
VIII. CCA Security and message 
authentication 
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-  Security against chosen ciphertext attacks (CCA security) 
considered the right notion of security for encryption  
schemes  

-  Strengthens CPA security 
-  Show how to achieve it for private-key encryption schemes 
-  Need no additional assumptions 
-  Use message authentication codes (MACs) 
-  MACs can be constructed from PRFs, hence from  

one-way functions  



The CCA indistinguishability game 

 

                     CCA indistinguishability game Pr ivKA,Π
cca n( )

1. k ← Gen 1n( )
2. A on input 1n  has access to encryption algorithm Enck ⋅( )  
    and to decryption algorithm Deck ⋅( ). A outputs 2 messages  

    m0,m1 ∈ 0,1{ }*  of equal length.

3. b ← 0,1{ } ,  c ←Enck mb( ).  c is given to A.

4. ′b ← A 1n,c( ) ,  here A has access to encryption algorithm 

    Enck ⋅( )  and to decryption algorithm Deck ⋅( ) ,  but query 

    Deck c( )  is forbidden.

5. Output of experiment is 1, if b = ′b . Otherwise  output is 0.2 



CCA-security 

  

Definition 8.1 Π = Gen,Enc,Dec( )  has indistinguishable 

encryptions under chosen ciphertext attacks (is cca-secure) if 

for every probabilistic polynomial time algorithm A there is 

a negligible function µ : N → R+  such that

                             Pr Pr ivKA,Π
cca n( ) = 1⎡⎣ ⎤⎦ ≤ 1 2 + µ n( ).

Observation cpa-security does not imply cca-security. 
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Message authentication 

  Alice Bob 
m 

Eve 

1.  Did Bob send message m, or was it Eve? 

2.  Did Eve modify the message m, that was sent by Bob? 
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Message authentication codes 

 

Definition 8.2 A message authentication code (MAC) is a triple 

Μ = Gen,Mac,Vrfy( )of ppts, where 

1. Gen 1n( )  outputs a key k ∈ 0,1{ }≥n
.

2. Mac takes as input a key k and a message m ∈ 0,1{ }∗
,  and  

outputs a tag t, t ←Mack m( ).
3. Vrfy takes as input a key k, a message m ∈ 0,1{ }∗

,  and a  

tag t. It outputs a bit b, b = 1 means valid, b = 0 means 

invalid. Vrfy assumed to be determinitic, b: = Vrfyk m,t( ).
For every key k and message m: Vrfyk m,Mack m( )( ) = 1.
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Message authentication codes 

 

Definition 8.2 A message authentication code (MAC) is a triple 
Μ = Gen,Mac,Vrfy( )of ppts, where 

1. Gen 1n( )  outputs a key k ∈ 0,1{ }≥n
.

2. Mac takes as input a key k and a message m ∈ 0,1{ }∗
,  and  

outputs a tag t, t ←Mack m( ).
3. Vrfy takes as input a key k, a message m ∈ 0,1{ }∗

,  and a  
tag t. It outputs a bit b, b = 1 means valid, b = 0 means 
invalid. Vrfy assumed to be determinitic, b: = Vrfyk m,t( ).

For every key k and message m: Vrfyk m,Mack m( )( ) = 1.                        

  

If Mac with k ← Gen 1n( )  defined only for m ∈ 0,1{ }l n( ) ,  
l : N → N a  polynomial, then Μ  is called fixed-length 
MAC for messages of length l n( ).
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Message authentication codes 

  Alice Bob 

Eve 

( )m,t

( )kt Mac m=

k k 
secure channel 

( )
?

kVrfy m,t 1=
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The forging game 

  

        Message authentication game Mac-forgeA,Μ n( )
1. k ← Gen 1n( ).
2. A is given 1n  and oracle access to Mack ⋅( ). It  outputs  

pair m,t( ). Q: = set of queries made by A to Mack ⋅( ). 
3. Output of experiment is 1, if and only if (1) Vrfyk m,t( ) = 1, 

and (2) m ∉Q.

