VIII. CCA Security and message authentication

- Security against chosen ciphertext attacks (CCA security) considered the right notion of security for encryption schemes
- Strengthens CPA security
- Show how to achieve it for private-key encryption schemes
- Need no additional assumptions
- Use message authentication codes (MACs)
- MACs can be constructed from PRFs, hence from one-way functions

The CCA indistinguishability game

CCA indistinguishability game $PrivK_{A,\Pi}^{cca}(n)$

1. k \leftarrow Gen (1^n)

2. A on input 1ⁿ has access to encryption algorithm $Enc_{k}(\cdot)$ and to decryption algorithm $Dec_{k}(\cdot)$. A outputs 2 messages

 $\mathbf{m}_{0},\mathbf{m}_{1} \in \left\{\mathbf{0},\mathbf{1}\right\}^{*}$ of equal length.

3. b $\leftarrow \{0,1\}, c \leftarrow Enc_{k}(m_{b})$. c is given to A.

4. b' $\leftarrow A(1^n, c)$, here A has access to encryption algorithm Enc_k(·) and to decryption algorithm $Dec_k(\cdot)$, but query $Dec_k(c)$ is forbidden.

5. Output of experiment is 1, if b = b'. Otherwise output is 0.

CCA-security

Definition 8.1 $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryptions under chosen ciphertext attacks (is cca-secure) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that

$$\Pr\left[\Pr iv K_{A,\Pi}^{cca}(n) = 1\right] \leq 1/2 + \mu(n).$$

Observation cpa-security does not imply cca-security.

Message authentication

- 1. Did Bob send message m, or was it Eve?
- 2. Did Eve modify the message m, that was sent by Bob?

Message authentication codes

- **Definition 8.2 A** message authentication code (MAC) is a triple M = (Gen, Mac, Vrfy) of ppts, where
 - 1. Gen (1^n) outputs a key $k \in \{0,1\}^{\geq n}$.
 - 2. Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t, t $\leftarrow Mac_k(m)$.
 - 3. Vrfy takes as input a key k, a message $m \in \{0,1\}^*$, and a tag t. It outputs a bit b, b = 1 means valid, b = 0 means invalid. Vrfy assumed to be determinitic, b: = Vrfy_k (m,t).

For every key k and message m: $Vrfy_k(m, Mac_k(m)) = 1$.

Message authentication codes

Definition 8.2 A message authentication code (MAC) is a triple M = (Gen, Mac, Vrfy) of ppts, where

- 1. Gen (1^n) outputs a key $k \in \{0,1\}^{\ge n}$.
- 2. Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t, t $\leftarrow Mac_k(m)$.
- 3. Vrfy takes as input a key k, a message $m \in \{0,1\}^*$, and a tag t. It outputs a bit b, b = 1 means valid, b = 0 means invalid. Vrfy assumed to be determinitic, b: = Vrfy_k (m,t).

For every key k and message m: $Vrfy_k(m, Mac_k(m)) = 1$.

If Mac with $k \leftarrow Gen(1^n)$ defined only for $m \in \{0,1\}^{l(n)}$, I: $\mathbb{N} \to \mathbb{N}$ a polynomial, then M is called fixed-length MAC for messages of length l(n).

Message authentication codes

The forging game

Message authentication game Mac-forge $_{A,M}(n)$

- 1. $\mathbf{k} \leftarrow \mathbf{Gen}(\mathbf{1}^n)$.
- 2. A is given 1ⁿ and oracle access to $Mac_k(\cdot)$. It outputs pair (m,t). Q: = set of queries made by A to $Mac_k(\cdot)$.
- 3. Output of experiment is 1, if and only if (1) $Vrfy_k(m,t) = 1$, and (2) $m \notin Q$.

