Stateful signatures

Definition 2.18 A stateful signature scheme Π is a triple of probabilistic polynomial time algorithms (ppts) (Gen,Sign,Vrfy), where

- 1. Gen(1ⁿ) outputs a key pair (pk,sk) with $|pk|, |sk| \ge n$ and a state s₀.
- 2. Sign on input a secret key sk, a state s_{i-1}^{-1} , and message $m \in \{0,1\}^*$, outputs a signature σ and a state s_i^{-1} .
- 3. Vrfy takes as input a public key pk, a message m ∈ {0,1}*, and a signature σ. It ouputs b ∈ {0,1}.
 For every key pair (pk,sk), state s₀, and message m: Vrfy_{pk} (m,Sign_{sk,si,4} (m)) = 1.

Stateful signatures - remarks

- 1. If (Gen, Sign, Vrfy) is such that for every (pk, sk) output byGen (1^n) , algorithm Sign_{sk} is only defined for $m \in \{0,1\}^{l(n)}$, then we say that (Gen, Sign, Vrfy) is a stateful signature scheme for messages of length l(n).
- 2. The verfication algorithm does not need the state to verify signatures.

From one-time signatures to stateful signatures

 $\Pi = (Gen, Sign, Vrfy)$ (one-time) signature scheme.

I = I(n) := number of signatures to be computed (known in advance)

 $\Pi' = (Gen', Sign', Vrfy')$

Gen' runs Gen to obtain I pairs (pk_i , sk_i), state s set to 1. pk is the sequence of public keys pk_i , sk is the sequence of secret keys sk_i .

Sign' on input sk,s and message m, sets $\sigma \leftarrow \text{Sign}_{sk}$ (m), s: = s + 1.

Vrfy' on input (m, σ) outputs 1, iff there is an i \in {1,...,I} such that Vrfy_{pk}(m, σ) = 1.

From one-time signatures to stateful signatures

 Π = (Gen, Sign, Vrfy) (1-time) signature scheme for messages of length 2n and such that Gen(1ⁿ) outputs public keys of length n.

 $\Pi' = (Gen', Sign', Vrfy')$, stateful for messages of length n.

Gen' runs Gen to obtain a pair (pk,sk) = (pk₁,sk₁), state s is the empty string ϵ .

Sign' on input sk, s and message m_i , runs Gen to obtain (pk_{i+1}, sk_{i+1}) , $\sigma_i \leftarrow Sign_{sk_i}(m_i \parallel pk_{i+1})$ and add $(m_i, pk_{i+1}, sk_{i+1}, \sigma_i)$ to the state. The signature for m_i is $\{(m_i, pk_{i+1}, \sigma_i)\}_{i=1}^{i-1}$ and (pk_{i+1}, σ_i) .

Vrfy' on input
$$(pk_{i+1}, \sigma_i, \{(m_j, pk_{j+1}, \sigma_j)\}_{j=1}^{i-1})$$
 outputs 1, iff Vrfy_{pk_i} $(m_j || pk_{j+1}, \sigma_j) = 1$ for j = 1,...,i.

Tree-based signatures – preliminaries and Gen

 Π = (Gen, Sign, Vrfy) (one-time) signature scheme for messages of length 2n and such that Gen(1ⁿ) outputs public keys of length n.

For $m \in \{0,1\}^*$ denote by m_i the prefix of m of length i.

 $\Pi^* = (Gen^*, Sign^*, Vrfy^*)$ is a stateful signature scheme for messages of length n.

Gen^{*} on input 1ⁿ : compute (pk_e, sk_e), output public key pk_e and state $s = sk_e$.