  

Definition 8.3 Μ = Gen,Mac,Vrfy( )  is called existentially 

unforgeable under an adaptive chosen-message attack, or 
secure, if for every probabilistic polynomial time adversary 
A there is a negligible function µ : N → R+  such that

                Pr Mac-forgeA,Μ n( ) = 1⎡⎣ ⎤⎦ ≤ µ n( ).
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Construction of message authentication codes 

proceeds in 2 steps 
1.  construct fixed-length MACs 
2.  design general technique to go from fixed length MACs 

to arbitrary MACs 
 

1. step uses pseudorandom functions 
2. step uses various techniques, e.g. hash functions 
   (discussed in Cryptograpic Protocols)  
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Keyed functions 

   

F: 0,1{ }∗
× 0,1{ }∗

→ 0,1{ }∗

k,x( ) ! F k,x( )
called keyed function.  Write F k,x( ) = Fk x( ).

− F called length-preserving, if F is only defined for  

x,k( ) ∈ 0,1{ }∗
× 0,1{ }∗

 with x = k  and if for all x,k( )
Fk x( ) = k = x .

− F called efficient, if there is a polynomial time algorithm A

with A k,x( ) = Fk x( )  for all x,k ∈ 0,1{ }∗
.  

− F called permutation, if for every n ∈N and k ∈ 0,1{ }n
 

Fk : 0,1{ }n
→ 0,1{ }n

 is bijective. 10 



Pseudorandom function (PRF) 

  

Definition 3.4 (restated) Let F : 0,1{ }∗
× 0,1{ }∗

→ 0,1{ }∗
 be a 

keyed, efficient and length-preserving function. F is called 

a pseudorandom function, if for all ppt distinguishers D there 

is a negligible function µ  such that for all n ∈N

              Pr DFk ⋅( ) 1n( ) = 1⎡⎣ ⎤⎦ −Pr Df ⋅( ) 1n( ) = 1⎡⎣ ⎤⎦ ≤ µ n( ) ,

where k ← 0,1{ }n
, f ←Funcn.

Funcn := f : 0,1{ }n
→ 0,1{ }n{ }
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PRFs and MACs 

( )F F F FMAC Gen ,Mac ,Vrfy  is a fixed-length MAC for 

messages of length n.

Μ =
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Construction 8.4 Let F : 0,1{ }∗
× 0,1{ }∗

→ 0,1{ }∗
 be a keyed, 

efficient, and length-preserving function. Define MAC

ΜF = GenF,MacF,VrfyF( )  as follows:

GenF : on input 1n : k ← 0,1{ }n
.

MacF : on input k,m ∈ 0,1{ }n
,  output t := Fk m( ).

VrfyF : on input k,m,t output 1, if and only if t = Fk m( ). 



PRFs and MACs 

 

Theorem 8.5 If F is a pseudorandom function, then 

Construction 8.4 is secure MAC. 

 

Construction 8.4 Let F : 0,1{ }∗
× 0,1{ }∗

→ 0,1{ }∗
 be a keyed, 

efficient, and length-preserving function. Define MAC

ΜF = GenF,MacF,VrfyF( )  as follows:

GenF : on input 1n : k ← 0,1{ }n
.

MacF : on input k,m ∈ 0,1{ }n
,  output t := Fk m( ).

VrfyF : on input k,m,t output 1, if and only if t = Fk m( ). 
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From forgers to distinguishers 

 

D on input 1n  and oracle access to f : 0,1{ }n
→ 0,1{ }n

1. Simulate A 1n( ). When A queries for a tag of 

′m ∈ 0,1{ }n
,  answer with t = f ′m( ).

2. When A outputs a pair m,t( ) ,  do 

  
− Query f m( )  and obtain t̂.
− If  t = t̂ and A never queried m in Step 1, output 1,

otherwise output 0.
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Arbitrary length  MACs 

  

Construction 8.6 ′Μ = Ge ′n ,Ma ′c ,Vrf ′y( )  fixed-length MAC

with message length n. MAC Μ = Gen,Mac,Vrfy( )  defined as:

Gen: same as Ge ′n .
Mac : on input k ∈ 0,1{ }n ,  m ∈ 0,1{ }l ,  l < 2n 4 , parse m as 

m1!md,mi ∈ 0,1{ }n 4 . r ← 0,1{ }n 4 . For i = 1,…,d

compute ti ←Mack
′ r " l " i "mi( ). Output

t := r, t1,…, td( ).
Vrfy : on input k,m,t output 1, if and only if  

Vrf ′y r " l " i "mi,ti( ) = 1 for i = 1,!,d.
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Arbitrary length  MACs 