Definition 8.3 M = (Gen,Mac,Vrfy) is called existentially unforgeable under an adaptive chosen-message attack, or secure, if for every probabilistic polynomial time adversary A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\Pr[Mac-forge_{A,M}(n) = 1] \le \mu(n).$

Construction of message authentication codes

proceeds in 2 steps

- 1. construct fixed-length MACs
- 2. design general technique to go from fixed length MACs to arbitrary MACs

- 1. step uses pseudorandom functions
- 2. step uses various techniques, e.g. hash functions (discussed in Cryptograpic Protocols)

Keyed functions

$$\begin{array}{rcl} \mathsf{F} \colon \left\{ 0,1 \right\}^* \times \left\{ 0,1 \right\}^* & \to & \left\{ 0,1 \right\}^* \\ (\mathsf{k},\mathsf{x}) & \mapsto & \mathsf{F} \big(\mathsf{k},\mathsf{x} \big) \\ \text{called keyed function. Write } \mathsf{F} \big(\mathsf{k},\mathsf{x} \big) = \mathsf{F}_{\mathsf{k}} \big(\mathsf{x} \big). \end{array}$$

- F called length-preserving, if F is only defined for $(\mathbf{x},\mathbf{k}) \in \{0,1\}^* \times \{0,1\}^*$ with $|\mathbf{x}| = |\mathbf{k}|$ and if for all (\mathbf{x},\mathbf{k}) $|\mathbf{F}_{\mathbf{k}}(\mathbf{x})| = |\mathbf{k}| = |\mathbf{x}|$.
- F called efficient, if there is a polynomial time algorithm A with $A(k,x) = F_k(x)$ for all $x,k \in \{0,1\}^*$.

10

F called permutation, if for every n ∈ N and k ∈ {0,1}ⁿ
F_k: {0,1}ⁿ → {0,1}ⁿ is bijective.

Pseudorandom function (PRF)

- Definition 3.4 (restated) Let $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be a
- keyed, efficient and length-preserving function. F is called
- a pseudorandom function, if for all ppt distinguishers D there
- is a negligible function μ such that for all $n\in\mathbb{N}$

$$\left| \mathsf{Pr} \left[\mathsf{D}^{\mathsf{F}_{\mathsf{k}}(\cdot)} \left(\mathbf{1}^{\mathsf{n}} \right) = \mathbf{1} \right] - \mathsf{Pr} \left[\mathsf{D}^{\mathsf{f}(\cdot)} \left(\mathbf{1}^{\mathsf{n}} \right) = \mathbf{1} \right] \le \mu(\mathsf{n}),$$

where $\mathbf{k} \leftarrow \{\mathbf{0},\mathbf{1}\}^n$, $\mathbf{f} \leftarrow \mathbf{Func}_n$.

$$\operatorname{Func}_{n} := \left\{ \mathbf{f} : \left\{ \mathbf{0}, \mathbf{1} \right\}^{n} \to \left\{ \mathbf{0}, \mathbf{1} \right\}^{n} \right\}$$

PRFs and MACs

Construction 8.4 Let $F : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$ be a keyed, efficient, and length-preserving function. Define MAC $M_{r} = (Gen_{r}, Mac_{r}, Vrfy_{r})$ as follows:

 $\mathbf{Gen}_{\mathsf{F}}: \quad \mathbf{on \ input} \ \mathbf{1}^{\mathsf{n}}: \mathbf{k} \leftarrow \left\{\mathbf{0}, \mathbf{1}\right\}^{\mathsf{n}}.$

- Mac_F: on input k,m $\in \{0,1\}^n$, output t := $F_k(m)$.
- Vrfy_F: on input k,m,t output 1, if and only if $t = F_k(m)$.

MAC $M_F = (Gen_F, Mac_F, Vrfy_F)$ is a fixed-length MAC for messages of length n.

PRFs and MACs

Construction 8.4 Let $F : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be a keyed, efficient, and length-preserving function. Define MAC

 $M_{F} = (Gen_{F}, Mac_{F}, Vrfy_{F})$ as follows:

Gen_F: on input 1^n : $\mathbf{k} \leftarrow \{\mathbf{0},\mathbf{1}\}^n$.

