II. Digital signatures

1. Did Bob send message m, or was it Eve?
2. Did Eve modify the message m, that was sent by Bob?

Digital signatures

Digital signatures

- are equivalents of handwritten signatures
- guarantee authenticity and integrity of documents
- also guarantee non-repudiation

Digital signatures

Definition 2.1 A digital signature scheme Π is a triple of probabilistic polynomial time algorithms (ppts)
(Gen,Sign, Vrfy), where

1. Gen $\left(1^{n}\right)$ outputs a key pair (pk, sk) with $|\mathrm{pk}|,|s k| \geq \mathrm{n}$.
2. Sign takes as input a secret key sk and a message $\mathrm{m} \in\{0,1\}^{*}$ and outputs a signature $\sigma, \sigma \leftarrow \operatorname{Sign}_{\text {sk }}(\mathrm{m})$.
3. Vrfy takes as input a public key $p k$, a message $m \in\{0,1\}^{*}$, and a signature σ. It ouputs $b \in\{0,1\}, 1 \hat{=}$ valid, $0 \hat{=}$ invalid. Vrfy deterministic, $\mathrm{b}:=\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m}, \sigma)$.
For every key pair (pk,sk) and message m:
$\operatorname{Vrfy}_{\mathrm{pk}}\left(\mathrm{m}, \operatorname{Sign}_{\mathrm{sk}}(\mathrm{m})\right)=1$.

Digital signatures

Definition 2.1 A digital signatur scheme Π is a triple of probabilistic polynomial time algorithms (ppts)(Gen,Sign, Vrfy), where

1. Gen(1^{n}) outputs a key pair ($\mathbf{p k}, \mathbf{s k}$) with $|\mathrm{pk}|=|s k|=n$.
2. Sign takes as input a secret key sk and a message $m \in\{0,1\}^{*}$ and outputs a signature $\sigma, \sigma \leftarrow \operatorname{Sign}_{\text {sk }}(m)$.
3. Vrfy takes as input a public key $p k$, a message $m \in\{0,1\}^{*}$, and a signature σ. It ouputs $b \in\{0,1\}, 1 \xlongequal{=}$ valid, $0 \hat{=}$ invalid. Vrfy determinitic, b: $=\operatorname{Vrfy}_{\mathrm{pk}}(\mathrm{m}, \sigma)$.
For every key pair (pk,sk) and message m : $\operatorname{Vrfy}_{\mathrm{pk}}\left(\mathrm{m}, \operatorname{Sign}_{\mathrm{sk}}(\mathrm{m})\right)=1$.

If (Gen,Sign, Vrfy) is such that for every ($\mathbf{p k}, \mathbf{s k}$) output byGen $\left(1^{\mathrm{n}}\right)$, algorithm Sign $_{\text {sk }}$ is only defined for $m \in\{0,1\}^{(n)}$, then we say that (Gen, Sign, Vrfy) is a signature scheme for messages of length $I(n)$.

Digital signatures

Security of digital signatures

- An adversary should not be able to compute the signature for an arbitrary message even though he knows the public key of correct signer.
- This should remain true, even if the adversary can get signatures for messages of his choice.
- But the adversary must compute the signature for a new message to be successful.
- Restrict adversaries to efficient ones.
- But adversaries should succeed only with tiny probability.

The forging game

${\text { Signature forging game } \text { Sig-forge }_{\mathrm{A}, \Pi}(\mathrm{n})}_{(}$

1. $(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{\mathrm{n}}\right)$.
2. \mathbf{A} is given $1^{n}, \mathrm{pk}$ and oracle access to $\operatorname{Sign}_{\mathrm{sk}}(\cdot)$. It outputs pair $(m, \sigma) . \mathcal{Q}:=$ set of queries made by A to $\operatorname{Sign}_{\text {sk }}(\cdot)$.
3. Output of experiment is 1 , if and only if (1) $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m}, \sigma)=1$, and (2) $m \notin \mathcal{Q}$.

