
Stateful signatures 

 

Definition 2.18 A stateful signature scheme Π is a triple of 
probabilistic polynomial time algorithms (ppts)
Gen,Sign,Vrfy( ) , where 

1. Gen 1n( )  outputs a key pair pk,sk( )  with pk , sk ≥ n 

and a state s0.

2. Sign on input a secret key sk, a state si−1,  and   

message m ∈ 0,1{ }∗
,outputs a signature σ and a state si.

3. Vrfy takes as input a public key pk, a message m ∈ 0,1{ }∗
,  

and a  signature σ. It ouputs b ∈ 0,1{ }.  

For every key pair pk,sk( ) ,  state s0,and message m: 

Vrfypk m,Signsk,si−1
m( )( ) = 1.                     
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Stateful signatures - remarks 
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1. If Gen,Sign,Vrfy( )  is such that for every (pk,sk) output byGen(1n),

algorithm Signsk  is only defined for m ∈{0,1}l(n) , then we say that

(Gen, Sign, Vrfy) is a stateful signature scheme for messages of
length  l(n). 

2. The verfication algorithm does not need the state to verify 
signatures.
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Π = (Gen,Sign,Vrfy) (one-time) signature scheme.

l = l(n) := number of signatures to be computed (known in advance)

 

′Π = (Ge ′n ,Sig ′n ,Vrf ′y ) 

Ge ′n  runs Gen to obtain l pairs (pki,ski),  state s set to 1.
pk is the sequence of public keys pki,  sk is the sequence of secret 
keys ski.

Sig ′n  on input sk,s and message m, sets σ ← Signsks
(m),  s: = s + 1.

Vrf ′y  on input (m,σ) outputs 1, iff there is an i ∈{1,…,l} such that
Vrfypki

(m,σ) = 1.

From one-time signatures to stateful 
signatures 



From one-time signatures to stateful 
signatures 
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Π = (Gen,Sign,Vrfy) (1-time) signature scheme for messages of length 2n 
and such that Gen(1n) outputs public keys of length n.

   

′Π = (Ge ′n ,Sig ′n ,Vrf ′y ),  stateful for messages of length n. 

Ge ′n  runs Gen to obtain a pair (pk,sk) = (pk1,sk1),  state s is the
empty string .

Sig ′n  on input sk, s and message mi, runs Gen to obtain (pki+1,ski+1),
σi ← Signski

(mi‖pki+1) and add (mi,pki+1,ski+1,σi ) to the state.

The signature for mi  is {(mj,pkj+1,σ j )} j=1
i−1  and (pki+1,σi ).

Vrf ′y  on input  (pki+1,σi ,{(mj,pkj+1,σ j )} j=1
i−1) outputs 1, iff 

Vrfypkj
(mj‖pkj+1,σ j ) = 1 for j = 1,…,i.



Tree-based signatures – preliminaries and 
Gen 
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For m ∈{0,1}*  denote by m i  the prefix of m of length i.

Π! = (Gen*,Sign∗ ,Vrfy∗) is a stateful signature scheme for messages of 
length n.

Gen∗  on input 1n :  compute (pk
ε
,sk

ε
),  output public key pk

ε
 and state

s = sk
ε
.

 

Π = (Gen,Sign,Vrfy) (one-time) signature scheme for messages of length 2n 
and such that Gen(1n) outputs public keys of length n.



Tree-based signatures - Sign 
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Sign∗  on input m ∈{0,1}n  and state:
1. for i = 0 to n − 1:

− if  pkm i 0
,pkm i1

,  and σm i
 are not in the state, compute

(pkm i 0
,skm i 0

) ←  Gen(1n), (pkm i1
,skm i1

) ←  Gen(1n),  and

σm i
← Signskm i

(pkm i 0
‖pkm i1

). Add these values to state.

2. if σm  is not in the state, compute σm ← Signskm
(m).

3. output the signature ({(σm i
,pkm i 0

,pkm i1
)}i=0

n−1,σm).

Remark: Sign* uses each key on at most one message. 



Tree-based signatures 
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pkε 

m,pkm 

pkm⎜1 

pkm⎜10 pkm⎜11=pkm⎜2 
 

leaves = messages 

key in parent node to compute signature of concatenation of  
public keys in children. 