- Mac_{F} : on input k,m $\in \{0,1\}^{n}$, output t := $F_{k}(m)$.
- Vrfy_F: on input k,m,t output 1, if and only if $t = F_k(m)$.

Theorem 8.5 If F is a pseudorandom function, then Construction 8.4 is secure MAC.

From forgers to distinguishers

D on input 1ⁿ and oracle access to $f: \{0,1\}^n \rightarrow \{0,1\}^n$

1. Simulate $A(1^n)$. When A queries for a tag of

 $\mathbf{m'} \in \{\mathbf{0},\mathbf{1}\}^n$, answer with $\mathbf{t} = \mathbf{f}(\mathbf{m'})$.

- 2. When A outputs a pair (m,t), do
 - Query f(m) and obtain \hat{t} .
 - If $t = \hat{t}$ and A never queried m in Step 1, output 1, otherwise output 0.

Arbitrary length MACs

Construction 8.6 M' = (Gen', Mac', Vrfy') fixed-length MAC with message length n. MAC M = (Gen, Mac, Vrfy) defined as:

- Gen: same as Gen'.
- $\begin{array}{ll} \text{Mac:} & \text{on input } k \in \left\{ 0,1 \right\}^{n}, \ m \in \left\{ 0,1 \right\}^{l}, \ l < 2^{n/4} \ , \ \text{parse } m \ \text{as} \\ & m_{1} \cdots m_{d}, m_{i} \in \left\{ 0,1 \right\}^{n/4} \ , \ r \leftarrow \left\{ 0,1 \right\}^{n/4} \ . \ \text{For } i = 1, \ldots, d \\ & \text{compute } t_{i} \leftarrow \text{Mac}_{k}^{'} \left(r \, \| \, l \, \| \, i \, \| \, m_{i} \right) \ . \ \text{Output} \\ & t := \left(r, t_{1}, \ldots, t_{d} \right) \ . \end{array}$
- Vrfy: on input k,m,t output 1, if and only if Vrfy' $(r || I || i || m_i, t_i) = 1$ for $i = 1, \dots, d$.

Arbitrary length MACs

Construction 8.6 M' = (Gen', Mac', Vrfy') fixed-length MAC with message length n. MAC M = (Gen, Mac, Vrfy) defined as:

$$\begin{array}{ll} \mbox{Gen:} & \mbox{same as Gen'.} \\ \mbox{Mac:} & \mbox{on input } k \in \left\{0,1\right\}^n, \ m \in \left\{0,1\right\}^l, \ l < 2^{n/4}, \ \mbox{parse m as} \\ & \ m_1 \cdots m_d, m_i \in \left\{0,1\right\}^{n/4}. \ r \leftarrow \left\{0,1\right\}^{n/4}. \ \mbox{For } i = 1, \ldots, d \\ & \ \mbox{compute } t_i \leftarrow \mbox{Mac}_k' \left(r \, \|\, I\, \|\, i\, \|\, m_i \right). \ \mbox{Output} \\ & \ t := \left(r, t_1, \ldots, t_d \right). \end{array}$$

Vrfy: on input k,m,t output 1, if and only if . Vrfy' $(r || I || i || m_i, t_i) = 1$ for $i = 1, \dots, d$.

Theorem 8.7 If M' is a secure MAC, then M is a secure MAC.

Combining encryption & authentication

a) encrypt-and-authenticate

-
$$\mathbf{c} \leftarrow \mathbf{Enc}_{\mathbf{k}_1}(\mathbf{m}), \mathbf{t} \leftarrow \mathbf{Mac}_{\mathbf{k}_2}(\mathbf{m})$$

output (c,t)

b) authenticate-then-encrypt

-
$$t \leftarrow Mac_{k_2}(m), c \leftarrow Enc_{k_1}(m \parallel t)$$

output c

c) encrypt-then-authenticate

-
$$\mathbf{c} \leftarrow \mathbf{Enc}_{\mathbf{k}_{1}}(\mathbf{m}), \mathbf{t} \leftarrow \mathbf{Mac}_{\mathbf{k}_{2}}(\mathbf{c})$$

output (c,t)

a) and b) not secure, c) provably secure for MACs with unique tags.