Definition 2.2 П is called existentially unforgeable under an adaptive chosen-message attack, or secure, if for every ppt adversary \mathbf{A} there is a negligible function $\mu: \mathbb{N} \rightarrow \mathbb{R}^{+}$such that

$$
\begin{equation*}
\operatorname{Pr}\left[\text { Sig-forge }_{\mathrm{A}, \Pi}(\mathbf{n})=1\right]=\mu(\mathbf{n}) . \tag{7}
\end{equation*}
$$

Oracle access

Algorithm D has oracle access to function $f: U \rightarrow R$, if

1. D can write elements $x \in U$ into special memory cells,
2. in one step receives function value $f(x)$.

Notation Often write $\mathbf{D}^{\mathrm{f}(\cdot)}$ to denote that algorithm D has oracle access to $f(\cdot)$.

Negligible functions

Definition 2.3 \mathbf{A} function $\mu: \mathbb{N} \rightarrow \mathbb{R}^{+}$is called negligible, if $\forall c \in \mathbb{N} \exists n_{0} \in \mathbb{N} \forall n \geq n_{0} \mu(n) \leq 1 / n^{c}$.

RSA signatures - prerequisites

$$
N=\prod_{i=1}^{K} p_{i}^{e_{i}} \Rightarrow \phi(N)=\prod_{i=1}^{K}\left(p_{i}^{e_{i}}-p_{i}^{{e_{i}-1}^{i}}\right)=N \cdot \prod_{i=1}^{K}\left(1-1 / p_{i}\right) .
$$

$$
\begin{aligned}
& \mathbb{Z}_{\mathrm{N}} \quad:=\quad \text { ring of integers modulo } \mathbf{N} \\
& \mathbb{Z}_{N}^{*} \quad:=\left\{a \in \mathbb{Z}_{N}: \operatorname{gcd}(a, N)=1\right\} \\
& \phi(\mathbf{N}):=\left|\mathbb{Z}_{\mathbf{N}}^{*}\right| \\
& \operatorname{gcd}(a, m)=1 \Rightarrow \exists u, v \in \mathbb{Z} u \cdot a+v \cdot m=1 \text { (EEA) } \\
& \Rightarrow u \cdot a=1 \mathrm{mod} \mathrm{~m} \\
& \Rightarrow u=\mathbf{a}^{-1} \bmod m
\end{aligned}
$$

RSA signatures

$\operatorname{Gen}\left(1^{n}\right)$: choose 2 random primes $p, q \in\left[2^{n-1}, 2^{n}-1\right]$,

$$
\begin{aligned}
& \mathrm{N}:=\mathrm{p} \cdot \mathrm{q}, \mathrm{e} \leftarrow \mathbb{Z}_{\phi(\mathbf{N})}^{*}, \mathrm{~d}:=\mathrm{e}^{-1} \bmod \phi(\mathrm{~N}), \\
& \mathrm{pk}:=(\mathrm{N}, \mathrm{e}), \mathrm{sk}:=(\mathrm{N}, \mathrm{~d}) .
\end{aligned}
$$

$\operatorname{Sign}_{\text {sk }}(m) \quad m \in\{0,1\}^{2 n-2}$ interpreted as element in \mathbb{Z}_{N}, $\sigma:=\mathrm{m}^{\mathrm{d}} \bmod \mathrm{N}$.
$\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m}, \sigma)$ output 1 , if and only if $\sigma^{e}=\mathrm{m} \bmod \mathrm{N}$.

RSA signatures - correctness

For special case $\mathbf{m} \in \mathbb{Z}_{\mathbf{N}}^{*}$ based on
Lemma 2.4 Let $N \in \mathbb{N}$ and $m \in \mathbb{Z}_{N}^{*}$, then $m^{\phi(N)}=1 \bmod N$.

RSA signatures - efficiency

Prime generation

1. choose $p \leftarrow\left[2^{n-1}, 2^{n}-1\right]$.
2. Test whether p is prime, if so output p, otherwise go back to 1.

Efficiency based on

1. In $\left[2^{n-1}, 2^{n}-1\right]$ many primes exist (prime number theorem).
2. Efficient primality test exist (Miller-Rabin, AKS)

RSA signatures - efficiency

Exponent generation

1. choose $e \leftarrow \mathbb{Z}_{\phi(N)}$.
2. Test whether $\operatorname{gcd}(e, \phi(N))=1$, if so compute d with $e \cdot d=1 \bmod \phi(N)$, otherwise go back to 1.

Efficiency based on

1. In \mathbb{Z}_{M} many elements relatively prime to M exist.
2. Can check efficiently whether $a, b \in \mathbb{Z}$ are relatively prime using Eucledean algorithm.