Tree-based signatures - Vrfy 
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Vrfy∗  on input a public key pk

,  message m, and signature

({(σm i
,pkm i 0

,pkm i1
)}i=0

n−1,σm),  output 1, iff

1. Vrfypkm i

(pkm i 0
‖pkm i1

,σm i
) = 1 for i = 0,…,n − 1

2. Vrfypkm
(m,σm) = 1.

 

Theorem 2.19 If Π is a one-time signature, then Π *  is a secure 

stateful signature scheme for messages of length n.



From A* to A (1) 
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A on input public key pk:

• choose random index i* ← {1,…,l* }. Construct list pk1,…,pkl*  of keys
as follows:

− set pki* := pk

− for  i ≠ i* ,  compute (pki,ski) ← Gen(1n).

• run A*  on input pk
ε
= pk1. When A*  requests a signature on m, do:

1. for i = 0 to n − 1:

− if the values pkm i 0
,pkm i1

,  and σm i
 have not been defined,

set pkm i 0
,pkm i1

 to the next unused keys pkj,pkj+1,  and 

compute signature  σm i
 on pkm i 0

‖pkm i1
 with respect to key pkm i

.

2. if σm  is not yet defined, compute a signature σm  on m with key pkm.

3. give ({(σm i
,pkm i 0

,pkm i1
)}i=0

n−1,σm) to A*.



From A* to A (2) 
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• if  A*  outputs a valid signature ({( ′σm i
,p ′km i 0

,p ′km i1
)}i=0

n−1, ′σm) on

message m, then

case 1: if  there is a  j ≤ n − 1 such that p ′k
m j 0

≠ pk
m j 0

 or

p ′k
m j1

≠ pk
m j1

,  take minimal j and let i be such that

pki = p ′k
m j

= pk
m j

. If i = i* ,  output (p ′k
m j 0
‖p ′k

m j1,
′σ
m j

).

case 2: if case 1 does not hold, then p ′km = pkm. Let i be such 

that pki = pkm. If i = i* ,  output (m, ′σm).



Removing statefulness 

11 

-  in state store key pairs and signatures for internal nodes  
of tree 

-  instead of storing these values want to recompute them  
when needed 

-  however, Gen and Sign are probabilistic, and recomputation  
may lead to different values 

-  need randomness use in computation of key pairs and  
signatures 

-  replace randomness by pseudorandomness 
-  computed using PRFs and based on index of internal node 
 



Existence of secure signatures 

 

Theorem 2.20 (restated) Secure digital signature schemes exist 

if and only if one-way functions exist. 
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Proof sektch Let Π = (Gen,Sign,Vrfy) be an existentially

unforgeable signature scheme. Then the function f that

on input r outputs the public key generated by Gen if

started with random bits r is a one-way function. 



RSA signatures - prerequisits 

  

ZN := ring of integers modulo N

ZN
∗ := a ∈ZN : gcd a,N( ) = 1{ }

φ N( ) := ZN
∗

  

gcd a,m( ) = 1 ⇒ ∃u,v ∈Z u ⋅a + v ⋅m = 1 (EEA)

⇒ u ⋅a = 1mod m

⇒ u = a−1 mod m

 
N = pi

ei

i=1

K

∏ ⇒ φ N( ) = pi
ei − pi

ei−1( ) = N ⋅
i=1

K

∏ 1− 1 pi( ) ⋅
i=1

K

∏
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RSA signatures  

  

Gen 1n( ) : choose 2 random primes p,q ∈ 2n−1,2n − 1⎡⎣ ⎤⎦ ,

N:= p ⋅q,e ← Zφ N( )
∗ ,d := e−1 mod φ N( ) ,

pk := N,e( ) ,sk := N,d( ).
Signsk m( ) m ∈ 0,1{ }2n−2

 interpreted as element in ZN,

σ := md modN.

Vrfypk m,σ( ) output 1, if and only if σe = m modN.

14 



RSA signatures - forgeries  

 

existential forgeries

− Signsk 0( ) = 0 

− Signsk 1( ) = 1 

− Signsk −1( ) = −1

  

 

selective forgery of Signsk m( )
− query signature oracle  with input m̂ := 2em modN

and obtain σ̂.
− compute σ = 2−1σ̂ modN.
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Random oracle model (ROM) 

  Q = x1,H x1( )( ) , x2,H x2( )( ) ,…{ }
 x ∈Q?