Unique tags

Definition 8.8 A MAC M = (Gen, Mac, Vrfy) has unique tags if for every key k and every message m there is a unique t such that $Vrfy_k(m, Mac_k(m)) = 1$.

Observation If algorithm Mac is deterministic then MAC M = (Gen, Mac, Vrfy) has unique tags.

 $\Pi = (Gen_{E}, Enc, Dec) \text{ private-key encryption scheme,}$ $M = (Gen_{M}, Mac, Vrfy) \text{ MAC.}$

Construction 8.9 $\Pi' = (Gen', Enc', Dec')$ defined as:

 $\begin{array}{ll} \operatorname{Gen} \left(1^{n} \right) & \quad k_{1} \leftarrow \operatorname{Gen}_{E} \left(1^{n} \right), k_{2} \leftarrow \operatorname{Gen}_{M} \left(1^{n} \right), \ \operatorname{return} \, k = (k_{1}, k_{2}). \\ \operatorname{Enc}_{k}^{\prime} \left(m \right) & \quad c^{\prime} \leftarrow \operatorname{Enc}_{k_{1}} (m), t \leftarrow \operatorname{Mac}_{k_{2}} (c^{\prime}), \ \operatorname{return} \, c = (c^{\prime}, t). \\ \operatorname{Dec}_{k}^{\prime} \left(c \right) & \quad c = (c^{\prime}, t), \ \operatorname{if} \, \operatorname{Vrfy}_{k_{2}} (c^{\prime}, t) = 1, \ \operatorname{output} \, \operatorname{Dec}_{k_{1}} (c^{\prime}). \\ & \quad \operatorname{else \ output} \ \bot . \end{array}$

Theorem 8.10 If M is a secure MAC with unique tags and if Π is a CPA-secure private-key encryption scheme, then Π' is a CCA-secure private-key encryption scheme.

- q := number of queries of A to decryption oracle $Dec_{k}(\cdot)$
- valid query A queries $Dec_k(\cdot)$ with some (c',t), where $Vrfy_{k_2}(c',t) = 1$
- new query A queries $Dec_k(\cdot)$ with (c',t), where (c',t) was not obtained from $Enc_k(\cdot)$
 - VQ := there is a query from A to $Dec_k(\cdot)$ with some (c',t), where (c',t) was not obtained from $Enc_k(\cdot)$ and $Vrfy_{k_2}(c',t) = 1$

20

(VQ = j) := A's first valid query is the j-th new query

 $\Pr\left[\Pr ivK_{A,\Pi'}^{cca}(n) = 1\right] \leq \Pr\left[VQ\right] + \Pr\left[\Pr ivK_{A,\Pi'}^{cca}(n) = 1 \land \neg VQ\right]$

Claim 8.11 Pr[VQ] is negligible.

Claim 8.12 $Pr[PrivK_{A,\Pi'}^{cca}(n) = 1 \land \neg VQ] - \frac{1}{2}$ is negligible.

Forger A_M

- A_{M} on input 1ⁿ and oracle access to $Mac_{k_{a}}(\cdot)$
 - 1. $k_1 \leftarrow Gen_E, i \leftarrow \{1, ..., q\}$. Simulate A, where implicitly $k = (k_1, k_2)$.
 - 2. Whenever A queries $Enc_k(\cdot)$ on message m', do $c' \leftarrow Enc_k(m')$, query $Mac_k(c')$ to get t, return (c',t).
 - 3. Whenever A queries $\text{Dec}_{k}(\cdot)$ on ciphertext (c',t), do
 - a) If (c',t) was a response to a previous encryption query for message m', answer with m'.
 - b) if this is the i-th new query, then set out := (c', t) and answer with \perp .
 - c) otherwise answer with \perp .
 - 4. When A returns (m_1, m_2) do

 $b \leftarrow \{0,1\}$, encrypt $m_{_{b}}$ as in 2.

