14.01.2016 submission due: 21.01.2016, F1.110, 11:00

Clustering Algorithms WS 2015/2016 Handout 9

Exercise 1:

Let $A = (r_{ij}) \in \mathbb{R}^{k \times d}$, where each r_{ij} is chosen according to $\mathcal{N}(0, 1)$, $u \in \mathbb{R}^d$, $||u||_2 = 1$. Define the random variables

$$X_i = \sum_{j=1}^d r_{ij} u_j$$
 and $Y = ||A \cdot u||_2^2 = \sum_{i=1}^k X_i^2$.

As we know from the lecture,

 $E[X_i] = 0$, $Var(X_i) = 1$ and E[Y] = k.

Now use Chebyshev's inequality and determine for which k

$$\Pr\left((1-\epsilon)k \le \|A \cdot u\|_{2}^{2} \le (1+\epsilon)k\right) \ge 1 - \frac{1}{3n^{2}}.$$

Hint: $E[X_i^4] = 3.$

Exercise 2:

If the random variable X is distributed according to the Gaussian distribution with mean μ and variance $\sigma^2 (X \sim \mathcal{N}(\mu, \sigma^2))$, then

$$\Pr(X \le a) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{a} \exp(-(x-\mu)^2/(2\sigma^2)) \, dx.$$

If $X \sim \mathcal{N}(0, 1)$, then E[X] = 0 and Var(X) = 1.

Prove that

(a) If $X \sim \mathcal{N}(0, 1)$, then $\sigma X + \mu \sim \mathcal{N}(\mu, \sigma^2)$.

(b) If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $E[X] = \mu$ and $Var(X) = \sigma^2$.

Exercise 3:

We are given a point set $P \subset \mathbb{R}^d$, |P| = n, a γ -approximation algorithm for the k-means problem, and an embedding $\pi : P \to \mathbb{R}^{c \log(n)/\epsilon^2}$ as given by Johnson-Lindenstrauss.

First, we apply the embedding and obtain a new point set $\pi(P) = {\pi(p) \mid p \in P} \subset \mathbb{R}^{c \log(n)/\epsilon^2}$ such that

$$(1-\epsilon) \cdot D_{l_2}(p,q) \le D_{l_2}(\pi(p),\pi(q)) \le (1+\epsilon) \cdot D_{l_2}(p,q)$$

for all $p, q \in P$.

Second, we use the γ -approximation algorithm of the k-means problem wrt. $\pi(P)$ and obtain a partition $\{C_1^{\pi}, \ldots, C_k^{\pi}\}$ of $\pi(P)$. Third, we obtain our solution wrt. P by defining a partition $\{C_1, \ldots, C_k\}$ of P such that

$$\pi(C_i) = C_i^{\pi}.$$

Now show that

(a) for all $A \subset \mathbb{R}^d$

$$\frac{1}{2|A|} \sum_{p,q \in A} D_{l_2^2}(p,q) = D_{l_2^2}(A,\mu(A))$$

(b) we can bound the costs of our final solution by

$$D_{l_2^2}(P, \{\mu(C_1), \dots, \mu(C_k)\} \le \left(\frac{1+\epsilon}{1-\epsilon}\right)^2 \gamma \cdot \sum_i D_{l_2^2}(O_i, \mu(O_i))$$

where $\{O_1, \ldots, O_k\}$ denotes the optimal partition for the k-means problem wrt. P.