Clustering Algorithms

WS 2015/2016

Handout 6

Exercise 1:

Given a set of $P \subset M$ and $k \in \mathbb{N}(|P| \geq k)$, we define the discrete k-median problem as follows. Find a subset $C \subseteq P,|C|=k$, such that $\operatorname{cost}(P, C)=\sum_{p \in P} \min _{c \in C} D_{l_{2}^{2}}(c, p)$ is minimized. Denote the optimal discrete k-means cost by $\operatorname{opt}_{k}^{d i s c r}(P)$.
Let $\operatorname{opt}_{k}(P)$ be the optimal k-means cost of P. Prove that

$$
\operatorname{opt}_{k}^{d i s c r}(P) \leq 2 \cdot \operatorname{opt}_{k}(P)
$$

Exercise 2:

Let $S \subset P$ be an ϵ-stable set of k centers, and let $O \subset P$ be an optimal set of k centers. Prove that

$$
D(P, S) \leq\left(\frac{9}{1-\epsilon}\right)^{2} D(P, O)
$$

