II. Digital signatures

- 1. Did Bob send message m, or was it Eve?
- 2. Did Eve modify the message m, that was sent by Bob?

Digital signatures

- are equivalents of handwritten signatures
- guarantee authenticity and integrity of documents
- also guarantee non-repudiation

Definition 2.1 A digital signature scheme Π is a triple of probabilistic polynomial time algorithms (ppts) (Gen,Sign,Vrfy), where

- 1. Gen(1ⁿ) outputs a key pair (pk,sk) with $|pk|, |sk| \ge n$.
- 2. Sign takes as input a secret key sk and a message $m \in \{0,1\}^*$ and outputs a signature $\sigma, \sigma \leftarrow \text{Sign}_{sk}(m)$.
- 3. Vrfy takes as input a public key pk, a message $m \in \{0,1\}^*$, and a signature σ . It ouputs $b \in \{0,1\}, 1 \triangleq \text{valid},$ $0 \triangleq \text{invalid}$. Vrfy deterministic, $b := \text{Vrfy}_{pk}(m, \sigma)$. For every key pair (pk,sk)and message m: $\text{Vrfy}_{pk}(m, \text{Sign}_{sk}(m)) = 1$.

Definition 2.1 A digital signatur scheme Π is a triple of probabilistic polynomial time algorithms (ppts)(Gen,Sign,Vrfy), where

- 1. Gen(1ⁿ) outputs a key pair (pk,sk) with |pk| = |sk| = n.
- 2. Sign takes as input a secret key sk and a message $m \in \{0,1\}^*$ and outputs a signature $\sigma, \sigma \leftarrow \text{Sign}_{sk}(m)$.
- 3. Vrfy takes as input a public key pk, a message $m \in \{0,1\}^*$, and a signature σ . It ouputs $b \in \{0,1\}, 1 \triangleq valid$, $0 \triangleq invalid$. Vrfy determinitic, $b := Vrfy_{pk}(m, \sigma)$.

For every key pair (pk,sk) and message m: $Vrfy_{pk}(m, Sign_{sk}(m)) = 1$.

If (Gen,Sign,Vrfy) is such that for every (pk,sk) output byGen(1ⁿ), algorithm Sign_{sk} is only defined for $m \in \{0,1\}^{l(n)}$, then we say that (Gen, Sign, Vrfy) is a signature scheme for messages of length l(n).

Security of digital signatures

- An adversary should not be able to compute the signature for an arbitrary message even though he knows the public key of correct signer.
- This should remain true, even if the adversary can get signatures for messages of his choice.
- But the adversary must compute the signature for a new message to be successful.
- Restrict adversaries to efficient ones.
- But adversaries should succeed only with tiny probability.

The forging game

Signature forging game Sig-forge_{A,II} (n)

- 1. $(pk,sk) \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ, pk and oracle access to Sign_{sk}(·). It outputs pair (m, σ). Q: = set of queries made by A to Sign_{sk}(·).
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m, \sigma) = 1$, and (2) $m \notin Q$.

Definition 2.2 Π is called existentially unforgeable under an adaptive chosen-message attack, or secure, if for every ppt adversary A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\Pr[\text{Sig-forge}_{A,\Pi}(n) = 1] = \mu(n).$ 7

Oracle access

Algorithm D has oracle access to function $f: U \rightarrow R$, if

- 1. D can write elements $x \in U$ into special memory cells,
- 2. in one step receives function value f(x).

Notation Often write $D^{f(\cdot)}$ to denote that algorithm D has oracle access to $f(\cdot)$.

Negligible functions

Definition 2.3 A function $\mu: \mathbb{N} \to \mathbb{R}^+$ is called negligible, if $\forall c \in \mathbb{N} \exists n_0 \in \mathbb{N} \forall n \ge n_0 \mu(n) \le 1/n^c$.

RSA signatures - prerequisites

$$\begin{split} \mathbb{Z}_{N} & := \text{ ring of integers modulo N} \\ \mathbb{Z}_{N}^{*} & := \left\{ a \in \mathbb{Z}_{N} : gcd(a, N) = 1 \right\} \\ \varphi(N) & := \left| \mathbb{Z}_{N}^{*} \right| \end{split}$$

$$gcd(a,m) = 1 \implies \exists u, v \in \mathbb{Z} u \cdot a + v \cdot m = 1 \text{ (EEA)}$$
$$\implies u \cdot a = 1 \mod m$$
$$\implies u = a^{-1} \mod m$$

$$\mathbf{N} = \prod_{i=1}^{\kappa} \mathbf{p}_{i}^{\mathbf{e}_{i}} \implies \varphi\left(\mathbf{N}\right) = \prod_{i=1}^{\kappa} \left(\mathbf{p}_{i}^{\mathbf{e}_{i}} - \mathbf{p}_{i}^{\mathbf{e}_{i}-1}\right) = \mathbf{N} \cdot \prod_{i=1}^{\kappa} \left(1 - 1/\mathbf{p}_{i}\right) \cdot \mathbf{N}$$

