27.11.2015 submission due: 10.12.2015, F1.110, 11:15

Clustering Algorithms WS 2015/2016 Handout 5

Exercise 1:

Denote the center of a set $A \subset \mathbb{R}$ by $\mu(A) = \frac{1}{|A|} \sum_{a \in A} a$, and let $opt_1(A)$ be the optimal 1-means cost with respect to A.

Given a set $P \subset \mathbb{R}$, we draw *n* points uniformly at random from *P*. Denote by x_i the *i*-th point that is drawn uniformly at random from *P*, and let $X = \{x_1, \ldots, x_n\}$. Show that

- (a) $E[\mu(X)] = E[x_i] = \mu(P)$
- (b) $\operatorname{Var}(\mu(X)) = \frac{1}{n} \operatorname{Var}(x_i)$
- (c) With probability 1δ ,

$$|\mu(P) - \mu(X)|^2 < \frac{\operatorname{Var}(x_i)}{n \cdot \delta}.$$

- (d) $\operatorname{Var}(x_i) = \frac{1}{|P|} \cdot \operatorname{opt}_1(P)$
- (e) With probability 1δ ,

$$cost(P, \mu(X)) < \left(1 + \frac{1}{\delta \cdot n}\right) \operatorname{opt}_1(P).$$

Exercise 2:

Given a set of $P \subset M$ and $k \in \mathbb{N}$ $(|P| \geq k)$, we define the discrete k-median problem as follows. Find a subset $C \subseteq P$, |C| = k, such that $cost(P, C) = \sum_{p \in P} \min_{c \in C} D_{l_2^2}(c, p)$ is minimized. Denote the optimal discrete k-means cost by $opt_k^{discr}(P)$. Let $opt_k(P)$ be the optimal k-means cost of P. Prove that

$$\operatorname{opt}_{k}^{discr}(P) \leq 2 \cdot \operatorname{opt}_{k}(P).$$