Clustering Algorithms

Johannes Blömer

WS 2015/16

Introduction

Clustering techniques for data management and analysis that classify/group given set of objects into categories/subgroups or clusters
Clusters homogeneous subgroups of objects such that similarity b/w objects in one subgroup is larger than similarity b/w objects from different subgroups

Goals

1. find structures in large set of objects/data
2. simplify large data sets

Example

Example

How do we measure similarity/dissimilarity of objects? How do we measure quality of clustering?

Application areas

1. information retrieval
2. data mining
3. machine learning
4. statistics
5. pattern recognition
6. computer graphics
7. data compression
8. bioinformatics
9. speech recognition.

Goals of this course

- different models for clustering
- many important clustering heuristics, including agglomerative clustering, Lloyd's algorithm, and the EM algorithm
- the limitations of these heuristics
- improvements to these heuristics
- various theoretical results about clustering, including NP-hardness results and approximation algorithms
- general techniques to improve the efficiency of heuristics and approximation algorithms, i.e. dimension reduction techniques.

Organization

Information about this course http://www.cs.uni-paderborn.de/fachgebiete/agbloemer/lehre/2015/ws/clusteringalgorithms.html

Here you find

- announcements
- handouts
- slides
- literature
- lecture notes (will be written and appear as course progresses)
- There is only one tutorial, Thursday 13:00-14:00.
- It starts next week.

Prerequisites

- design and analysis of algorithms
- basic complexity theory
- probability theory and stochastic
- some linear algebra

Objects

- objects described by different features
- features continuous or binary
- objects described as elements in \mathbb{R}^{d} or $\{0,1\}^{d}$
- objects from $M \subseteq \mathbb{R}^{d}$ or $M \subseteq\{0,1\}^{d}$

Distance functions

Definition 1.1
$D: M \times M \rightarrow \mathbb{R}$ is called a distance function, if for all $x, y, z \in M$

- $D(x, y)=D(y, x)$ (symmetry)
- $D(x, y) \geq 0$ (positivity),
D is called a metric, if in addition,
- $D(x, y)=0 \Leftrightarrow x=y$ (reflexivity)
- $D(x, z) \leq D(x, y)+D(y, z)$ (triangle inequality)

Examples

Example 1.2 (Euclidean distance)
$M=\mathbb{R}^{d}$,

$$
D_{l_{2}}(x, y)=\|x-y\|_{2}=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

where $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$.

Examples

Example 1.3 (Squared Euclidean distance)
$M=\mathbb{R}^{d}$,

$$
D_{l_{2}^{2}}(x, y)=\|x-y\|_{2}=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{2}
$$

where $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$.

Examples

Example 1.4 (Minkowski distances, I_{p}-norms)
$M=\mathbb{R}^{d}, p \geq 1$,

$$
D_{l_{\rho}}(x, y)=\|x-y\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

Example 1.5 (maximum distance)
$M=\mathbb{R}^{d}$,

$$
D_{l_{\infty}}(x, y)=\|x-y\|_{\infty}=\max _{1 \leq i \leq d}\left|x_{i}-y_{i}\right| .
$$

Examples

Example 1.6 (Pearson correlation)
$M=\mathbb{R}^{d}$,

$$
D_{\text {Pearson }}(x, y)=\frac{1}{2}\left(1-\frac{\sum_{i=1}^{d}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{d}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{d}\left(y_{i}-\bar{y}\right)^{2}}}\right),
$$

where $\bar{x}=\frac{1}{d} \sum x_{i}$ and $\bar{y}=\frac{1}{d} \sum y_{i}$.

Examples

Example 1.7 (Mahalanobis divergence)
$A \in \mathbb{R}^{d \times d}$ positive definite, i.e. $x^{T} A x>0$ for $x \neq 0, M=\mathbb{R}^{d}$,

$$
D_{A}(x, y)=(x-y)^{T} A(x-y)
$$

Example 1.8 (Itakura-Saito divergence)
$M=\mathbb{R}_{>0}^{d}$,

$$
D_{I S}(x, y)=\sum \frac{x_{i}}{y_{i}}-\ln \left(\frac{x_{i}}{y_{i}}\right)-1 .
$$

Examples

Example 1.9 (Kullback-Leibler divergence)

$$
\begin{aligned}
M=S^{d}:=\left\{x \in \mathbb{R}^{d}: \forall i: x_{i} \geq 0, \sum x_{i}=1\right\}, \\
D_{K L D}(x, y)=\sum x_{i} \ln \left(x_{i} / y_{i}\right),
\end{aligned}
$$

where by definition $0 \cdot \ln (0)=0$.
Example 1.10 (generalized KLD)
$M=\mathbb{R}_{\geq 0}^{d}$,

$$
D_{K L D}(x, y)=\sum x_{i} \ln \left(x_{i} / y_{i}\right)-\left(x_{i}-y_{i}\right),
$$

Similarity functions

Definition 1.11

$S: M \times M \rightarrow \mathbb{R}$ is called a similarity function, if for all $x, y, z \in M$

- $S(x, y)=S(y, x)$ (symmetry)
- $0 \leq S(x, y) \leq 1$ (positivity),
S is called a metric, if in addition,
- $S(x, y)=1 \Leftrightarrow x=y$ (reflexivity)
- $S(x, y) S(y, z) \leq(S(x, y)+S(y, z)) S(x, z)$ (triangle inequality)

Examples

Example 1.12 (Cosine similarity)
$M=\mathbb{R}^{d}$,

$$
\begin{aligned}
& S_{C S}(x, y)=\frac{x^{T} y}{\|x\|\|y\|} \text { or } \\
& \bar{S}_{C S}(x, y)=\frac{1+S_{C S}(x, y)}{2}
\end{aligned}
$$

Similarity for binary features

Let $x, y \in\{0,1\}^{d}$, then

$$
n_{b \bar{b}}(x, y):=\left|\left\{1 \leq i \leq d: x_{i}=b, y_{i}=\bar{b}\right\}\right|
$$

and for $w \in \mathbb{R}_{\geq 0}$

$$
S_{w}(x, y):=\frac{n_{00}(x, y)+n_{11}(x, y)}{n_{00}(x, y)+n_{11}(x, y)+w\left(n_{01}(x, y)+n_{10}(x, y)\right)} .
$$

Popular: $w=1,2, \frac{1}{2}$.
Example 1.13 (matching coefficient)

$$
w=1, S_{m c}(x, y)=\frac{n_{00}(x, y)+n_{11}(x, y)}{d}
$$

Similarity for binary features

$$
\bar{S}_{w}(x, y):=\frac{n_{11}(x, y)}{n_{11}(x, y)+w\left(n_{01}(x, y)+n_{10}(x, y)\right)}
$$

Popular: $w=1,2, \frac{1}{2}$.
Example 1.14 (Jaccard coefficient)

$$
w=1, S_{\text {Jacard }}(x, y)=\frac{n_{11}(x, y)}{n_{11}(x, y)+n_{01}(x, y)+n_{10}(x, y)}
$$

