Cryptography - Provable Security
 SS 2017
 Handout 5
 Exercises marked (${ }^{*}$) will be checked by tutors.

Exercise 1 (4 points):
$\left(^{*}\right)$ Consider the function $f_{\text {add }}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, that, on input $z=x \| y \in\{0,1\}^{*}$ outputs $x+y$, where x, y are bitstrings interpreted as non-negative integers with length $|x|=\lceil|z| / 2\rceil$ and $|y|=\lfloor|z| / 2\rfloor$, respectively. Show that $f_{\text {add }}$ is not a one-way function.

Exercise 2:

Given a one-way function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, define function $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, z \mapsto$ $f(x) \| y$, where $z=x| | y \in\{0,1\}^{*}$ with $|x|=\lceil|z| / 2\rceil$ and $|y|=\lfloor|z| / 2\rfloor$. Prove that g is a one-way function despite revealing half of its input bits.

Exercise 3:

Assuming that one-way function exist, show that there is a one-way function f such that for all $n \in \mathbb{N} f\left(0^{n}\right)=0^{n}$. Note that f is easy to invert for infinitely many inputs. Why does the one-way property hold for f nonetheless?

Exercise 4 (4 points):
$\left(^{*}\right)$ Given a one-way function f, prove that for every polynomial p and all n sufficiently large

$$
\left|\left\{f(x): x \in\{0,1\}^{n}\right\}\right|>p(n) .
$$

Exercise 5:

Show that every bijective function that has a hard-core predicate is also a one-way function.
Exercise 6 (4 points):
$\left(^{*}\right)$ Let $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be a one-way function. Consider the encryption scheme $\Pi=$ (Gen, Enc, Dec) with

- $\operatorname{Gen}\left(1^{n}\right)$: output $k \leftarrow\{0,1\}^{n}$,
- $\operatorname{Enc}_{k}(m)$ with $m \in\{0,1\}^{*}$ of appropriate length: pick $r \leftarrow\{0,1\}^{n}$, output $c=\langle r, m \oplus$ $f(r|\mid k)\rangle$.

Describe the corresponding Dec algorithm and show that Π is indeed an encryption scheme. Then show that Π is not necessarily CPA-secure.
Hint: Exercise 2.

