VII. Public-key encryption

- **Private-key encryption**
 - very efficient,
 - but needs shared secret key.
 - key distribution, key agreement

- **Public-key encryption**
 - no shared keys,
 - but less efficient than private-key encryption.
 - used in combination with private-key encryption
 - hybrid encryption

Public-key encryption schemes

Definition 7.1 A public-key encryption scheme is a triple (Gen,Enc,Dec) of ppts such that:

- 1. Gen on input 1ⁿ outputs pair of keys (pk,sk). pk called public key, sk called secret key, $|pk|, |sk| \ge n$.
- 2. Enc on input a public key pk and a message m (from set depending on pk) outputs a ciphertext c,c \leftarrow Enc_{pk} (m).
- 3. Dec on input a private key and a ciphertext c outputs a message m or a special failure symbol \perp . We assume Dec is deterministic and write m: = Dec_{sk}(c).

There must be a negligible function μ such that for all $(pk, sk) \leftarrow Gen(1^n)$ and all possible messages $Pr[Dec_{sk}(Enc_{pk}(m)) \neq m] \leq \mu(n).$

Public-key encryption

Alice

- encrypts message m with pk_B
- sends encrypted message/ciphertext c

Bob

- generates pair of public key pk_B and secret key sk_B
- makes pk_B public
- decrypts with sk_B

The eavesdropping game

Eavesdropping indistinguishability game $PubK_{A,\Pi}^{eav}$

- 1. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. A is given pk and outputs pair of message m_0, m_1 with $|m_0| = |m_1|$.
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc_{pk}(m_{b})$ and c is given to A.
- 4. A outputs bit b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PubK_{A,\Pi}^{eav} = 1$, if output is 1. Say A has succeded or A

has won.

The CPA game

CPA indistinguishability game $PubK_{A,\Pi}^{cpa}(n)$

- 1. $(pk, sk) \leftarrow Gen(1^n)$.
- 2. A is given pk and oracle access to $Enc_{pk}(\cdot)$. Outputs two plaintexts m_0, m_1 with $|m_0| = |m_1|$.
- 3. $b \leftarrow \{0,1\}, c \leftarrow Enc_k(m_b)$. c given to A.
- 4. A continues to have oracle access to $Enc_{pk}(\cdot)$. It outputs b'.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

Write $PubK_{A,\Pi}^{cpa}(n) = 1$, if output is 1. Say A has succeded or A

has won.

The indistinguishability game Definition 7.2 II = (Gen,Enc,Dec) has indistinguishable encryptions under an eavesdropping attack if for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\Pr[\Pr ubK_{AII}^{eav}(n) = 1] \leq 1/2 + \mu(n).$

Definition 7.3 $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions under a chosen plaintext attack if for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that

$$\Pr\left[\operatorname{PubK}_{A,\Pi}^{\operatorname{cpa}}\left(n
ight)=1
ight]\leq1/2+\mu\left(n
ight).$$

6

Eavesdropping, CPAs, multiple encryptions

- **Theorem 7.4 A public-key encryption scheme has**
- indistinguishable encryptions under an eavesdropping attack
- if and only if it has indistinguishable encryptions under a chosen plaintext attack.

- **Theorem 7.5 A public-key encryption scheme has**
- indistinguishable encryptions under an eavesdropping attack
- if and only if it has multiple indistinguishable encryptions under an eavesdropping attack.

Multiple messages

Multiple messages eavesdropping game $PubK_{A,\Pi}^{mult}(n)$

- 1. $(pk, sk) \leftarrow Gen(1^n)$
- 2. A is given pk and on input 1ⁿ generates two vectors of messages $M_0 = (m_0^1, \dots, m_0^t), M_1 = (m_1^1, \dots, m_1^t)$ with $|m_0^i| = |m_1^i|$ for all i.
- 3. $b \leftarrow \{0,1\}, c_i \leftarrow Enc_{pk}(m_b^i)$. $C = (c_1, ..., c_t)$ is given to A. 4. $b' \leftarrow A(1^n, C)$.
- 5. Output of experiment is 1, if b = b', otherwise output is 0.