Tree-based signatures - Sign

Sign^{*} on input $m \in \{0,1\}^n$ and state:

1. for i = 0 to n - 1:

 $\begin{array}{ll} - & \text{if } \mathsf{pk}_{\mathsf{m}|_{i}^{0}}, \mathsf{pk}_{\mathsf{m}|_{i}^{1}}, \text{ and } \sigma_{\mathsf{m}|_{i}} \text{ are not in the state, compute} \\ & (\mathsf{pk}_{\mathsf{m}|_{i}^{0}}, \mathsf{sk}_{\mathsf{m}|_{i}^{0}}) \leftarrow \ \mathsf{Gen}(1^{\mathsf{n}}), (\mathsf{pk}_{\mathsf{m}|_{i}^{1}}, \mathsf{sk}_{\mathsf{m}|_{i}^{1}}) \leftarrow \ \mathsf{Gen}(1^{\mathsf{n}}), \text{ and} \\ & \sigma_{\mathsf{m}|_{i}} \leftarrow \mathsf{Sign}_{\mathsf{sk}_{\mathsf{m}|_{i}^{0}}} \left\| \mathsf{pk}_{\mathsf{m}|_{i}^{0}} \right\| \mathsf{pk}_{\mathsf{m}|_{i}^{1}} \right). \text{ Add these values to state.} \end{array}$

- 2. if σ_m is not in the state, compute $\sigma_m \leftarrow \text{Sign}_{sk_m}$ (m).
- 3. output the signature ({ $(\sigma_{m_i}, pk_{m_i}, pk_{m_i})$ }ⁿ⁻¹, σ_m).

Remark: Sign^{*} uses each key on at most one message.

Tree-based signatures

key in parent node to compute signature of concatenation of public keys in children. 7

Tree-based signatures - Vrfy

Vrfy^{*} on input a public key pk_e, message m, and signature $(\{(\sigma_{m|_{i}}, pk_{m|_{i}0}, pk_{m|_{i}1})\}_{i=0}^{n-1}, \sigma_{m})$, output 1, iff

- 1. $Vrfy_{pk_{m_{i}}}(pk_{m_{i},0} || pk_{m_{i},1}, \sigma_{m_{i}}) = 1 \text{ for } i = 0, ..., n-1$
- 2. $Vrfy_{pk_m}(m, \sigma_m) = 1.$

Theorem 2.19 If Π is a one-time signature, then Π^* is a secure stateful signature scheme for messages of length n.

From A^{*} to A (1)

- A on input public key pk:
 - choose random index i^{*} ← {1,...,I^{*}}. Construct list pk¹,...,pk^{i^{*}} of keys as follows:
 - set $pk^{i^*} := pk$
 - for $i \neq i^*$, compute $(pk^i, sk^i) \leftarrow Gen(1^n)$.
 - run A^* on input $pk_e = pk^1$. When A^* requests a signature on m, do:
 - 1. for i = 0 to n 1:
 - if the values $pk_{m|_i0}$, $pk_{m|_i1}$, and $\sigma_{m|_i}$ have not been defined, set $pk_{m|_i0}$, $pk_{m|_i1}$ to the next unused keys pk^j , pk^{j+1} , and compute signature $\sigma_{m|_i}$ on $pk_{m|_i0} \parallel pk_{m|_i1}$ with respect to key $pk_{m|_i}$.
 - 2. if σ_m is not yet defined, compute a signature σ_m on m with key pk_m.
 - 3. give $(\{(\sigma_{m_{i}}, pk_{m_{i}0}, pk_{m_{i}1})\}_{i=0}^{n-1}, \sigma_{m})$ to A^{*} .

From A* to A (2)

- if A^{*} outputs a valid signature ({(σ'_{m_i} , pk'_{m_{i,0}}, pk'_{m_{i,1}})}ⁿ⁻¹, σ'_m) on message m, then
 - case 1: if there is a $j \le n-1$ such that $pk'_{m|_j0} \ne pk_{m|_j0}$ or $pk'_{m|_j1} \ne pk_{m|_j1}$, take minimal j and let i be such that $pk^i = pk'_{m|_j} = pk_{m|_j}$. If $i = i^*$, output $(pk'_{m|_j0} || pk'_{m|_j1}, \sigma'_{m|_j})$. case 2: if case 1 does not hold, then $pk'_m = pk_m$. Let i be such that $pk^i = pk_m$. If $i = i^*$, output (m, σ'_m) .

