One-time signatures

One-time signature forging game Sig-forge $_{\Delta,\Pi}^{one}(n)$

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1^n , pk and may ask single query m' to Sign_{sk} (·). It outputs pair (m, σ) , where $m \neq m'$.
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{nk}(m,\sigma) = 1$.

Definition 2.8 Π is called existentially unforgeable under a single message attack or one-time signature, if for every ppt adversary A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $Pr[Sig-forge_{\Delta,\Pi}^{one}(n)=1]=\mu(n).$

Lamport's one-time signature

Construction 2.9 $f:\{0,1\}^* \rightarrow \{0,1\}^*$, signature scheme

 $\Pi_f = (Gen, Sign, Vrfy)$ for messages of length n defined as:

$$\begin{aligned} \text{Gen} \Big(1^n \Big) \colon & \quad x_{i,b} \leftarrow \left\{ 0,1 \right\}^n, y_{i,b} = f \Big(x_{i,b} \Big), i = 1, \dots, n, b \in \left\{ 0,1 \right\}. \\ pk := \left(\begin{array}{ccc} y_{1,0} & y_{2,0} & \cdots & y_{n,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{n,1} \end{array} \right), \\ sk := \left(\begin{array}{ccc} x_{1,0} & x_{2,0} & \cdots & x_{n,0} \\ x_{1,1} & x_{2,1} & \cdots & x_{n,1} \end{array} \right), \end{aligned}$$

Sign_{sk} (m): output
$$\sigma := (x_{1,m_1}, \dots, x_{n,m_n}), m = m_1 \cdots m_n$$
.

$$Vrfy_{pk}(m,\sigma)$$
: output = 1 $\Leftrightarrow y_{i,m_i} = f(x_{i,m_i})$ for i = 1,...,n.

Lamport's one-time signature

Theorem 2.10 If f is a one-way function, then $\Pi_{\rm f}$ from Construction 2.9 is a one-time signature.

 $m' := message whose signature is requested by A <math>(m,\sigma) := A's final output$

Adverary A outputs forgery at (i,b),if

- $Vrfy_{pk}(m,\sigma) = 1$
- $m_i = b$ and $m_i \neq m'_i$

From forger to inverter

I on input y*

- 1. Choose $i^* \leftarrow \{1,...,n\}, b^* \leftarrow \{0,1\}.$
- 2. For all $i \in \{1,...,n\}$, $b \in \{0,1\}$ with $(i,b) \neq (i^*,b^*)$ do choose $x_{i,b} \leftarrow \{0,1\}^n$, set $y_{i,b} := f(x_{i,b}), y_{i^*,b^*} := y^*$
- 4. When A requests a signature on message m':
 - if $m'_{i^*} = b^*$, stop
 - otherwise return the correct signature $\sigma = (x_{1,m'_1},...,x_{n,m'_n})$
- 5. When A outputs (m, σ) with $\sigma = (x_1, ..., x_n)$
 - if A outputs a forgery at (i*,b*), output x_{i*}.

What have we achieved, what's missing?

- just a one-time signature, where
- keys are longer than messages
- need to decouple key and message length
- key ingredient to achieve this are collision-resistant hash functions
- constructions works for one-time signatures and general signatures
- constructions based on simpler ingredients i.e. universal one-way hash functions also known
- these can be constructed from one-way functions
- to go from one-time signatures to general signatures first construct stateful signatures
- use PRFs to remove statefulness

Hash functions

Definition 2.11 A hash function is a pair $\Pi = (Gen, H)$ of ppts, where

- 1. $Gen(1^n)$ takes as input 1^n and outputs a key s.
- 2. H is deterministic, it takes as input 1^n , a key s, and $x \in \{0,1\}^*$. There is a polynomial $I:\mathbb{N} \to \mathbb{N}$ such that if s was generated with input 1^n , then $H(s,x) \in \{0,1\}^{I(n)}$. Write $H^s(x)$ for H(s,x).

If H^s is defined only for inputs $x \in \left\{0,1\right\}^{l'(n)}$ for some polynomial l', then Π is a fixed-length hash function for inputs of length l'(n).