From multiple messages to single message

A adversary against $\mathsf{PubK}_{A,\Pi}^{\mathsf{mult}}(\cdot)$

A' on input 1ⁿ

- 1. A', given pk, runs A(pk) to obtain $M_0 = (m_0^1, \dots, m_0^t)$ and $M_1 = (m_1^1, \dots, m_1^t)$
- 2 A' chooses i $\leftarrow \{1, ..., t\}$ and outputs m_0^i, m_1^i . A' is given ciphertext c^i .
- 3. For j < i, A' computes $c^j := Enc_{pk}(m_0^j)$. For j > i, A' computes $c^j := Enc_{pk}(m_1^j)$.
- 4. A' runs $A(c^1,...,c^t)$ and outputs the bit b' that A outputs.

Trapdoor permutations

Definition 7.6 A quadruple $\Pi = (Gen, Samp, f, Inv)$ of ppts is called a family of trapdoor permutations, if

- 1. Gen(1ⁿ) outputs parameters (I,td) with $|I| \ge n$, where each pair (I,td) defines a finite set $D_I = D_{td}$.
- 2. By Gen₁ denote the algorithm obtained from Gen by restricting the output to I. Then (Gen₁,Samp,f) is a family of one-way permutations.
- 3. Inv is deterministic and on input td, $y \in D_1$ outputs $x \in D_1$. We require that for all $(I, td) \leftarrow Gen(1^n)$ and all $x \in D_1$ $Inv_{td}(f_1(x)) = x$.

Function families

- **Definition 6.3 (restated) A triple** $\Pi = (Gen, Samp, f)$ of ppts is called a family of functions, if
 - 1. Gen(1ⁿ) outputs parameters I with $|I| \ge n$, where each I defines finite sets D₁ and R₁ for a function $f_1 : D_1 \rightarrow R_1$ defined below.
 - 2. Samp(I) outputs $\mathbf{x} \leftarrow \mathbf{D}_{I}$.
 - 3. f is deterministic and on input I, $x \in D_1$ outputs $y \in R_1$, $y := f_1(x)$.

 Π is a family of permutations, if in addition for all I D₁ = R₁ and f₁ is a bijection.

The inverting game

Inverting game Invert_{A,II} (n)

- 1. $I \leftarrow Gen(1^n), x \leftarrow Samp(I), y := f_I(x).$
- **2.** A given input 1^n , I and y, outputs x'.
- 3. Output of game is 1, if $f_{I}(x') = y$, otherwise output is 0.

Definition 6.4 (restated) A family of functions $\Pi = (\text{gen}, \text{Samp}, f)$ is called one-way, if for every probabilistic polynomial time algorithm A there is a negligible function $\mu : \mathbb{N} \to \mathbb{R}^+$ such that $\Pr[\text{Invert}_{A,\Pi}(n) = 1] \le \mu(n).$

The RSA trapdoor permutation

 $Gen(1^n)$ computes 2 n-bit primes $p,q,p \neq q$, sets $N := p \cdot q$, $\varphi(N) := (p-1)(q-1)$. It computes $e, d \in \mathbb{Z}^*_{\varphi(N)}$ such that $\mathbf{e} \cdot \mathbf{d} = 1 \mod \varphi(\mathbf{N})$. It outputs $\mathbf{I} := (\mathbf{N}, \mathbf{e})$, td := (N,d). D₁ is defined as \mathbb{Z}_{N} . Samp(N,e) outputs $\mathbf{x} \leftarrow \mathbb{Z}_{N}$. $f_{(N,e)}(x)$ outputs $c := x^e \mod N$. $Inv_{(N,d)}(c)$ outputs $x := c^d \mod N$.