 H x( )?

 

− If x = xi  for xi ∈Q, return H xi( ).
− If x ≠ xi  for all xi ∈Q,

a) y ←R
b) return H x( ) = y

c) add pair x,H x( )( )  to Q

 H x( ) = y

 Goal Construct H: 0,1{ }∗
→ R, R < ∞,"random" function.
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Random oracle model (ROM) 

  Q = x1,H x1( )( ) , x2,H x2( )( ) ,…{ }
 x ∈Q?

 H x( )?  H x( ) = y

§  Random oracle model idealization of 
-  one-way functions 
-  random functions 
-  collision-resistant hash functions. 

§  In practice they can not be implemented in this form. 
§  Often collision-resistant hash functions used instead. 17 



RSA-Full-Domain-Hash (RSA-FDH) 

( ) ( )
( ) ( )
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Construction 2.21  (RSA-FDH)
− Run Gen 1n( )  to obtain pk := N,e( )  and sk := N,d( ).

Let H: 0,1{ }∗
→ ZN  be modeled as a random oracle.

− Sign on input m ∈ 0,1{ }∗
 and N,d( )  outputs 

σ := H m( )( )d
modN.

− Vrfy on input m,σ, N,e( )  outputs 1 ⇔ σe = H m( )modN.
18 



RSA assumption 

  

               RSA inverting game RSA-invA,Gen n( )
1. Run Gen to obtain N,e( ).
2. y ← ZN.  

3. A is given N,e( )  and y. A outputs x ∈ZN. 

4. Output of experiment is 1, if and only if xe = y modN. 

Write RSA-invA,Gen n( ) = 1, if output is 1.

  

Definition 2.22 The RSA problem is hard relative to the 

generation algorithm Gen if for every ppt adversary A there 

is a negligible function µ : N → R+  such that 

                       Pr RSA-invA,Gen n( ) = 1⎡⎣ ⎤⎦ ≤ µ n( ). 19 



RSA assumption 

 

Theorem 2.23 If the RSA problem is hard relative to the 

generation algorithm Gen, then RSA-FDH (Construction 2.21)

is existentially unforgeable under an adaptive 

chosen-message attack.  

  

Construction 2.21  (RSA-FDH)
− Run Gen 1n( )  to obtain pk := N,e( )  and sk := N,d( ).

Let H: 0,1{ }∗
→ ZN  be modeled as a random oracle.

− Sign on input m ∈ 0,1{ }∗
 and N,d( )  outputs 

σ := H m( )( )d
modN.

− on input m,σ, N,e( )  output 1 ⇔ σe = H m( )modN.
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From forger to inverter 

  

               Signature forging game Sig-forgeA,Π n( )
1. pk,sk( ) ← Gen 1n( ).
2. A is given 1n,pk and oracle access to Signsk ⋅( ). It  outputs  

pair m,σ( ). Q: = set of queries made by A to Signsk ⋅( ). 
3. Output of experiment is 1, if and only if (1) Vrfypk m,σ( ) = 1, 

and (2) m ∉Q.

 

Let q = q n( )  denote number of hash queries made A,

q bounded by polynomial in n.
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Assume:

1. A never queries for the same hash value twice. 
2. Before querying Signsk (⋅) on message m,  A queries H(⋅)

on m.



From forger to inverter 

   

I on input N,e,y∗( )
1. Choose j ← 1,…,q{ }.
2. Simulate A with public key N,e( ). Table T stores triples  

mi,σi ,yi( )  with meaning that I has set H mi( ) = yi  and 
σi

e = yi modN.
3. When A makes i-th random oracle query H mi( ) , do 

− if i = j,  return y∗

− otherwise, σi ← ZN,yi := σi
e modN⎡⎣ ⎤⎦ ,  return yi,

add mi,σi ,yi( )  to T. 
When A makes signature query m = mi,  do
− if  i ≠ j, then T contains triple mi,σi ,yi( ) ,  return σi.
− if i = j,  then abort experiment.

4. Let m,σ( ) be A's output. If m = mj and σe = y∗ modN,
then output σ. 22 



Certificates and trusted authorities 

How can we guarantee that pkA belongs to A? 
 
-  certificates from trusted authorities (TA) 
-  certificates are signatures 
-  leads to hierarchie of certificates/signatures 
-  must stop at (really) trusted authority 
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