
..

...
Data fitting stochastic models

.
Explaining data by stochastic models
..

......

Given set of points X ⊂ Rd , |X | < ∞.
Find a stochastic distribution (model, process) that explains the
data well.

Impossible to solve if we do not restrict the distributions that
have to be considered.

⇒ Need to fix a family of distribution in advance.

Find a good or even best distribution from that family.

When does a distribution explain data well?
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The Old Faithful data set
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...
The Old Faithful data set

Is there a distribution that explains the apparent dependency
between duration and time until next eruption?
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..

...
Families of distributions

.
Families of continuous distributions
..

......

d ∈ N, S ⊆ Rs for some s ∈ N, |S | = ∞
for each Θ ∈ S a density function p(·|Θ) : Rd → R≥0, i.e.∫

Rd

p(x |Θ)dx = 1.

denote family of distributions or density functions by
{p(·|Θ)}Θ∈S or simply {p(·|Θ)}Θ

.
Example - univariate Gaussian distributions
..

......

d = 1,S = R× R>0,Θ = (µ, σ)

p(·|Θ) = p(·|µ, σ) = N (·|µ, σ2)
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...
Likelihood and negative log-likelihood

.
Definition 6.1
..

......

Let X ⊂ Rd , |X | < ∞ and {p(·|Θ)}Θ∈S a family of density
functions.

1 p(X |Θ) :=
∏

y∈X p(y |Θ) is called the likelihood of X with
respect to p(·|Θ) or simply with respect to Θ.

2 LX (Θ) = − ln (p(X |Θ)) = −
∑

y∈X ln(p(y |Θ) called negative
log-likelihood of X with respect to Θ.
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..

...
Maximum log-likelihood estimation

.
Problem 6.2 (Maximum likelihood estimation)
..

......

Given a family {p(·|Θ}Θ∈S of distributions on Rd and a finite set
X ⊂ Rd , find Θ0 ∈ S that minimizes the negative log-likelihood
LX (Θ).

Remarks

Depending on the definition of S the maximum likelihood
estimation problem is not well defined.

In other cases, the parameters Θ that have the minimal
negative log-likelihood are not very useful.

In this case, the goal is to find ”useful” or ”relevant”
parameters Θ that model the point set X .
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...
Log-likelihood estimation for spherical Gaussians

.
Theorem 6.3
..

......

Let S = R× R>0 and p(·|µ, σ) = N (·|µ, σ2) for all (µ, σ) ∈ S .
For a finite point set X ⊂ R, |X | ≥ 2,

1 for fixed µ the value for σ2 minimizing LX (µ, σ) is given by

σ2 =
1

|X |
∑
y∈X

(y − µ)2,

2 the parameters Θ = (µ, σ) minimizing LX (µ, σ) are given by

µ =
1

|X |
∑
y∈X

y and σ2 =
1

|X |
∑
y∈X

(y − µ)2.

Consequently, given X the optimal values for µ and σ can be
computed in time O(|X |).
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...
Multivariate Gaussians

.
Spherical Gaussian distributions
..

......

d arbitrary, fixed, S = Rd × R>0,Θ = (µ, σ)

N (·|µ, σ2) : Rd → R>0

x 7→ 1

(2πσ2)d/2
· exp

(
−∥x − µ∥2

2σ2

)

Contours of constant probability density for spherical Gaussians
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...
Multivariate Gaussians

.
Axis-aligned Gaussian distributions
..

......

d arbitrary, fixed, S ⊂ Rd × Rd
>0,Θ = (µ, σ1, . . . , σd)

N (·|Θ) : Rd → R>0

x 7→ 1

(2π)d/2(
∏

σ2
i )

1/2
· exp

(
−
∑ (xi − µi )

2

2σ2
i

)

Contours of constant probability density for axis-aligned Gaussians
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...
Multivariate Gaussians

.
(General) Gaussian distributions
..

......

d arbitrary, fixed, S ⊂ Rd × Rd×d ,Θ = (µ,Σ),Σ positive definite

N (·|Θ) : Rd → R>0

x 7→ 1

(2π)d/2(det(Σ))1/2
· exp

(
−(x − µ)TΣ−1(x − µ)

2

)
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Multivariate Gaussians

.
(General) Gaussian distributions
..

......

d arbitrary, fixed, S ⊂ Rd × Rd×d ,Θ = (µ,Σ),Σ positive definite

N (·|Θ) : Rd → R>0

x 7→ 1

(2π)d/2(det(Σ))1/2
· exp

(
−(x − µ)TΣ−1(x − µ)

2

)
Contour in terms of eigenvalues and eigenvectors of Σ
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...
Log-likelihood estimation for spherical multivariate Gaussians

.
Theorem 6.4
..

......

Let S = Rd × R>0 and p(·|µ, σ) = N (·|µ, σ2) for all (µ, σ) ∈ S .
For a finite point set X ⊂ Rd , |X | ≥ 2,

1 for fixed µ the value for σ2 minimizing LX (µ, σ) is given by

σ2 =
1

d |X |
∑
y∈X

∥y − µ∥2,

2 the parameters Θ = (µ, σ) minimizing LX (µ, σ) are given by

µ =
1

|X |
∑
y∈X

y and σ2 =
1

d |X |
∑
y∈X

∥y − µ∥2.