RSA signatures

$$\begin{split} & \text{Gen} \left(1^n \right) \colon \quad \text{choose 2 random primes } p,q \in \left[2^{n-1},2^n-1 \right], \\ & \text{N} \coloneqq p \cdot q, e \leftarrow \mathbb{Z}^*_{\phi(N)}, d \coloneqq e^{-1} \text{ mod } \phi\left(N \right), \\ & pk \coloneqq \left(N,e \right), \text{sk} \coloneqq \left(N,d \right). \end{split}$$

RSA signatures - correctness

For special case $m \in \mathbb{Z}_{N}^{*}$ based on

Lemma 2.4 Let $N \in \mathbb{N}$ and $m \in \mathbb{Z}_{N}^{*}$, then $m^{\phi(N)} = 1 \mod N$.

RSA signatures - efficiency

Prime generation

- 1. choose $p \leftarrow [2^{n-1}, 2^n 1]$.
- 2. Test whether p is prime, if so output p, otherwise go back to 1.

Efficiency based on

- 1. In $[2^{n-1}, 2^n 1]$ many primes exist (prime number theorem).
- 2. Efficient primality test exist (Miller-Rabin, AKS)

RSA signatures - efficiency

Exponent generation

- 1. choose $e \leftarrow \mathbb{Z}_{\phi(N)}$.
- 2. Test whether $gcd(e, \phi(N)) = 1$, if so compute d with $e \cdot d = 1 \mod \phi(N)$, otherwise go back to 1.

Efficiency based on

- 1. In \mathbb{Z}_{M} many elements relatively prime to M exist.
- 2. Can check efficiently whether $a, b \in \mathbb{Z}$ are relatively prime using Eucledean algorithm.

RSA signatures - efficiency

Efficiency of Sign and Vrfy based on

- 1. Arithmetic in \mathbb{Z}_{N} can be done efficiently.
- 2. Exponentiation requires few arithmetic operations using Square-and-Multiply.

RSA signatures - forgeries

existential forgeries

- $\quad Sign_{sk}\left(0\right) = 0$
- Sign_{sk} (1) = 1
- $\quad \text{Sign}_{_{\text{sk}}}\left(-1\right) = -1$

selective forgery of $Sign_{sk}(m)$

- query signature oracle with input $\hat{m} := 2^{e} m \mod N$ and obtain $\hat{\sigma}$.
- compute $\sigma = 2^{-1} \hat{\sigma} \mod N$.

General problem of public-key cryptography

- Secret key sk must not be efficiently computable from public key pk!
- **General problem for RSA**
- Given (N,e), element $d \in \mathbb{Z}_{\phi(N)}^*$ with $e \cdot d = 1 \mod \phi(N)$ must not be efficiently computable.
- Theorem 2.5 Given e,d,N, $N = p \cdot q$ for primes p,q, and with e $\cdot d = 1 \mod \varphi(N)$, then the primes p,q can be computed in time polynomial in log(N).

Status of factoring problem

- **Two factoring algorithms**
 - Number field sieve

running time $\exp(\log(N)^{1/3} \cdot \log\log(N)^{2/3})$

Elliptic curve method

runn

ing time
$$\exp(\log(p)^{1/2} \cdot \log\log(p)^{1/2})$$

where p smallest prime factor

Existence of secure signatures

Theorem 2.6 Secure digital signature schemes exist if and only if one-way functions exist.

- We will not prove this theorem entirely.
- But present the most important steps.
- The difficult direction is the construction of secure signatures from one-way functions.

Inverting game

 $f: \{0,1\}^* \rightarrow \{0,1\}^*$, A a probabilistic polynomial time algorithm

Inverting game $Invert_{A,f}(n)$

- 1. $\mathbf{x} \leftarrow \{\mathbf{0},\mathbf{1}\}^n, \mathbf{y} := \mathbf{f}(\mathbf{x}).$
- **2.** A given input 1^n and y, outputs x'.
- 3. Output of game is 1, if f(x') = y, otherwise output is 0.

Write Invert_{A,f} (n) = 1, if output is 1. Say A has succeded or A has won.

Definition of one-way function

Definition 2.7 f: $\{0,1\}^* \rightarrow \{0,1\}^*$ called one-way, if

- 1. there is a ppt M_f with $M_f(x) = f(x)$ for all $x \in \{0,1\}^*$
- 2. for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $Pr[Invert_{A,f}(n) = 1] = \mu(n).$

Notation
$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathbf{A}(\mathbf{f}(\mathbf{x})) \in \mathbf{f}^{-1}(\mathbf{f}(\mathbf{x})) \right] = \mu(\mathbf{n})$$

Candidate

where $|\mathbf{x}_1| = \lfloor |\mathbf{x}|/2 \rfloor$, $|\mathbf{x}_2| = \lceil |\mathbf{x}|/2 \rceil$, and identify bit strings and

integers via binary representations.

Idea Multiplication easy, factoring hard