Prof. Dr. Johannes Blömer Nils Löken

Cryptography - Provable Security SS 2017 Handout 6

Exercises marked (*) will be checked by tutors.

Exercise 1:

Prove or refute: the counter mode of operations employing a pseudorandom function has indistinguishable encryptions under chosen-ciphertext attacks (Definition 3.8).

Exercise 2:

Let p(n) be a polynomial. Prove that if there exists a pseudorandom function F that, using a key of length n, maps p(n)-bit inputs to single-bit outputs, then there exists a pseudorandom function that maps p(n)-bit inputs to n-bit outputs. (Here n, as usual, denotes the security parameter.) Give a direct construction, that does not rely on the results from the lecture.

Hint: Use a key of length n^2 , and prove that your construction is secure using a hybrid argument.

Exercise 3 (8 points):

(*) Given a pseudorandom generator with expansion factor n + 7, construct a pseudorandom generators with expansion factor 2n. Prove that your construction is correct and secure.

Exercise 4 (4 points):

(*) Assume a public-key encryption scheme without decryption errors for single-bit messages. Show that, given pk and a ciphertext $c \leftarrow \operatorname{Enc}_{pk}(m)$, it is possible for an unbounded adversary to determine the message m with probability 1. This shows that perfectly secret public-key encryption is impossible.

Exercise 5:

Show that for any CPA-secure public-key encryption scheme, the size of the ciphertext after encrypting a single bit is superlogarithmic in the security parameter. (That is, for $(pk, sk) \leftarrow$ $\text{Gen}(1^n)$ it must hold that $|\text{Enc}_{pk}(b)| = \omega(\log n)$ for any $b \in \{0, 1\}$).

Hint: If not, the range of possible ciphertexts is only polynomial in size.