Removing statefulness

- in state store key pairs and signatures for internal nodes of tree
- instead of storing these values want to recompute them when needed
- however, Gen and Sign are probabilistic, and recomputation may lead to different values
- need randomness use in computation of key pairs and signatures
- replace randomness by pseudorandomness
- computed using PRFs and based on index of internal node

Existence of secure signatures

- Theorem 2.20 (restated) Secure digital signature schemes exist if and only if one-way functions exist.
- **Proof sektch** Let $\Pi = (Gen, Sign, Vrfy)$ be an existentially unforgeable signature scheme. Then the function f that on input r outputs the public key generated by Gen if started with random bits r is a one-way function.

RSA signatures - prerequisits

$$\begin{split} \mathbb{Z}_{N} & := \text{ ring of integers modulo N} \\ \mathbb{Z}_{N}^{*} & := \left\{ a \in \mathbb{Z}_{N} : gcd(a, N) = 1 \right\} \\ \varphi(N) & := \left| \mathbb{Z}_{N}^{*} \right| \end{split}$$

$$gcd(a,m) = 1 \implies \exists u, v \in \mathbb{Z} u \cdot a + v \cdot m = 1 \text{ (EEA)}$$
$$\implies u \cdot a = 1 \mod m$$
$$\implies u = a^{-1} \mod m$$

$$\mathbf{N} = \prod_{i=1}^{\kappa} \mathbf{p}_{i}^{\mathbf{e}_{i}} \implies \varphi\left(\mathbf{N}\right) = \prod_{i=1}^{\kappa} \left(\mathbf{p}_{i}^{\mathbf{e}_{i}} - \mathbf{p}_{i}^{\mathbf{e}_{i}-1}\right) = \mathbf{N} \cdot \prod_{i=1}^{\kappa} \left(1 - 1/\mathbf{p}_{i}\right) \cdot \mathbf{N}$$

RSA signatures

$$\begin{split} & \text{Gen} \left(1^n \right) \colon \quad \text{choose 2 random primes } p,q \in \left[2^{n-1}, 2^n - 1 \right], \\ & \text{N} \coloneqq p \cdot q, e \leftarrow \mathbb{Z}^*_{\phi(N)}, d \coloneqq e^{-1} \text{ mod } \phi\left(N \right), \\ & \text{pk} \coloneqq \left(N, e \right), \text{sk} \coloneqq \left(N, d \right). \\ & \text{Sign}_{\text{sk}} \left(m \right) \qquad m \in \left\{ 0, 1 \right\}^{2n-2} \text{ interpreted as element in } \mathbb{Z}_N, \\ & \sigma \coloneqq m^d \text{ mod } N. \\ & \text{Vrfy}_{\text{pk}} \left(m, \sigma \right) \quad \text{output 1, if and only if } \sigma^e = m \text{ mod } N. \end{split}$$

RSA signatures - forgeries

existential forgeries

- $\quad Sign_{sk}\left(0\right) = 0$
- Sign_{sk} (1) = 1
- $\quad \text{Sign}_{_{\text{sk}}}\left(-1\right) = -1$

selective forgery of $\operatorname{Sign}_{sk}(m)$

- query signature oracle with input $\hat{m} := 2^{e} m \mod N$ and obtain $\hat{\sigma}$.
- compute $\sigma = 2^{-1} \hat{\sigma} \mod N$.

Random oracle model (ROM)

Goal Construct H: $\{0,1\}^* \rightarrow \mathbb{R}, |\mathbb{R}| < \infty, \text{"random" function.}$

- If $\mathbf{x} = \mathbf{x}_i$ for $\mathbf{x}_i \in \mathbf{Q}$, return $\mathbf{H}(\mathbf{x}_i)$.
- If $\mathbf{x} \neq \mathbf{x}_i$ for all $\mathbf{x}_i \in \mathbf{Q}$,
 - a) y ← R
 - b) return H(x) = y
 - c) add pair (x,H(x)) to Q

Random oracle model (ROM)

- Random oracle model idealization of
 - one-way functions
 - random functions
 - collision-resistant hash functions.
- In practice they can not be implemented in this form.
- Often collision-resistant hash functions used instead.

RSA-Full-Domain-Hash (RSA-FDH)

By Gen denote an algorithm that on input 1ⁿ computes 2 random primes $p,q \in [2^{n-1}, 2^n - 1], p \neq q$, sets $N = p \cdot q$, chooses $e \leftarrow Z^*_{\phi(N)}$, sets $d := e^{-1} \mod \phi(N)$, and outputs pk := (N,e), sk := (N,d).