The collision-finding game

Collision-finding game Hash-coll_{A, Π} (n)

- 1. $s \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ and s. It outputs x,x' (with length I'(n) if Π is fixed-length).
- 3. Output of experiment is 1, if and only if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$. Say A has found collision.

Definition 2.12 $\Pi=\left(\text{Gen},H\right)$ called collision-resistant, if for every probabilistic polynomial time adversary A there is a negligible function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$Pr[Hash-coll_{A,\Pi}(n)=1]=\mu(n).$$

Weaker notions

- 1. coll.-res. ...
- 2. 2^{nd} -preimage res. given s,x, find $x' \neq x$ with $H^{s}(x) = H^{s}(x')$
- 3. pre-image res. given $s,y = H^s(x)$, find x' with $H^s(x') = y$

Fact Under appropriate assumptions coll.res. \Rightarrow 2nd-preimage res. \Rightarrow pre-image res.

A generic attack & birthday paradoxon

$$H^{s}: \{0,1\}^{*} \to \{0,1\}^{n} \text{ for } s \in \{0,1\}^{n}$$

On input $s \in \{0,1\}^n$

- 1. Choose $q \in \mathbb{N}$
- 2. $x_1, ..., x_n \leftarrow \{0,1\}^n, y_i := H^s(x_i)$
- if there exist i,j,i \neq j, such that $y_i = y_i$, output (x_i, x_i) , **3**. otherwise output \perp .

Fact Assume that for all $x_1, ..., x_\alpha \in \{0,1\}^*$ pairwise distinct and all $y_1, ..., y_q \in \{0,1\}^n$ we have $Pr \lceil \forall i : H^s(x_i) = y_i \rceil = 2^{-qn}$, then $\frac{q(q-1)}{2^{n+2}} \le Pr[\exists i, j \in \{1,...,q\}, i \ne j : y_i = y_j] \le \frac{q(q-1)}{2^{n+1}}.$

Arbitrary length hash functions

Construction 2.13 (Merkle-Damgård) $\Pi' = (Gen',h)$ fixed-length hash-function with input length 2I(n), output length I(n).

 $\Pi = (Gen, H)$ defined as:

Gen: same as Gen'.

H: on input key s and $x \in \{0,1\}^*, |x| = L < 2^{l(n)}$ do:

- 1. B:= $\lceil L/I \rceil$ and pad x with 0's so its length is multiple of I, x: = $x_1...x_B, x_{B+1} := L$ (with I bits).
- 2. $z_0 := 0^1$.
- 3. For i = 1,...,B + 1, compute $z_i := h^s(z_{i-1} || x_i)$.
- 4. Output z_{B+1} .

Arbitrary length hash functions

Construction 2.13 (Merkle-Damgård) $\Pi' = (Gen',h)$ fixed-length hash-function with input length 2I(n), output length I(n).

$$\Pi = (Gen, H)$$
 defined as:

Gen: same as Gen'.

H: on input key s and $x \in \{0,1\}^*, |x| = L < 2^{l(n)}$ do:

- 1. B:= $\lceil L/I \rceil$ and pad x with 0's so its length is multiple of I, $x:=x_1...x_B, x_{B+1}:=L$ (with I bits).
- 2. $z_0 := 0^1$.
- 3. For i = 1,...,B + 1, compute $z_i := h^s(z_{i-1} || x_i)$.
- 4. Output z_{B+1} .

Theorem 2.14 If Π' is collision-resistant, then Π is collision-resistant.

