

 $1 \, / \, 5$

many applications require high dimensional data

- many applications require high dimensional data
- many algorithms become inefficient with high dimensional

- many applications require high dimensional data
- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information

- many applications require high dimensional data
- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information
- see two techniques for this task

- many applications require high dimensional data
- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information
- see two techniques for this task
 - 1 Johnson-Lindenstrauss lemma

- many applications require high dimensional data
- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information
- see two techniques for this task
 - 1 Johnson-Lindenstrauss lemma
 - 2 singular value decomposition / principal component analysis
- another technique is feature selection

Theorem 5.1

Let P be a set of n points in \mathbb{R}^d and $0 < \epsilon < 1$. Then, for c large enough, there is an embedding $\pi : P \to \mathbb{R}^{c \log(n)/\epsilon^2}$, such that for all $p, q \in P$

$$(1-\epsilon)\cdot D_{l_2}(p,q)\leq D_{l_2}(\pi(p),\pi(q))\leq (1+\epsilon)\cdot D_{l_2}(p,q).$$

Gaussian distribution

- $\bullet \ \mu \in \mathbb{R}, \sigma \in \mathbb{R}_{>0}$
- density function

$$egin{aligned} \mathcal{N}(\cdot|\mu,\sigma^2) &: \mathbb{R} o \mathbb{R}_{>0} \ \mathcal{N}(x|\mu,\sigma^2) &\mapsto rac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp(-rac{(x-\mu)^2}{2\sigma^2}) \end{aligned}$$

• distribution with density function $\mathcal{N}(\cdot \mid \mu, \sigma^2)$ called Gaussian or normal distribution $\mathcal{N}(\mu, \sigma^2)$ with mean μ and standard deviation σ , i.e.

$$\forall l \in \mathbb{R} : \Pr[x \leq l] = \int_{-\infty}^{l} \mathcal{N}(x \mid \mu, \sigma^2) \mathrm{d}x.$$

ADERBORN tionsgesellischaft

Density function of Gaussian distribution

Random mapping

• $A = (r_{ij})_{1 \le i \le k, 1 \le j \le d} \in \mathbb{R}^{k \times d}$, where each r_{ij} is chosen according to $\mathcal{N}(0, 1)$.

•
$$\forall x \in \mathbb{R}^d : \pi_A(x) = \frac{1}{\sqrt{k}} \cdot A \cdot x.$$

Random mapping

• $A = (r_{ij})_{1 \le i \le k, 1 \le j \le d} \in \mathbb{R}^{k \times d}$, where each r_{ij} is chosen according to $\mathcal{N}(0, 1)$.

•
$$\forall x \in \mathbb{R}^d : \pi_A(x) = \frac{1}{\sqrt{k}} \cdot A \cdot x.$$

Lemma 5.2

Let $\pi_A : \mathbb{R}^d \to \mathbb{R}^k$ be a chosen as above, let $u \in \mathbb{R}^d$ be a vector, and let $0 < \epsilon < 1$. Then, for c large enough and $k = c \cdot \log(n)/\epsilon^2$:

$$\mathsf{Pr}\left[(1-\epsilon) \leq rac{\|\pi_{\mathcal{A}}(u)\|_2}{\|u\|_2} \leq (1+\epsilon)
ight] \geq 1-rac{1}{3n^2}.$$