Hardcore predicates

Definition 7.7 Let $\Pi = (\text{Gen}, \text{Samp}, f, \text{Inv})$ be a family of trapdoor permutations. Let hc be a deterministic algorithm that, on input I and $x \in D_1$, outputs a single bit hc₁(x). Algorithm hc is a hardcore predicate for Π , if for every ppt A there is a negligible function μ such that

 $Pr[A(I, f_{I}(x)) = hc_{I}(x)] \leq \frac{1}{2} + \mu(n),$ where $(I, td) \leftarrow Gen(1^{n}), x \leftarrow D_{I}.$

The RSA trapdoor permutation

 $Gen(1^n)$ computes 2 n-bit primes $p,q,p \neq q$, sets $N := p \cdot q$, $\varphi(N) := (p-1)(q-1)$. It computes $e, d \in \mathbb{Z}^*_{\varphi(N)}$ such that $\mathbf{e} \cdot \mathbf{d} = 1 \mod \varphi(\mathbf{N})$. It outputs $\mathbf{I} := (\mathbf{N}, \mathbf{e})$, td := (N,d). D₁ is defined as \mathbb{Z}_{N} . Samp(N,e) outputs $\mathbf{x} \leftarrow \mathbb{Z}_{N}$. $f_{(N,e)}(x)$ outputs $c := x^e \mod N$. $\mathsf{Inv}_{(\mathsf{N},\mathsf{d})}(\mathsf{c})$ outputs $x := c^d \mod N$.

Fact The least significant bit is a hardcore predicate for the RSA trapdoor permutation.

From trapdoor permutations to encryption

- **Construction 7.8 Let** $T = (Gen_T, Samp, f, Inv)$ be a family of
- trapdoor permutations, and let hc be a hardcore predicate for
- T. Define the public-key encryption scheme
- $\Pi = (Gen, Enc, Dec)$ with message space $\{0, 1\}$ as follows:
 - Gen: on input 1^n , run Gen_T to obtain (I,td). Output the public key I and the private key td.
 - Enc: on input a public key I and message $m \in \{0,1\}$, choose
 - $\mathbf{x} \leftarrow \mathbf{D}_{\mathbf{i}}$ and output ciphertext $(\mathbf{f}_{\mathbf{i}}(\mathbf{x}), \mathbf{hc}_{\mathbf{i}}(\mathbf{x}) \oplus \mathbf{m})$.
 - Dec: on input a private key td and a ciphertext $(y,s), y \in D_{I}$, compute $x := Inv_{td}(y)$ and output $m := hc_{I}(x) \oplus s$.

From trapdoor permutations to encryption

Construction 7.8 Let $T = (Gen_{T}, Samp, f, Inv)$ be a family of trapdoor permutations, and let hc be a hardcore predicate for T. Define the public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ with message space $\{0, 1\}$ as follows: Gen: on input 1ⁿ, run Gen_{τ} to obtain (I,td). Output the public key I and the private key td. on input a public key I and message $m \in \{0,1\}$, choose Enc: $\mathbf{x} \leftarrow \mathbf{D}_{\mathbf{y}}$ and output ciphertext ($\mathbf{f}_{\mathbf{y}}(\mathbf{x}), \mathbf{hc}_{\mathbf{y}}(\mathbf{x}) \oplus \mathbf{m}$). on input a private key td and a ciphertext $(y,s), y \in D_{I}$, Dec: compute $x := f_1^{-1}(y)$ and output $m := hc_1(x) \oplus s$.

Theorem 7.9 An encryption scheme as in Construction 6.8 has indistinguishable encryptions under a chosen plaintext attack.

From adversaries to predictors

A ppt adversary against Π from Construction 7.8.

 A_{hc} on input $I, y \in D_{I}$

- 1. Set pk = I and run A(pk) to obtain $m_0, m_1 \in \{0, 1\}$
- 2. Choose independent random bit z and b. Set $m' := m_b \oplus z.$
- 3. Give the ciphertext (y,m') to A and obtain an output bit b'.
- 4. If b = b', output z; otherwise output \overline{z} .

Encrypting longer messages

```
m = m_1 m_2 \dots m_k, m_i \in \{0,1\}
```

```
First solution:

1. x_i \leftarrow D_i, i = 1, ..., k

2. Output \langle f_i(x_1), m_1 \oplus hc_i(x_1) \rangle, ..., \langle f_i(x_k), m_k \oplus hc_i(x_k) \rangle
```

```
Second solution :

1. x_1 \leftarrow D_1, x_{i+1} = f(x_i), i = 1, ..., k

2. Output \langle x_{k+1}, m_1 \oplus hc_1(x_1), ..., m_k \oplus hc_1(x_k) \rangle
```

Trapdoor permutations & hardcore predicates

Theorem 7.10 If a family of trapdoor permutations Π exists, then a family of trapdoor permutations $\hat{\Pi}$ together with a hardcore predicate hc exists.