5. Output out.

query c = (c', t) from A to $Dec_k(\cdot)$ new if c not obtained by querying $Enc_k(\cdot)$

query c = (c', t) from A to $Dec_k(\cdot)$ valid if $Verfy_k(c', t) = 1$

VQ := there is a new and valid query from A to $\text{Dec}_{k}(\cdot)$ (c',t), where (c',t) was not obtained from $\text{Enc}_{k}(\cdot)$

(VQ = j) := A's first valid query is the j-th new query

Encrypt-then-authenticate - notation

query c = (c', t) from A to $Dec_k(\cdot)$ new if c not obtained by querying $Enc_k(\cdot)$

query c = (c', t) from A to $Dec_k(\cdot)$ valid if $Verfy_k(c', t) = 1$

VQ := there is a new and valid query from A to $\text{Dec}_{k}(\cdot)$ (c',t), where (c',t) was not obtained from $\text{Enc}_{k}(\cdot)$

$$(VQ = j)$$
 := A's first valid query is the j-th new query

($\widetilde{VQ} = j$) := A's first valid query in simulated attack is the j-th new query in simulated attack

Observation $Pr[VQ = j] = Pr[\widetilde{VQ} = j]$

Forger A_E

- $\mathbf{A}_{\mathbf{E}}$ on input 1ⁿ and oracle access to $\mathbf{Enc}_{\mathbf{k}_{4}}(\cdot)$
 - 1. $k_2 \leftarrow Gen_M$. Simulate A, where implicitly $k = (k_1, k_2)$.
 - 2. Whenever A queries $Enc_k(\cdot)$ on message m', do query $Enc_{k_1}(m')$ to get c', t $\leftarrow Mac_{k_2}(c')$, return (c',t).
 - 3. Whenever A queries $\text{Dec}_{k}(\cdot)$ on ciphertext (c',t), do
 - a) If (c',t) was a response to a previous encryption query for message m', answer with m'.
 - c) otherwise return \perp
 - 4. When A returns (m_0, m_1) , return (m_0, m_1) as challenge.
 - 5. After receiving challenge ciphertext c', compute $t \leftarrow Mac_{k_{\alpha}}(c')$ and return c = (c', t) to A.
 - 6. Continue to simulate A.
 - 7. Output the same bit b that A outputs.

 $(\widetilde{VQ} = j)$:= A's first valid query in simulated attack is the j-th new query in simulated attack

Observation $Pr[VQ = j] = Pr[\widetilde{VQ} = j]$

Summary

- goals and techniques of cryptography
- confidentiality and encryption schemes
- principles of modern cryptography Kerckhoff's principle
- foundations of cryptography approach
- perfect secrecy and its characterizations
- indistinguishables encryptions and eavesdropping attacks
- pseudorandom generators and encryption schemes with indistinguishable encryptions against eavesdroppers
- multiple encryptions
- chosen plaintext attacks

Summary

- pseudorandom functions and cpa-secure encryption schemes
- block ciphers as pseudorandom permutations
- Feistel ciphers and DES
- SPNs and AES
- one-way functions and hardcore predicates
- from one-way functions to PRGs
- from PRGs to PRFs
- extension to public-key cryptography
- eavesdrooping and chosen plaintext attacks for public-key cryptography

Summary

- security for multiple encryptions
- trapdoor permutations and hardcore predicates
- from trapdoor permutations to public-key encryption
- hybrid encryption
- cca-security
- message authentication codes
- MACs from PRFs
- encrypt-then-authenticate paradigm
- encrypt-then-authenticate and cca-secure private key encryption