Hash-and-Sign

 $\Upsilon' = \left(\text{Gen',Mac',Vrfy'}\right) \text{ sig. scheme with message length } I\left(n\right),$ $\Pi = \left(\text{Gen}_{H},H\right) \text{ hash function with hash length } I\left(n\right).$

Construction 2.15 Sig. scheme $\Upsilon = (Gen, Sign, Vrfy)$ defined as:

$$\begin{split} \text{Gen}\big(1^n\big) \colon & (\text{pk',sk'}) \leftarrow \text{Gen'}\big(1^n\big), s \leftarrow \text{Gen}_{\text{H}}\big(1^n\big), \\ & \text{pk} = (\text{pk',s}), \, \text{sk} = \text{sk'} \\ & \text{Sign}_{\text{sk}}\left(m\right) \colon & \sigma \coloneqq \text{Sign'}_{\text{sk}}\left(H^s\left(m\right)\right). \\ & \text{Vrfy}_{\text{pk}}\left(m,\sigma\right) & \text{output} = 1 \Leftrightarrow 1 = \text{Vrfy'}_{\text{pk'}}\left(H^s\left(m\right),\sigma\right). \end{split}$$

Theorem 2.16 If Υ' is secure and Π is collision-resistant, then Υ is secure.

Hash-and-Sign

 $\Upsilon' = \left(\text{Gen',Mac',Vrfy'}\right) \text{ sig. scheme with message length } I(n),$ $\Pi = \left(\text{Gen}_{H},H\right) \text{ hash function with hash length } I(n).$

Construction 2.15 Sig. scheme $\Upsilon = (Gen, Sign, Vrfy)$ defined as:

$$\begin{split} \text{Gen}\big(1^n\big) \colon & (\text{pk',sk'}) \leftarrow \text{Gen'}\big(1^n\big), \text{s} \leftarrow \text{Gen}_{\text{H}}\big(1^n\big), \\ & \text{pk} = (\text{pk',s}), \text{sk} = \text{sk'} \\ & \text{Sign}_{\text{sk}}\left(m\right) \colon & \sigma \coloneqq \text{Sign'}_{\text{sk}}\left(H^s\left(m\right)\right). \\ & \text{Vrfy}_{\text{pk}}\left(m,\sigma\right) & \text{output} = 1 \Leftrightarrow 1 = \text{Vrfy'}_{\text{pk'}}\left(H^s\left(m\right),\sigma\right). \end{split}$$

Theorem 2.17 If Υ' is a one-time signature and Π is collision-resistant, then Υ is a one-time signature.

Hash-and-Sign

 $A := adversary against \Upsilon$

Signature forging game Sign-forge_{A, Υ} (n)

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ,pk and oracle access to Sign_{sk} (·). It outputs pair (m, σ). \mathcal{Q} : = set of queries made by A to Sign_{sk} (·).
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m, \sigma) = 1$, and (2) $m \notin Q$.

Coll :=
$$\exists m' \in \mathcal{Q} : H^s(m') = H^s(m)$$

$$\begin{split} \text{Pr} \Big[\text{Sign-forge}_{A,\Upsilon}(n) = 1 \Big] & \leq & \text{Pr} \Big[\text{Sign-forge}_{A,\Upsilon}(n) = 1 \land \neg \text{Coll} \Big] \\ & + \text{Pr} \Big[\text{Coll} \Big] \end{aligned}$$

Collision-finder A₁

A_1 on input 1^n and $s \leftarrow Gen_H$

- 1. Run Gen' to obtain key (pk', sk').
- 2. Simulate A. Whenever A queries its Sign-oracle $Sign_{sk}(\cdot)$ on a message m', do:
 - a) Compute $h: = H^s(m')$.
 - b) Compute $\sigma' := Sign_{sk'}(h)$ and return σ' to A.
- 3. Let Q be the set of queries made by A and let (m,σ) be A's answer. If there is an $m' \in Q$ with $H^s(m') = H^s(m)$, return the pair (m,m'), otherwise return "failure".

Sign-forger A₂

A_2 on input 1ⁿ and and oracle access to Sign'_{sk'} (\cdot)

- Run Gen_H to obtain key s.
- 2. Simulate A. Whenever A queries its Sign-oracle Sign_{sk} (\cdot) on a message m', do:
 - a) Compute $h: = H^s(m')$.
 - b) Query Sign'_{sk'}(·) on input h to obtain $\sigma' := Sign'_{sk'}(h)$, return σ' to A.
- 3. Let Q be the set of queries made by A. If A returns a pair (m,t) such that $H^s(m) \neq H^s(m')$ for all $m' \in Q$, then return pair $(H^s(m),t)$, otherwise return "failure".