Hybrid encryption – have your cake and eat it!

- **Private-key encryption**
 - very efficient,
 - but needs shared secret key.
 - key distribution, key agreement

- **Public-key encryption**
 - no shared keys,
 - but less efficient than private-key encryption.
 - used in combination with private-key encryption
 - hybrid encryption

Hybrid encryption – have your cake and eat it!

 Π = (Gen,Enc,Dec) public-key encryption scheme Π' = (Gen',Enc',Dec') private-key encryption scheme

 $\Pi^{hy} = (Gen^{hy}, Enc^{hy}, Dec^{hy})$ defined by

Gen^{hy} on input 1ⁿ run Gen(1ⁿ) to obtain (pk,sk)

Enc^{hy} on input a public key pk and a message $m \in \{0,1\}^*$ do

- 1. choose $k \leftarrow \text{Gen}'(1^n)$
- 2. compute $c_1 \leftarrow Enc_{pk}(k)$ and $c_2 \leftarrow Enc'_k(m)$.
- 3. output ciphertext $c = (c_1, c_2)$

Dec^{hy} on input private key sk and ciphertext $c = (c_1, c_2)$ do

- 1. compute $k := Dec_{sk}(c_1)$
- 2. output message $m := Dec'_k(c_2)$

Hybrid encryption – have your cake and eat it!

Theorem 7.11 If Π is a cpa-secure public-key encryption scheme and if Π' is a private key encryption scheme that has indistinguishable encryptions against eavesdropping adversaries, then Π^{hy} is a cpa-secure public-key encryption scheme.

Three adversaries – A₁

A^{hy} ppt adversary against public-key encryption scheme Π^{hy}.

- **A**₁ on input 1ⁿ, pk
 - 1. A_1 chooses $k \leftarrow \{0,1\}^n$ and obtains c_1 , where $b \leftarrow \{0,1\}$ and $c_1 = Enc_{pk}(k)$ if b = 0, and $c_1 = Enc_{pk}(0^n)$ if b = 1
 - 2. A_1 runs $A^{hy}(pk)$ to obtain two messages m_0, m_1
 - 3. A_1 computes $c_2 \leftarrow Enc_k^{'}(m_0)$, then runs $A^{hy}(c_1, c_2)$ and outputs the bit b' that A^{hy} outputs.

Three adversaries – A₂

A^{hy} ppt adversary against public-key encryption scheme Π^{hy}.

- A₂ on input 1ⁿ,pk
 - 1. A_2 chooses $k \leftarrow \{0,1\}^n$ and obtains c_1 , where $b \leftarrow \{0,1\}$ and $c_1 = Enc_{pk}(0^n)$ if b = 0, and $c_1 = Enc_{pk}(k)$ if b = 1
 - 2. A_2 runs $A^{hy}(pk)$ to obtain two messages m_0, m_1
 - 3. A_2 computes $c_2 \leftarrow Enc_k^{(m_1)}$, then runs $A^{hy}(c_1, c_2)$ and outputs the bit b' that A^{hy} outputs.

Three adversaries – A'

A^{hy} ppt adversary against public-key encryption scheme Π^{hy}.

- \mathbf{A}^{\prime} on input $\mathbf{1}^{n}$:
 - 1. A[´] runs Gen(1ⁿ) to obtain a key pair (pk,sk).
 - 2. A['] runs A^{hy}(pk) to obtain two messages m₀,m₁ and obtains c₂ = Enc[']_k(m_b), where b $\leftarrow \{0,1\}$.
 - 3. A['] computes $c_1 \leftarrow Enc_{pk}(0^n)$. Then A['] runs A^{hy}(c_1, c_2) and outputs the bit b' that A^{hy} outputs.