
Stateful signatures

Definition 2.18 A stateful signature scheme Π is a triple of
probabilistic polynomial time algorithms (ppts)
Gen,Sign,Vrfy() , where

1. Gen 1n() outputs a key pair pk,sk() with pk , sk ≥ n

and a state s0.

2. Sign on input a secret key sk, a state si−1, and

message m ∈ 0,1{ }∗
,outputs a signature σ and a state si.

3. Vrfy takes as input a public key pk, a message m ∈ 0,1{ }∗
,

and a signature σ. It ouputs b ∈ 0,1{ }.

For every key pair pk,sk() , state s0,and message m:

Vrfypk m,Signsk,si−1
m()() = 1.

1

Stateful signatures - remarks

2

1. If Gen,Sign,Vrfy() is such that for every (pk,sk) output byGen(1n),

algorithm Signsk is only defined for m ∈{0,1}l(n) , then we say that

(Gen, Sign, Vrfy) is a stateful signature scheme for messages of
length l(n).

2. The verfication algorithm does not need the state to verify
signatures.

3

Π = (Gen,Sign,Vrfy) (one-time) signature scheme.

l = l(n) := number of signatures to be computed (known in advance)

′Π = (Ge ′n ,Sig ′n ,Vrf ′y)

Ge ′n runs Gen to obtain l pairs (pki,ski), state s set to 1.
pk is the sequence of public keys pki, sk is the sequence of secret
keys ski.

Sig ′n on input sk,s and message m, sets σ ← Signsks
(m), s: = s + 1.

Vrf ′y on input (m,σ) outputs 1, iff there is an i ∈{1,…,l} such that
Vrfypki

(m,σ) = 1.

From one-time signatures to stateful
signatures

From one-time signatures to stateful
signatures

4

Π = (Gen,Sign,Vrfy) (1-time) signature scheme for messages of length 2n
and such that Gen(1n) outputs public keys of length n.

′Π = (Ge ′n ,Sig ′n ,Vrf ′y), stateful for messages of length n.

Ge ′n runs Gen to obtain a pair (pk,sk) = (pk1,sk1), state s is the
empty string .

Sig ′n on input sk, s and message mi, runs Gen to obtain (pki+1,ski+1),
σi ← Signski

(mi‖pki+1) and add (mi,pki+1,ski+1,σi) to the state.

The signature for mi is {(mj,pkj+1,σ j)} j=1
i−1 and (pki+1,σi).

Vrf ′y on input (pki+1,σi ,{(mj,pkj+1,σ j)} j=1
i−1) outputs 1, iff

Vrfypkj
(mj‖pkj+1,σ j) = 1 for j = 1,…,i.

Tree-based signatures – preliminaries and
Gen

5

For m ∈{0,1}* denote by m i the prefix of m of length i.

Π! = (Gen*,Sign∗ ,Vrfy∗) is a stateful signature scheme for messages of
length n.

Gen∗ on input 1n : compute (pk
ε
,sk

ε
), output public key pk

ε
 and state

s = sk
ε
.

Π = (Gen,Sign,Vrfy) (one-time) signature scheme for messages of length 2n
and such that Gen(1n) outputs public keys of length n.

Tree-based signatures - Sign

6

Sign∗ on input m ∈{0,1}n and state:
1. for i = 0 to n − 1:

− if pkm i 0
,pkm i1

, and σm i
 are not in the state, compute

(pkm i 0
,skm i 0

) ← Gen(1n), (pkm i1
,skm i1

) ← Gen(1n), and

σm i
← Signskm i

(pkm i 0
‖pkm i1

). Add these values to state.

2. if σm is not in the state, compute σm ← Signskm
(m).

3. output the signature ({(σm i
,pkm i 0

,pkm i1
)}i=0

n−1,σm).

Remark: Sign* uses each key on at most one message.

Tree-based signatures

7

pkε

m,pkm

pkm⎜1

pkm⎜10 pkm⎜11=pkm⎜2

leaves = messages

key in parent node to compute signature of concatenation of
public keys in children.

