Clustering Algorithms

WS 2015/2016

Handout 9

Exercise 1:

Let $A=\left(r_{i j}\right) \in \mathbb{R}^{k \times d}$, where each $r_{i j}$ is chosen according to $\mathcal{N}(0,1), u \in \mathbb{R}^{d},\|u\|_{2}=1$. Define the random variables

$$
X_{i}=\sum_{j=1}^{d} r_{i j} u_{j} \text { and } Y=\|A \cdot u\|_{2}^{2}=\sum_{i=1}^{k} X_{i}^{2}
$$

As we know from the lecture,

$$
E\left[X_{i}\right]=0, \operatorname{Var}\left(X_{i}\right)=1 \text { and } E[Y]=k .
$$

Now use Chebyshev's inequality and determine for which k

$$
\operatorname{Pr}\left((1-\epsilon) k \leq\|A \cdot u\|_{2}^{2} \leq(1+\epsilon) k\right) \geq 1-\frac{1}{3 n^{2}} .
$$

Hint: $E\left[X_{i}^{4}\right]=3$.

Exercise 2:

If the random variable X is distributed according to the Gaussian distribution with mean μ and variance $\sigma^{2}\left(X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)\right)$, then

$$
\operatorname{Pr}(X \leq a)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{a} \exp \left(-(x-\mu)^{2} /\left(2 \sigma^{2}\right)\right) d x
$$

If $X \sim \mathcal{N}(0,1)$, then $E[X]=0$ and $\operatorname{Var}(X)=1$.
Prove that
(a) If $X \sim \mathcal{N}(0,1)$, then $\sigma X+\mu \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $E[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.

Exercise 3:

We are given a point set $P \subset \mathbb{R}^{d},|P|=n$, a γ-approximation algorithm for the k-means problem, and an embedding $\pi: P \rightarrow \mathbb{R}^{c \log (n) / \epsilon^{2}}$ as given by Johnson-Lindenstrauss.

First, we apply the embedding and obtain a new point set $\pi(P)=\{\pi(p) \mid p \in P\} \subset \mathbb{R}^{c \log (n) / \epsilon^{2}}$ such that

$$
(1-\epsilon) \cdot D_{l_{2}}(p, q) \leq D_{l_{2}}(\pi(p), \pi(q)) \leq(1+\epsilon) \cdot D_{l_{2}}(p, q)
$$

for all $p, q \in P$.
Second, we use the γ-approximation algorithm of the k-means problem wrt. $\pi(P)$ and obtain a partition $\left\{C_{1}^{\pi}, \ldots, C_{k}^{\pi}\right\}$ of $\pi(P)$.
Third, we obtain our solution wrt. P by defining a partition $\left\{C_{1}, \ldots, C_{k}\right\}$ of P such that

$$
\pi\left(C_{i}\right)=C_{i}^{\pi}
$$

Now show that
(a) for all $A \subset \mathbb{R}^{d}$

$$
\frac{1}{2|A|} \sum_{p, q \in A} D_{l_{2}^{2}}(p, q)=D_{l_{2}^{2}}(A, \mu(A))
$$

(b) we can bound the costs of our final solution by

$$
D_{l_{2}^{2}}\left(P,\left\{\mu\left(C_{1}\right), \ldots, \mu\left(C_{k}\right)\right\} \leq\left(\frac{1+\epsilon}{1-\epsilon}\right)^{2} \gamma \cdot \sum_{i} D_{l_{2}^{2}}\left(O_{i}, \mu\left(O_{i}\right)\right)\right.
$$

where $\left\{O_{1}, \ldots, O_{k}\right\}$ denotes the optimal partition for the k-means problem wrt. P.

