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The curse of dimensionality

many applications require high dimensional data

many algorithms become inefficient with high dimensional

like to replace high dimensional data by smaller dimensional
data without losing too much information

see two techniques for this task

1 Johnson-Lindenstrauss lemma
2 singular value decomposition / principal component analysis

another technique is feature selection
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The Johnson-Lindenstrauss lemma

.
Theorem 5.1
..

......

Let P be a set of n points in Rd and 0 < ϵ < 1. Then, for c large
enough, there is an embedding π : P → Rc log(n)/ϵ2 , such that for
all p, q ∈ P

(1− ϵ) · Dl2(p, q) ≤ Dl2(π(p), π(q)) ≤ (1 + ϵ) · Dl2(p, q).
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The Johnson-Lindenstrauss lemma - the construction

.
Gaussian distribution
..

......

µ ∈ R, σ ∈ R>0

density function

N (·|µ, σ2) : R → R>0

N (x |µ, σ2) 7→ 1√
2πσ2

· exp(−(x − µ)2

2σ2
)

distribution with density function N (· | µ, σ2) called Gaussian
or normal distribution N (µ, σ2) with mean µ and standard
deviation σ,i.e.

∀l ∈ R : Pr[x ≤ l ] =

∫ l

−∞
N (x | µ, σ2)dx .
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The Johnson-Lindenstrauss lemma - the construction

.
Density function of Gaussian distribution
..

......
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The Johnson-Lindenstrauss lemma - the construction

.
Random mapping
..

......

A = (rij)1≤i≤k,1≤j≤d ∈ Rk×d , where each rij is chosen
according to N (0, 1).

∀x ∈ Rd : πA(x) =
1√
k
· A · x .

.
Lemma 5.2
..

......

Let πA : Rd → Rk be a chosen as above, let u ∈ Rd be a vector,
and let 0 < ϵ < 1. Then, for c large enough and k = c · log(n)/ϵ2:

Pr

[
(1− ϵ) ≤ ∥πA(u)∥2

∥u∥2
≤ (1 + ϵ)

]
≥ 1− 1

3n2
.
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