Tree-based signatures - Vrfy

8

Vrfy∗ on input a public key pk

, message m, and signature

({(σm i
,pkm i 0

,pkm i1
)}i=0

n−1,σm), output 1, iff

1. Vrfypkm i

(pkm i 0
‖pkm i1

,σm i
) = 1 for i = 0,…,n − 1

2. Vrfypkm
(m,σm) = 1.

Theorem 2.19 If Π is a one-time signature, then Π * is a secure

stateful signature scheme for messages of length n.

From A* to A (1)

9

A on input public key pk:

• choose random index i* ← {1,…,l* }. Construct list pk1,…,pkl* of keys
as follows:

− set pki* := pk

− for i ≠ i* , compute (pki,ski) ← Gen(1n).

• run A* on input pk
ε
= pk1. When A* requests a signature on m, do:

1. for i = 0 to n − 1:

− if the values pkm i 0
,pkm i1

, and σm i
 have not been defined,

set pkm i 0
,pkm i1

 to the next unused keys pkj,pkj+1, and

compute signature σm i
 on pkm i 0

‖pkm i1
 with respect to key pkm i

.

2. if σm is not yet defined, compute a signature σm on m with key pkm.

3. give ({(σm i
,pkm i 0

,pkm i1
)}i=0

n−1,σm) to A*.

From A* to A (2)

10

• if A* outputs a valid signature ({(′σm i
,p ′km i 0

,p ′km i1
)}i=0

n−1, ′σm) on

message m, then

case 1: if there is a j ≤ n − 1 such that p ′k
m j 0

≠ pk
m j 0

 or

p ′k
m j1

≠ pk
m j1

, take minimal j and let i be such that

pki = p ′k
m j

= pk
m j

. If i = i* , output (p ′k
m j 0
‖p ′k

m j1,
′σ
m j

).

case 2: if case 1 does not hold, then p ′km = pkm. Let i be such

that pki = pkm. If i = i* , output (m, ′σm).

Removing statefulness

11

-  in state store key pairs and signatures for internal nodes
of tree

-  instead of storing these values want to recompute them
when needed

-  however, Gen and Sign are probabilistic, and recomputation
may lead to different values

-  need randomness use in computation of key pairs and
signatures

-  replace randomness by pseudorandomness
-  computed using PRFs and based on index of internal node

Existence of secure signatures

Theorem 2.20 (restated) Secure digital signature schemes exist

if and only if one-way functions exist.

12

Proof sektch Let Π = (Gen,Sign,Vrfy) be an existentially

unforgeable signature scheme. Then the function f that

on input r outputs the public key generated by Gen if

started with random bits r is a one-way function.

RSA signatures - prerequisits

ZN := ring of integers modulo N

ZN
∗ := a ∈ZN : gcd a,N() = 1{ }

φ N() := ZN
∗

gcd a,m() = 1 ⇒ ∃u,v ∈Z u ⋅a + v ⋅m = 1 (EEA)

⇒ u ⋅a = 1mod m

⇒ u = a−1 mod m

N = pi

ei

i=1

K

∏ ⇒ φ N() = pi
ei − pi

ei−1() = N ⋅
i=1

K

∏ 1− 1 pi() ⋅
i=1

K

∏
13

RSA signatures

Gen 1n() : choose 2 random primes p,q ∈ 2n−1,2n − 1⎡⎣ ⎤⎦ ,

N:= p ⋅q,e ← Zφ N()
∗ ,d := e−1 mod φ N() ,

pk := N,e() ,sk := N,d().
Signsk m() m ∈ 0,1{ }2n−2

 interpreted as element in ZN,

σ := md modN.

Vrfypk m,σ() output 1, if and only if σe = m modN.

14

RSA signatures - forgeries

existential forgeries

− Signsk 0() = 0

− Signsk 1() = 1

− Signsk −1() = −1

selective forgery of Signsk m()
− query signature oracle with input m̂ := 2em modN

and obtain σ̂.
− compute σ = 2−1σ̂ modN.

15

Random oracle model (ROM)

 Q = x1,H x1()() , x2,H x2()() ,…{ }
 x ∈Q?

 H x()?

− If x = xi for xi ∈Q, return H xi().
− If x ≠ xi for all xi ∈Q,

a) y ←R
b) return H x() = y

c) add pair x,H x()() to Q

 H x() = y

 Goal Construct H: 0,1{ }∗
→ R, R < ∞,"random" function.