Construction 2.21 (RSA-FDH)

- Run Gen(1ⁿ) to obtain pk := (N,e) and sk := (N,d). Let H: $\{0,1\}^* \to \mathbb{Z}_{N}$ be modeled as a random oracle.
- Sign on input $m \in \{0,1\}^*$ and (N,d) outputs
 - $\sigma := (\mathbf{H}(\mathbf{m}))^{d} \operatorname{mod} \mathbf{N}.$
- Vrfy on input m, σ , (N,e) outputs 1 $\Leftrightarrow \sigma^{e} = H(m) \mod N_{18}$

RSA assumption

RSA inverting game **RSA**-inv_{A.Gen} (n)

- 1. Run Gen to obtain (N,e).
- 2. $\mathbf{y} \leftarrow \mathbb{Z}_{N}$.
- 3. A is given (N,e) and y. A outputs $x \in \mathbb{Z}_{N}$.
- Output of experiment is 1, if and only if $x^e = y \mod N$. 4.

Write RSA-inv_{A,Gen}
$$(n) = 1$$
, if output is 1.

Definition 2.22 The RSA problem is hard relative to the generation algorithm Gen if for every ppt adversary A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\Pr[RSA-inv_{A.Gen}(n) = 1] \le \mu(n).$

RSA assumption

- **Construction 2.21 (RSA-FDH)**
 - Run Gen(1ⁿ) to obtain pk := (N,e) and sk := (N,d). Let H: $\{0,1\}^* \to \mathbb{Z}_N$ be modeled as a random oracle.
 - Sign on input $m \in \{0,1\}^*$ and (N,d) outputs $\sigma := (H(m))^d \mod N.$
 - on input m, σ , (N,e) output 1 $\Leftrightarrow \sigma^{e} = H(m) \mod N$.

Theorem 2.23 If the RSA problem is hard relative to the generation algorithm Gen, then RSA-FDH (Construction 2.21) is existentially unforgeable under an adaptive chosen-message attack.

From forger to inverter

Signature forging game Sig-forge_{A,II} (n)

- 1. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. A is given 1ⁿ,pk and oracle access to Sign_{sk}(·). It outputs pair (m, σ). Q: = set of queries made by A to Sign_{sk}(·).
- 3. Output of experiment is 1, if and only if (1) $Vrfy_{pk}(m, \sigma) = 1$, and (2) $m \notin Q$.

Assume:

- 1. A never queries for the same hash value twice.
- 2. Before querying $\text{Sign}_{sk}(\cdot)$ on message m, A queries $H(\cdot)$ on m.

Let q = q(n) denote number of hash queries made A, q bounded by polynomial in n.

From forger to inverter

I on input (N, e, y^*)

- 1. Choose $j \leftarrow \{1, \dots, q\}$.
- 2. Simulate A with public key (N,e). Table T stores triples (m_i, σ_i, y_i) with meaning that I has set $H(m_i) = y_i$ and $\sigma_i^e = y_i \mod N$.
- 3. When A makes i-th random oracle query $H(m_i)$, do
 - if i = j, return y^*
 - $\begin{array}{ll} & \text{otherwise, } \sigma_{i} \leftarrow \mathbb{Z}_{N}, \textbf{y}_{i} \mathrel{\mathop:}= \Bigl[\sigma_{i}^{e} \bmod N \Bigr], \text{ return } \textbf{y}_{i}, \\ & \text{add } \bigl(\textbf{m}_{i}, \sigma_{i}, \textbf{y}_{i} \bigr) \text{ to } \textbf{T}. \end{array}$

When A makes signature query $m = m_i$, do

- if $i \neq j$, then T contains triple (m_i, σ_i, y_i) , return σ_i .
- if i = j, then abort experiment.
- 4. Let (m, σ) be A's output. If $m = m_j$ and $\sigma^e = y^* \mod N$, then output σ .

Certificates and trusted authorities

How can we guarantee that pk_A belongs to A?

- certificates from trusted authorities (TA)
- certificates are signatures
- leads to hierarchie of certificates/signatures
- must stop at (really) trusted authority