  

Construction 8.6 ′Μ = Ge ′n ,Ma ′c ,Vrf ′y( )  fixed-length MAC

with message length n. MAC Μ = Gen,Mac,Vrfy( )  defined as:

Gen: same as Ge ′n .
Mac : on input k ∈ 0,1{ }n ,  m ∈ 0,1{ }l ,  l < 2n/4 , parse m as 

m1!md,mi ∈ 0,1{ }n 4 . r ← 0,1{ }n 4 . For i = 1,…,d

compute ti ←Mack
′ r " l " i "mi( ). Output

t := r, t1,…, td( ).
Vrfy : on input k,m,t output 1, if and only if . 

Vrf ′y r " l " i "mi,ti( ) = 1 for i = 1,!,d.

 Theorem 8.7 If ′Μ  is a secure MAC, then Μ  is a secure MAC. 
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Combining encryption & authentication 

  

a) encrypt-and-authenticate

− c ←Enck1
m( ) , t ←Mack2

m( )
output c,t( )

b) authenticate-then-encrypt

− t ←Mack2
m( ) ,c ←Enck1

m  t( )
output c

c) encrypt-then-authenticate

− c ←Enck1
m( ) , t ←Mack2

c( )
output c,t( )

a) and b) not secure, c) provably secure for MACs with 
unique tags. 17 



Unique tags 
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Definition 8.8 A MAC  Μ = Gen,Mac,Vrfy( )  has unique tags if 

for every key k and every message m there is a unique t such 

that Vrfyk m,Mack m( )( ) = 1.                      

 

Observation If algorithm Mac is deterministic then MAC 

Μ = Gen,Mac,Vrfy( )  has unique tags.                      



Encrypt-then-authenticate 
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Π = GenE,Enc,Dec( )  private-key encryption scheme,

Μ = GenΜ ,Mac,Vrfy( )  MAC.

 

Construction 8.9  ′Π = Ge ′n ,En ′c ,De ′c( )  defined as:

Gen 1n( ) : k1 ← GenE 1n( ) ,k2 ← GenΜ 1n( ) ,  return k = (k1,k2).

En ′ck m( ) : ′c ←Enck1
(m),t ←Mack2

( ′c ),  return c = ( ′c ,t).

De ′ck c( ) c = ( ′c ,t),  if Vrfyk2
( ′c ,t) = 1, output Deck1

( ′c ).

else output ⊥ .

 

Theorem 8.10 If Μ  is a secure MAC with unique tags and if Π 
is a CPA-secure private-key encryption scheme,  then ′Π  is a 
CCA-secure private-key encryption scheme. 



Encrypt-then-authenticate 
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 q := number of queries of A to decryption oracle Deck ⋅( )

 

valid query A queries Deck ⋅( )  with some ( ′c ,t), where 
Vrfyk2

( ′c ,t) = 1

new query  A queries Deck ⋅( )  with ( ′c ,t), where ( ′c ,t) was not
obtained from Enck ⋅( )

 

VQ := there is a query from A to Deck ⋅( )  with some   
( ′c ,t), where ( ′c ,t) was not obtained from Enck ⋅( )
 and Vrfyk2

( ′c ,t) = 1

VQ = j( ) := A's first valid query is the j-th new query



Encrypt-then-authenticate 
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 Pr Pr ivKA, ′Π
cca (n) = 1⎡⎣ ⎤⎦ ≤ Pr VQ⎡⎣ ⎤⎦ +Pr Pr ivKA, ′Π

cca (n) = 1∧ ¬VQ⎡⎣ ⎤⎦

 Claim 8.11 Pr VQ⎡⎣ ⎤⎦  is negligible.

 
Claim 8.12 Pr Pr ivKA, ′Π

cca (n) = 1∧ ¬VQ⎡⎣ ⎤⎦ −
1
2

 is negligible.



Forger AΜ 

  

AΜ  on input 1n  and oracle access to Mack2
⋅( )

1. k1 ← GenE,i ← 1,…,q{ }. Simulate A, where implicitly
k = (k1,k2).