16

Random oracle model (ROM)

 Q = x1,H x1()() , x2,H x2()() ,…{ }
 x ∈Q?

 H x()? H x() = y

§  Random oracle model idealization of
-  one-way functions
-  random functions
-  collision-resistant hash functions.

§  In practice they can not be implemented in this form.
§  Often collision-resistant hash functions used instead. 17

RSA-Full-Domain-Hash (RSA-FDH)

() ()
() ()

n

n 1 n

1
N

By Gen denote an algorithm that on input 1 computes
2 random primes p,q 2

e
,2

pk : N,e
, sets d : e mod N , and outpu

1 ,p q, sets N p q,
choos

,
e

s
s

k : N, .
 s

d
t

−

∗ −
φ

⎡ ⎤∈ − ≠

= =

=
φ

⎦
←

⋅⎣
=Z

Construction 2.21 (RSA-FDH)
− Run Gen 1n() to obtain pk := N,e() and sk := N,d().

Let H: 0,1{ }∗
→ ZN be modeled as a random oracle.

− Sign on input m ∈ 0,1{ }∗
 and N,d() outputs

σ := H m()()d
modN.

− Vrfy on input m,σ, N,e() outputs 1 ⇔ σe = H m()modN.
18

RSA assumption

 RSA inverting game RSA-invA,Gen n()
1. Run Gen to obtain N,e().
2. y ← ZN.

3. A is given N,e() and y. A outputs x ∈ZN.

4. Output of experiment is 1, if and only if xe = y modN.

Write RSA-invA,Gen n() = 1, if output is 1.

Definition 2.22 The RSA problem is hard relative to the

generation algorithm Gen if for every ppt adversary A there

is a negligible function µ : N → R+ such that

 Pr RSA-invA,Gen n() = 1⎡⎣ ⎤⎦ ≤ µ n(). 19

RSA assumption

Theorem 2.23 If the RSA problem is hard relative to the

generation algorithm Gen, then RSA-FDH (Construction 2.21)

is existentially unforgeable under an adaptive

chosen-message attack.

Construction 2.21 (RSA-FDH)
− Run Gen 1n() to obtain pk := N,e() and sk := N,d().

Let H: 0,1{ }∗
→ ZN be modeled as a random oracle.

− Sign on input m ∈ 0,1{ }∗
 and N,d() outputs

σ := H m()()d
modN.

− on input m,σ, N,e() output 1 ⇔ σe = H m()modN.

20

From forger to inverter

 Signature forging game Sig-forgeA,Π n()
1. pk,sk() ← Gen 1n().
2. A is given 1n,pk and oracle access to Signsk ⋅(). It outputs

pair m,σ(). Q: = set of queries made by A to Signsk ⋅().
3. Output of experiment is 1, if and only if (1) Vrfypk m,σ() = 1,

and (2) m ∉Q.

Let q = q n() denote number of hash queries made A,

q bounded by polynomial in n.
21

Assume:

1. A never queries for the same hash value twice.
2. Before querying Signsk (⋅) on message m, A queries H(⋅)

on m.

From forger to inverter

I on input N,e,y∗()
1. Choose j ← 1,…,q{ }.
2. Simulate A with public key N,e(). Table T stores triples

mi,σi ,yi() with meaning that I has set H mi() = yi and
σi

e = yi modN.
3. When A makes i-th random oracle query H mi() , do

− if i = j, return y∗

− otherwise, σi ← ZN,yi := σi
e modN⎡⎣ ⎤⎦ , return yi,

add mi,σi ,yi() to T.
When A makes signature query m = mi, do
− if i ≠ j, then T contains triple mi,σi ,yi() , return σi.
− if i = j, then abort experiment.

4. Let m,σ() be A's output. If m = mj and σe = y∗ modN,
then output σ. 22

Certificates and trusted authorities

How can we guarantee that pkA belongs to A?

-  certificates from trusted authorities (TA)
-  certificates are signatures
-  leads to hierarchie of certificates/signatures
-  must stop at (really) trusted authority

23

