Lossless compression

- A = {a₁,..., a_d} finite alphabet, p = (p₁,..., p_d) ∈ S^d, i.e. probability distribution
- $\bullet X = X_1 \cdots X_l \in A^*$
- $\forall j, i : \Pr[X_j = a_i] = p_i$

Lossless compression

- A = {a₁,..., a_d} finite alphabet, p = (p₁,..., p_d) ∈ S^d, i.e. probability distribution
- $\blacksquare X = X_1 \cdots X_l \in A^*$

•
$$\forall j, i : \Pr[X_j = a_i] = p_i$$

Want function $f : A \rightarrow \{0, 1\}^*$ such that

1
$$\forall i, j, i \neq j : f(a_i)$$
 is not a prefix of $f(a_j)$

2
$$E[f] := \sum p_i |f(a_i)|$$
 is small

Lossless compression

- A = {a₁,..., a_d} finite alphabet, p = (p₁,..., p_d) ∈ S^d, i.e. probability distribution
- $X = X_1 \cdots X_l \in A^*$

•
$$\forall j, i : \Pr[X_j = a_i] = p_i$$

Want function $f : A \rightarrow \{0, 1\}^*$ such that

1
$$\forall i, j, i \neq j : f(a_i)$$
 is not a prefix of $f(a_j)$

2
$$E[f] := \sum p_i |f(a_i)|$$
 is small

- **I** guarantees that X can be recovered from $f(X) = f(X_1) \cdots f(X_l)$
- **2** E[f] called expected codeword length of f

Given $A = \{a_1, \ldots, a_d\}$, Shannon code $S : A \to \{0, 1\}^*$ achieves

1 $\forall i : |S(a_i)| = \lceil \log(1/p_i) \rceil$ 2 $E[S] = \sum p_i \lceil \log(1/p_i) \rceil$

Given $A = \{a_1, \ldots, a_d\}$, Shannon code $S : A \rightarrow \{0, 1\}^*$ achieves

1 $\forall i : |S(a_i)| = \lceil \log(1/p_i) \rceil$ 2 $E[S] = \sum p_i \lceil \log(1/p_i) \rceil$

Idealization $\forall i : |S(a_i)| = \log(1/p_i), E[S] = \sum p_i \log(1/p_i)$

Given $A = \{a_1, \ldots, a_d\}$, Shannon code $S : A \rightarrow \{0, 1\}^*$ achieves

1 $\forall i : |S(a_i)| = \lceil \log(1/p_i) \rceil$ 2 $E[S] = \sum p_i \lceil \log(1/p_i) \rceil$

Idealization $\forall i : |S(a_i)| = \log(1/p_i), E[S] = \sum p_i \log(1/p_i)$

Question What happens, if we start with "wrong" distribution q to construct Shannon code S'?

Given $A = \{a_1, \ldots, a_d\}$, Shannon code $S : A \rightarrow \{0, 1\}^*$ achieves

1 $\forall i : |S(a_i)| = \lceil \log(1/p_i) \rceil$ 2 $E[S] = \sum p_i \lceil \log(1/p_i) \rceil$

Idealization $\forall i : |S(a_i)| = \log(1/p_i), E[S] = \sum p_i \log(1/p_i)$

Question What happens, if we start with "wrong" distribution q to construct Shannon code S'?

Loss in compression: $E[S'] - E[S] = \sum p_i \log(p_i/q_i) = D_{KLD}(p,q)$.

Lemma 3.1

$\forall p,q \in S^d : D_{KLD}(p,q) \geq 0.$

Lemma 3.1

 $\forall p, q \in S^d : D_{KLD}(p,q) \ge 0.$

Observation

 $\forall x \in \mathbb{R}_+ : \ln(x) \le x - 1.$

• $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b
- for each $c \in A^b$ an idealized Shannon code S_c for distribution P_c

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b
- for each $c \in A^b$ an idealized Shannon code S_c for distribution P_c
- use S_c to encode k-th symbol X_k if previous b symbols are c

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b
- for each $c \in A^b$ an idealized Shannon code S_c for distribution P_c
- use S_c to encode k-th symbol X_k if previous b symbols are c
- first b symbols encoded somehow

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b
- \blacksquare for each $c \in A^b$ an idealized Shannon code S_c for distribution P_c
- use S_c to encode k-th symbol X_k if previous b symbols are c
- first b symbols encoded somehow
- + can yield very good compression if b is sufficiently large

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b
- for each $c \in A^b$ an idealized Shannon code S_c for distribution P_c
- use S_c to encode k-th symbol X_k if previous b symbols are c
- first b symbols encoded somehow
- + can yield very good compression if b is sufficiently large
- for large b have to store many $(=|A|^b)$ codes

- $X = X_1 \cdots X_l$ sequence over alphabet $A, b \in \mathbb{N}$
- $\forall c \in A^b$: distribution $P_c = (p_{c1}, \dots, p_{cd})$
- $p_{cj} = \Pr[X_k = a_j | X_{k-1} \cdots X_{k-b} = c]$ for all k > b
- for each $c \in A^b$ an idealized Shannon code S_c for distribution P_c
- use S_c to encode k-th symbol X_k if previous b symbols are c
- first b symbols encoded somehow
- + can yield very good compression if b is sufficiently large
- for large b have to store many $(=|A|^b)$ codes
- \Rightarrow may outweigh gain of compression

Idea Use large b, then use "few" (= k) representative distributions to compress.

Idea Use large b, then use "few" (= k) representative distributions to compress.

$$\bullet P = \{P_c | c \in A^b\}$$

- find set of k centroid distributions $C = \{c_1, \ldots, c_k\}$ and partition C_1, \ldots, C_k of P
- if $P_c \in C_j$, use idealized Shannon code S_j for distribution c_j instead of code for distribution P_c

Idea Use large b, then use "few" (= k) representative distributions to compress.

$$\bullet P = \{P_c | c \in A^b\}$$

- find set of k centroid distributions $C = \{c_1, \ldots, c_k\}$ and partition C_1, \ldots, C_k of P
- if $P_c \in C_j$, use idealized Shannon code S_j for distribution c_j instead of code for distribution P_c

Goal Find centroids and corresponding partition that minimize loss in compression.

$$\sum_{i=1}^{k} \sum_{P_j \in C_i} D_{KLD}(P_j, c_i)$$

$$\sum_{i=1}^k \sum_{P_j \in C_i} D_{KLD}(P_j, c_i) =$$

$$cost^{KLD}(P, C)$$

$$\sum_{i=1}^{k} \sum_{P_j \in C_i} D_{KLD}(P_j, c_i) = \operatorname{cost}^{KLD}(P, C)$$

 $\geq \operatorname{cost}^{KLD}_k(P)$

$$\sum_{i=1}^{k} \sum_{P_j \in C_i} D_{KLD}(P_j, c_i) = \operatorname{cost}^{KLD}(P, C)$$

 $\geq \operatorname{cost}^{KLD}_k(P)$

 \Rightarrow k-median problem for Kullback-Leibler divergence