RSA signatures - efficiency

Efficiency of Sign and Vrfy based on

1. Arithmetic in \mathbb{Z}_{N} can be done efficiently.
2. Exponentiation requires few arithmetic operations using Square-and-Multiply.

RSA signatures - forgeries

existential forgeries

$-\operatorname{Sign}_{\text {sk }}(0)=0$

- $\operatorname{Sign}_{\mathrm{sk}}(1)=1$
$-\operatorname{Sign}_{\mathrm{sk}}(-1)=-1$
selective forgery of $\operatorname{Sign}_{\mathrm{sk}}(\mathrm{m})$
- query signature oracle with input $\hat{\mathrm{m}}:=\mathbf{2}^{\mathrm{e}} \mathrm{m} \bmod \mathrm{N}$ and obtain $\hat{\sigma}$.
- compute $\sigma=2^{-1} \hat{\sigma} \bmod \mathrm{~N}$.

General problem of public-key cryptography

Secret key sk must not be efficiently computable from public key pk!

General problem for RSA

Given (N, e), element $d \in \mathbb{Z}_{\phi(N)}^{*}$ with $e \cdot d=1 \bmod \phi(N)$ must not be efficiently computable.

Theorem 2.5 Given e,d,N, $\mathbf{N}=\mathbf{p} \cdot \mathbf{q}$ for primes \mathbf{p}, \mathbf{q}, and with $e \cdot d=1 \bmod \varphi(N)$, then the primes p, q can be computed in time polynomial in $\log (N)$.

Status of factoring problem

Two factoring algorithms

- Number field sieve
running time $\exp \left(\log (N)^{1 / 3} \cdot \log \log (N)^{2 / 3}\right)$
- Elliptic curve method
$\begin{aligned} \text { running time } & \exp \left(\log (p)^{1 / 2} \cdot \log \log (p)^{1 / 2}\right), \\ & \text { where } p \text { smallest prime factor }\end{aligned}$

Existence of secure signatures

Theorem 2.6 Secure digital signature schemes exist if and only if one-way functions exist.

- We will not prove this theorem entirely.
- But present the most important steps.
- The difficult direction is the construction of secure signatures from one-way functions.

Inverting game

$f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, A a probabilistic polynomial time algorithm

Inverting game Invert ${ }_{\mathrm{A}, \mathrm{f}}(\mathrm{n})$

1. $x \leftarrow\{0,1\}^{n}, y:=f(x)$.
2. A given input 1^{n} and y, outputs x^{\prime}.
3. Output of game is 1 , if $f\left(x^{\prime}\right)=y$, otherwise output is 0 .

Write $^{I_{n v e r t}^{A, f}}(n)=1$, if output is 1 . Say A has succeded or A has won.

Definition of one-way function

Definition $2.7 \mathrm{f}:\{\mathbf{0 , 1}\}^{*} \rightarrow\{0,1\}^{*}$ called one-way, if

1. there is a ppt M_{f} with $M_{f}(x)=f(x)$ for all $x \in\{0,1\}^{*}$
2. for every probabilistic polynomial time algorithm A there is a negligible function $\mu: \mathbb{N} \rightarrow \mathbb{R}^{+}$such that $\operatorname{Pr}\left[\operatorname{Invert}_{\mathrm{A}, \mathrm{f}}(\mathrm{n})=1\right]=\mu(\mathrm{n})$.

Notation $\operatorname{Pr}_{\mathbf{x} \leftarrow\{0,1\}^{1}}\left[\mathbf{A}(\mathbf{f}(\mathbf{x})) \in \mathbf{f}^{-1}(\mathbf{f}(\mathbf{x}))\right]=\mu(\mathbf{n})$

Candidate

1. $f_{\text {mutt }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$

$$
x \quad \mapsto \quad\left(x_{1} \cdot x_{2},\left|x_{1},\left|x_{2}\right|\right)\right.
$$

where $\left|\mathbf{x}_{1}\right|=\lfloor\mathbf{x} / 2\rfloor,\left|\mathbf{x}_{2}\right|=\lceil\mathbf{x} / 2\rceil$, and identify bit strings and integers via binary representations.

Idea Multiplication easy, factoring hard