2. Whenever A queries Enck ⋅( )  on message ′m , do 
′c ←Enck1

( ′m ),  query Mack2
( ′c ) to get t, return ( ′c ,t) .

3. Whenever A queries Deck ⋅( )  on ciphertext ( ′c ,t), do
a) If ( ′c ,t) was a response to a previous encryption

query for message ′m , answer with ′m .
b) if  this is the i-th new query, then set out := ( ′c ,t) 

and answer with ⊥ .
c) otherwise answer with ⊥ .

4. When A returns (m1,m2) do
       b ← 0,1{ } ,  encrypt mb  as in 2.

5. Output out.   22 



Encrypt-then-authenticate 
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query c = ′c ,t( ) from A to Deck ⋅( )  new if c not obtained by 
querying Enck ⋅( )

query c = ′c ,t( ) from A to Deck ⋅( )  valid if Verfyk ′c ,t( ) = 1

VQ := there is a new and valid query from A to Deck ⋅( )    
( ′c ,t), where ( ′c ,t) was not obtained from Enck ⋅( )

VQ = j( ) := A's first valid query is the j-th new query



Encrypt-then-authenticate - notation 
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VQ = j( ) := A's first valid query in simulated attack is the 
j-th new query in simulated attack

  
Observation Pr VQ = j⎡⎣ ⎤⎦ = Pr VQ = j⎡

⎣
⎤
⎦

 

query c = ′c ,t( ) from A to Deck ⋅( )  new if c not obtained by 
querying Enck ⋅( )
query c = ′c ,t( ) from A to Deck ⋅( )  valid if Verfyk ′c ,t( ) = 1

VQ := there is a new and valid query from A to Deck ⋅( )    
( ′c ,t), where ( ′c ,t) was not obtained from Enck ⋅( )

VQ = j( ) := A's first valid query is the j-th new query



Forger AE 

 

AE  on input 1n  and oracle access to Enck1
⋅( )

1. k2 ← GenM. Simulate A, where implicitly k = (k1,k2).
2. Whenever A queries Enck ⋅( )  on message ′m , do 

query Enck1
( ′m ) to get ′c , t ←Mack2

( ′c ), return ( ′c ,t) .
3. Whenever A queries Deck ⋅( )  on ciphertext ( ′c ,t), do

a) If ( ′c ,t) was a response to a previous encryption
query for message ′m , answer with ′m .

c) otherwise return ⊥
4. When A returns (m0,m1),  return (m0,m1) as challenge.
5. After receiving challenge ciphertext ′c , compute 

t ←Mack2
( ′c ) and return c = ( ′c ,t) to A.

6. Continue to simulate A.
7. Output the same bit b that A outputs.   
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Encrypt-then-authenticate 
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VQ = j( ) := A's first valid query in simulated attack is the 
j-th new query in simulated attack

  
Observation Pr VQ = j⎡⎣ ⎤⎦ = Pr VQ = j⎡

⎣
⎤
⎦



Summary 
-  goals and techniques of cryptography 
-  confidentiality and encryption schemes 
-  principles of modern cryptography – Kerckhoff‘s principle 
-  foundations of cryptography approach 
-  perfect secrecy and its characterizations 
-  indistinguishables encryptions and eavesdropping attacks 
-  pseudorandom generators and encryption schemes with 
   indistinguishable encryptions against eavesdroppers 
-  multiple encryptions 
-  chosen plaintext attacks 
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Summary 
-  pseudorandom functions and cpa-secure encryption  
   schemes 
-  block ciphers as pseudorandom permutations 
-  Feistel ciphers and DES 
-  SPNs and AES 
-  one-way functions and hardcore predicates 
-  from one-way functions to PRGs 
-  from PRGs to PRFs 
-  extension to public-key cryptography 
-  eavesdrooping and chosen plaintext attacks for public-key 
   cryptography 
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Summary 
-  security for multiple encryptions 
-  trapdoor permutations and hardcore predicates  
-  from trapdoor permutations to public-key encryption 
-  hybrid encryption 
-  cca-security  
-  message authentication codes 
-  MACs from PRFs 
-  encrypt-then-authenticate paradigm 
-  encrypt-then-authenticate and cca-secure private key  
   encryption 
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