The curse of dimensionality

The curse of dimensionality

■ many applications require high dimensional data

The curse of dimensionality

■ many applications require high dimensional data
■ many algorithms become inefficient with high dimensional

The curse of dimensionality

- many applications require high dimensional data
- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information

The curse of dimensionality

■ many applications require high dimensional data

- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information
- see two techniques for this task

The curse of dimensionality

■ many applications require high dimensional data

- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information
- see two techniques for this task

1 Johnson-Lindenstrauss lemma

The curse of dimensionality

■ many applications require high dimensional data

- many algorithms become inefficient with high dimensional
- like to replace high dimensional data by smaller dimensional data without losing too much information
- see two techniques for this task

1 Johnson-Lindenstrauss lemma
2 singular value decomposition / principal component analysis

- another technique is feature selection

The Johnson-Lindenstrauss lemma

Theorem 5.1

Let P be a set of n points in \mathbb{R}^{d} and $0<\epsilon<1$. Then, for c large enough, there is an embedding $\pi: P \rightarrow \mathbb{R}^{c \log (n) / \epsilon^{2}}$, such that for all $p, q \in P$

$$
(1-\epsilon) \cdot D_{l_{2}}(p, q) \leq D_{l_{2}}(\pi(p), \pi(q)) \leq(1+\epsilon) \cdot D_{l_{2}}(p, q) .
$$

The Johnson-Lindenstrauss lemma - the construction

Gaussian distribution

■ $\mu \in \mathbb{R}, \sigma \in \mathbb{R}_{>0}$

- density function

$$
\begin{aligned}
\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right): \mathbb{R} & \rightarrow \mathbb{R}_{>0} \\
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) & \mapsto \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

- distribution with density function $\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right)$ called Gaussian or normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$ with mean μ and standard deviation σ,i.e.

$$
\forall I \in \mathbb{R}: \operatorname{Pr}[x \leq I]=\int_{-\infty}^{I} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathrm{d} x
$$

The Johnson-Lindenstrauss lemma - the construction

Density function of Gaussian distribution

The Johnson-Lindenstrauss lemma - the construction

Random mapping

- $A=\left(r_{i j}\right)_{1 \leq i \leq k, 1 \leq j \leq d} \in \mathbb{R}^{k \times d}$, where each $r_{i j}$ is chosen according to $\mathcal{N}(0,1)$.
- $\forall x \in \mathbb{R}^{d}: \pi_{A}(x)=\frac{1}{\sqrt{k}} \cdot A \cdot x$.

The Johnson-Lindenstrauss lemma - the construction

Random mapping

- $A=\left(r_{i j}\right)_{1 \leq i \leq k, 1 \leq j \leq d} \in \mathbb{R}^{k \times d}$, where each $r_{i j}$ is chosen according to $\mathcal{N}(0,1)$.
- $\forall x \in \mathbb{R}^{d}: \pi_{A}(x)=\frac{1}{\sqrt{k}} \cdot A \cdot x$.

Lemma 5.2

Let $\pi_{A}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be a chosen as above, let $u \in \mathbb{R}^{d}$ be a vector, and let $0<\epsilon<1$. Then, for c large enough and $k=c \cdot \log (n) / \epsilon^{2}$:

$$
\operatorname{Pr}\left[(1-\epsilon) \leq \frac{\left\|\pi_{A}(u)\right\|_{2}}{\|u\|_{2}} \leq(1+\epsilon)\right] \geq 1-\frac{1}{3 n^{2}}
$$

