Clustering Algorithms

WS 2015/2016

Handout 1

The square of the euclidian distance between $x, y \in \mathbb{R}^{d}$ is given by

$$
D_{l_{2}^{2}}(x, y):=\|x-y\|_{2}^{2}=\left(\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}\right) .
$$

Remember, the scalar product of $x, y \in \mathbb{R}^{d}$ is defined by

$$
\langle x, y\rangle=\sum_{i=1}^{d} x_{i} \cdot y_{i}
$$

and has the following properties:
(1) $\langle x, y\rangle=\langle y, x\rangle$
(2) given $z \in \mathbb{R}^{d},\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
(3) given $a \in \mathbb{R},\langle a x, y\rangle=a\langle x, y\rangle$

Exercise 1:

Let $X \subseteq \mathbb{R}^{d}$. We denote the mean of set X by $\mu(X)=\frac{1}{n} \sum_{x \in X} x$.
(a) Show that for each $m \in \mathbb{R}^{d}$

$$
\sum_{x \in X}\|x-m\|_{2}^{2}=\sum_{x \in X}\|x-\mu(X)\|_{2}^{2}+|X| \cdot\|\mu(X)-m\|_{2}^{2} .
$$

(b) Which $m \in \mathbb{R}^{d}$ minimizes $\sum_{x \in X}\|x-m\|_{2}^{2}$?

Hint: $\|x\|_{2}^{2}=\langle x, x\rangle$.

Exercise 2:

The squared euclidean distance does not satisfy the the triangle inequality, but a relaxed version of the said inequality. Prove that for each $p, q, r \in \mathbb{R}^{d}$ we have

$$
\|p-q\|_{2}^{2} \leq 2\|p-r\|_{2}^{2}+2\|r-q\|_{2}^{2}
$$

Hint: Use the triangle inequality.

Exercise 3:

a) Show that $D_{l_{2}^{2}}$ is a reflexive distance function.
b) Give a counterexample showing that $D_{l_{2}^{2}}$ does not satisfy the triangle inequality.

