II. Pseudorandom generators & encryption

perfect secrecy

- too much (adversary learns nothing, has unlimited resources)
- too little (only eavesdropping allowed)
- too expensive (true randomness)
- ⇒ pseudorandomness, restricted adversaries, different types of attacks.
- **Notation**
 - S set: $x \leftarrow S$, x chosen uniformly from S.
 - A probabilistic algorithm: x ← A(w), x chosen according to distribution generated by A on input w.

Private key encryption schemes

Definition 2.1 A private key encryption scheme Π **consists of three probabilistic polynomial time algorithms Gen, Enc, Dec.**

- 1. Gen on input 1ⁿ outputs a key $k \in \{0,1\}^n$, $k \leftarrow Gen(1^n)$.
- 2. Enc on input a key k and a plaintext message $m \in \{0,1\}^*$, outputs a ciphertext c, c $\leftarrow Enc_k(m)$.
- 3. Dec on input a key k and a ciphertext $c \in \{0,1\}^*$, outputs a plaintext message m, m $\leftarrow \text{Dec}_k(c)$.

Property \forall **k**,**m** : **Pr**[**Dec**_k(**Enc**_k(**m**)) = **m**] = **1**.

If Enc with $k \leftarrow \text{Gen}(1^n)$ works only for $m \in \{0,1\}^{l(n)}$, $I : \mathbb{N} \to \mathbb{N}$ a polynomial, then Π is called fixed-length encryption scheme.

Negligible functions

Definition 2.2 A function $\mu: \mathbb{N} \to \mathbb{R}^+$ is called negligible, if $\forall c \in \mathbb{N} \exists n_0 \in \mathbb{N} \forall n \ge n_0 \mu(n) \le 1/n^c$.

The indistinguishability game

Eavesdropping indistinguishability game PrivK^{eav}_{A,II}

- 1. A key k is chosen with Gen.
- 2. A chooses 2 plaintexts $m_0, m_1 \in P$ with $|m_0| = |m_1|$
- 3. $b \leftarrow \{0,1\}$ chosen uniformly. $c := Enc_k(m_b)$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{eav} = 1$, if output is 1. Say A has succeeded or A

has won.

Indistinguishable encryptions

- **Definition 2.3** $\Pi = ($ **Gen**,**Enc**,**Dec**) has indistinguishable
- encryptions (against eavesdropping adversaries) if for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{eav}\left(n\right)=1
ight]\leq1/2+\mu\left(n
ight).$$

Remarks

- 1. Only consider polynomial time adversaries, not unbounded adversaries as in perfect secrecy.
- 2. Allow success probability slightly, i.e. negligibly larger than 1/2 (perfect secrecy =1/2).

Indistinguishable encryptions and prediction Theorem 2.4 Let $\Pi = (Gen, Enc, Dec)$ be a fixed length encryption scheme with message length $I: \mathbb{N} \to \mathbb{N}$ that has indistinguishable encryptions. For all ppts A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that for all $n \in \mathbb{N}$, and all $1 \le i \le I(n)$ $\Pr\left[A(1^{n},Enc_{k}(m))=m_{i}\right] \leq 1/2 + \mu(n),$ where $\mathbf{m} \leftarrow \{\mathbf{0},\mathbf{1}\}^{l(n)}$, $\mathbf{m} = \mathbf{m}_1 \dots \mathbf{m}_{l(n)}$, $\mathbf{k} \leftarrow \text{Gen}(\mathbf{1}^n)$.

From prediction to distinction

- A on input 1ⁿ
 - $\quad \textbf{m}_{_{0}} \leftarrow \textbf{I}_{_{0}}^{n}, \ \textbf{m}_{_{1}} \leftarrow \textbf{I}_{_{1}}^{n}.$
 - Upon receiving c, simulate \tilde{A} on c, b' $\leftarrow \tilde{A}(c)$.
 - Output b'.

$$\begin{split} I_0^n &= & \left\{ m \in \left\{ 0, 1 \right\}^{I(n)} : m_i = 0 \right\} \\ I_1^n &= & \left\{ m \in \left\{ 0, 1 \right\}^{I(n)} : m_i = 1 \right\} \end{split}$$

Pseudorandom generators

- **Definition 2.5 Let I** : $\mathbb{N} \to \mathbb{N}$ be a polynomial with I(n) > n for
- all $n \in \mathbb{N}$. A deterministic polynomial time algorithm G is a pseudorandom generator if

1.
$$\forall s \in \{0,1\}^* |G(s)| = I(|s|),$$

2. For every ppt D there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\forall n \in \mathbb{N}$

$$\begin{split} & \left| \mathsf{Pr} \Big[\mathsf{D} \Big(r \Big) = 1 \Big] - \mathsf{Pr} \Big[\mathsf{D} \Big(\mathsf{G} \Big(s \Big) \Big) = 1 \Big] \leq \mu \left(n \right), \\ & \text{where } r \leftarrow \left\{ 0, 1 \right\}^{\mathsf{I}(n)} \text{ and } s \leftarrow \left\{ 0, 1 \right\}^{\mathsf{n}}. \end{split}$$

I is called the expansion factor of G.

