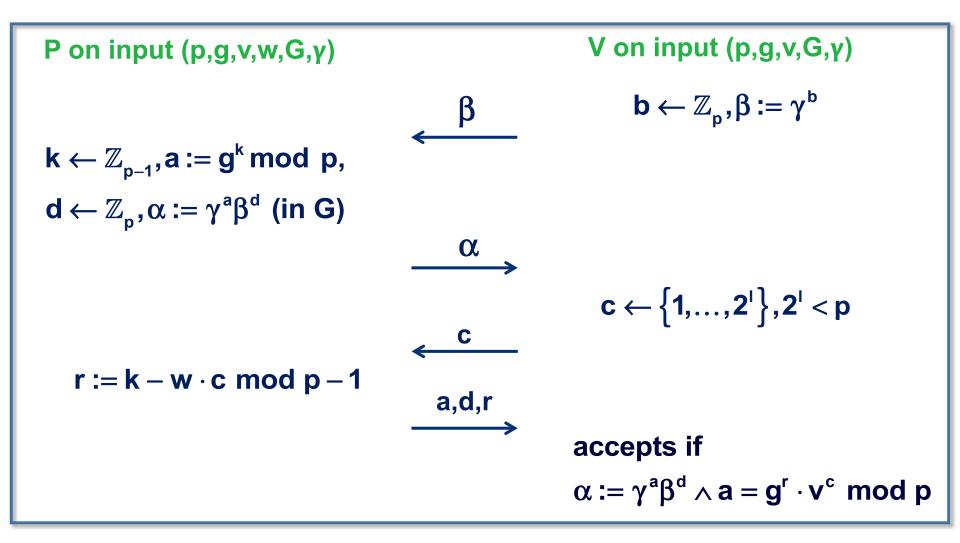
- The sequential Fiat-Shamir protocol is perfect zero-knowledge.
- Cheating provers succeed only with probability $\approx 1/2^{I}$.
- Sequential version of Schnorr has similar properties.
- Both protocols are rather inefficient, due to their sequential round structure.

A perfect zero-knowledge variant of the Schnorr protocol

Preliminaries

- Let G be a group with order p, p prime.
- Denote elements in G by $\alpha, \beta, \gamma, ...$
- G is a cyclic group.
- Fix $\gamma \in \mathbf{G} \setminus \{1\}$.
- $-\gamma$ is a generator of G.

A perfect zero-knowledge variant of the Schnorr protocol



Security for the modified Schnorr protocol

Theorem 4.12 The modified Schnorr protocol is a perfect zero-knowledge protocol (assuming b is fixed and known to the simulator).

Theorem 4.13 For any $\varepsilon > 0$ and any algorithm A that there exists an algorithm A' with the following properties:

1. If on input (p,g,v,G,γ) A makes V accept with probability $1/|C| + \varepsilon$, then A' on input x and with probability $\geq \varepsilon/16$ computes a witness $w \in W(x)$ or it can used to compute the discrete logarithm of elements in G to base γ with success probability $\geq \varepsilon/16$.

2. If A runs in time T, then A' runs in time $\mathcal{O}(T/\epsilon + \log(p)^2)$.