Consequently, given X the optimal values for µ and σ can be
computed in time O(|X |).
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...
Log-likelihood estimation for multivariate Gaussians

.
Theorem 6.5
..

......

Let d ∈ N, S ⊂ Rd × Rd×d , p(·|Θ) = N (·|Θ),Θ = (µ,Σ),
Σ ∈ Rd×d positive definite. For a finite point set X ⊂ Rd , |X | ≥ 2,

1 for fixed µ the value for σ2 minimizing LX (µ, σ) is given by

Σ =
1

|X |
∑
y∈X

(y − µ) · (y − µ)T ,

2 the parameters Θ = (µ, σ) minimizing LX (µ, σ) are given by

µ =
1

|X |
∑
y∈X

y and Σ =
1

|X |
∑
y∈X

(y − µ) · (y − µ)T .
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...
Mixtures of Gaussians

.
Gaussian mixture distributions
..

......

d ,K arbitrary, fixed, Θ = (Θ1, . . . ,ΘK , π),Θk models for
d-variate Gaussian distributions, π ∈ Rk

≥0, ∥π∥1 = 1

x 7→
∑
k

πkN (x |Θk)

Mixture of three univariate Gaussian distributions
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...
Mixtures of Gaussians

Contours of
constant probability
densities for three
Gaussians

Contours of
constant probability
densities for mixture
of three Gaussians

Surface plot for
mixture of three
Gaussians
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...
Old Faithful and mixtures of Gaussians

Explaining Old Faithful with a
single multivariate Gaussian

Explaining Old Faithful with a
mixture of two multivariate
Gaussians
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...
Graphical representation of Gaussian mixtures

To generate a point distributed
according to a mixture of
Gaussians:

1 choose an index k according
to the distribution
π = (π1, . . . , πK )

2 choose a point x according
to the distribution N (·|Θk).
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...
Likelihood for mixtures of Gaussians

.
Gaussian mixture distributions
..

......

d ,K arbitrary, fixed, Θ = (Θ1, . . . ,ΘK , π),Θk models for
d-variate Gaussian distributions, π ∈ Rk

≥0, ∥π∥1 = 1

x 7→
∑
k

πkN (x |Θk)

.
Likelihoods
..

......

X ⊂ Rd , |X | = N,X = {x1, . . . , xN}

p(X |Θ) =
∏N

n=1 p(xn|Θ) =
∏N

n=1

(∑K
k=1 πkN (xn|Θk)

)
LX (Θ) = − ln(p(X |Θ)) = −

N∑
n=1

ln

(
K∑

k=1

πkN (xn|Θk)

)
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...
Likelihood for mixtures of spherical Gaussians

.
Gaussian mixture distributions
..

......

d ,K arbitrary, fixed, Θ = (Θ1, . . . ,ΘK , π),Θk = (µk , σk),
models for d-variate spherical Gaussian distributions,
π ∈ Rk

≥0, ∥π∥1 = 1

x 7→
∑
k

πkN (x |Θk)

.
Likelihoods
..

......

X ⊂ Rd , |X | = N,X = {x1, . . . , xN}. Set µ1 = x1, π1 ̸= 0. Then

lim
σ1→0

LX (Θ) = −∞,

i.e. negative log-likelihood not well-defined.
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...
Optimality conditions for d = 1

No closed formula for

argminΘLX (θ) = argminΘ −
N∑

n=1

ln

(
K∑

k=1

πkN (xn|Θk)

)

Taking derivatives (with Lagrange multipliers) yields

µk =
1

Rk

N∑
n=1

γnkxn, k = 1, . . . ,K , (1)

σ2
k =

1

Rk

N∑
n=1

γnk(xn − µk)
2, k = 1, . . . ,K , (2)

πk =
Rk

N
, k = 1, . . . ,K , (3)

where Rk =
∑N

n=1 γnk , and γnk := πkN (xn|µk ,σk)∑
j πjN (xn|µj ,σj )

.
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...
The EM algorithm

EM(X ),X = {x1, . . . , xn}
choose K initial means, variances, and mixing coefficients
µk , σ

2
k , πk , i = 1, . . . ,K ;

repeat

/* expectation step */

for all n = 1, . . . ,N, k = 1 . . . ,K set γnk := πkN (xn|µk ,σk )∑
j πjN (xn|µj ,σj )

;

/* maximization step */

for k = 1, . . .K set µnew
k := 1

Rk

∑
n γnkxn,

σ2new
k := 1

Rk

∑
n γnk(xn − µnew

k )2,Rk :=
∑

n γnk , π
new
k := Rk

N ;

until convergence;

return µk , σ
2
k , πk , k = 1, . . . ,K

convergence: quality of solution no longer improves
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...
The k-means algorithm

k-Means(P)

choose k initial centroids c1, . . . , ck ;

repeat
/* assignment step */

for i = 1, . . . , k do
Ci := set of points in P closest to ci ;

end

/* estimation step */

for i = 1, . . . , k do
ci := c(Ci ) =

1
|Ci |
∑

p∈Ci
p;

end

until convergence;

return c1, . . . , ck and C1, . . . ,Ck
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..

...
Properties of EM

EM very popular in practice

EM is reasonably efficient

EM usually finds good solutions

Quality of solutions depends crucially on initial solution
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