PRGs and encryption

Construction 2.6 Let I: $\mathbb{N} \to \mathbb{N}$ be a polynomial with I(n) > n for all $n \in \mathbb{N}$ and let G be a deterministic algorithm with |G(s)| = I(|s|) for all $s \in \{0,1\}^*$. Define fixed length encryption scheme $\Pi_{c} = (Gen, Enc, Dec)$ with message length I by $\mathbf{Gen}(\mathbf{1}^{n}): \mathbf{k} \leftarrow {\mathbf{0},\mathbf{1}}^{n},$ Enc_k(m): c \leftarrow m \oplus G(k), m \in {0,1}^{l(n)}, $\operatorname{Dec}_{k}(c): m \leftarrow c \oplus G(k), m \in \{0,1\}^{l(n)}.$

Theorem 2.7 If G is a pseudorandom generator, then Π_{G} has indistinguishable encryption against eavesdropping adversaries.

The indistinguishability game

Let A be a probabilistic polynomial time algorithm (ppt).

Eavesdropping indistinguishability game $PrivK_{A,\Pi}^{eav}$

- 1. A key k is chosen with Gen.
- 2. A chooses 2 plaintexts $m_0, m_1 \in P$.
- 3. $b \leftarrow \{0,1\}$ chosen uniformly. $c := Enc_k(m_b)$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{eav} = 1$, if output is 1. Say A has succeeded or A has won.

Indistinguishable encryptions

- **Definition 2.3** $\Pi = ($ **Gen**,**Enc**,**Dec**) has indistinguishable
- encryptions (against eavesdropping adversaries) if for every probabilistic polynomial time algorithm A there is a negligible
- function $\mu:\mathbb{N}\to\mathbb{R}^+$ such that

$$\Pr\left[\Pr ivK_{A,\Pi}^{eav}\left(n
ight)=1
ight]\leq 1/2+\mu\left(n
ight).$$

From adversaries to distinguishers

D on input $\mathbf{w} \in \{\mathbf{0},\mathbf{1}\}^{I(n)}$ and $\mathbf{1}^n$

- 1. Simulate $A(1^n)$ to obtain messages $m_0, m_1 \in \{0, 1\}^{l(n)}$.
- 2. $b \leftarrow \{0,1\}, c := w \oplus m_{b}$.
- 3. Simulate $A(1^n, c)$ to obtain b'. If b = b', output 1, otherwise output 0.

Multiple messages

A probabilistic polynomial time algorithm (ppt).

Multiple messages eavesdropping game $PrivK_{A,\Pi}^{mult}(n)$

- 1. $\mathbf{k} \leftarrow \mathbf{Gen}(\mathbf{1}^n)$
- 2. A on input 1ⁿ generates two vectors of messages $M_0 = (m_0^1, \dots, m_0^t), M_1 = (m_1^1, \dots, m_1^t)$ with $|m_0^i| = |m_1^i|$ for all i.
- 3. $\mathbf{b} \leftarrow \{\mathbf{0},\mathbf{1}\}, \mathbf{c}_{i} \leftarrow \mathbf{Enc}_{k}(\mathbf{m}_{b}^{i}). \mathbf{C} = (\mathbf{c}_{1},...,\mathbf{c}_{t})$ is given to A.
- 4. $b' \leftarrow A(1^n, C)$.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PrivK_{A,\Pi}^{mult}(n) = 1$, if output is 1. Say A has succeeded or A has won.

Security for multiple encryptions

- **Definition 2.8** $\Pi = (Gen, Enc, Dec)$ has indistinguishable
- multiple encryptions (against eavesdropping adversaries) if
- for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that

$$Pr\left[PrivK_{A,\Pi}^{mult}(n)=1\right] \leq 1/2 + \mu(n).$$

Theorem 2.9 There exist encryption schemes with indistinguishable encryptions (against eavesdropping adversaries) that do not have indistinguishable multiple encryption (against eavesdropping adversaries).