Data fitting stochastic models

Explaining data by stochastic models
Given set of points $X \subset \mathbb{R}^{d},|X|<\infty$.
Find a stochastic distribution (model, process) that explains the data well.

Data fitting stochastic models

Explaining data by stochastic models

Given set of points $X \subset \mathbb{R}^{d},|X|<\infty$.
Find a stochastic distribution (model, process) that explains the data well.

- Impossible to solve if we do not restrict the distributions that have to be considered.

Data fitting stochastic models

Explaining data by stochastic models

Given set of points $X \subset \mathbb{R}^{d},|X|<\infty$.
Find a stochastic distribution (model, process) that explains the data well.

- Impossible to solve if we do not restrict the distributions that have to be considered.
\Rightarrow Need to fix a family of distribution in advance.

Data fitting stochastic models

Explaining data by stochastic models

Given set of points $X \subset \mathbb{R}^{d},|X|<\infty$.
Find a stochastic distribution (model, process) that explains the data well.

- Impossible to solve if we do not restrict the distributions that have to be considered.
\Rightarrow Need to fix a family of distribution in advance.
- Find a good or even best distribution from that family.

Data fitting stochastic models

Explaining data by stochastic models

Given set of points $X \subset \mathbb{R}^{d},|X|<\infty$.
Find a stochastic distribution (model, process) that explains the data well.

- Impossible to solve if we do not restrict the distributions that have to be considered.
\Rightarrow Need to fix a family of distribution in advance.
- Find a good or even best distribution from that family.
- When does a distribution explain data well?

The Old Faithful data set

The Old Faithful data set

The Old Faithful data set

Is there a distribution that explains the apparent dependency between duration and time until next eruption?

Families of distributions

Families of continuous distributions
■ $d \in \mathbb{N}, S \subseteq \mathbb{R}^{s}$ for some $s \in \mathbb{N},|S|=\infty$
■ for each $\Theta \in S$ a density function $p(\cdot \mid \Theta): \mathbb{R}^{d} \rightarrow \mathbb{R}_{\geq 0}$, i.e.

$$
\int_{\mathbb{R}^{d}} p(x \mid \Theta) \mathrm{d} x=1
$$

- denote family of distributions or density functions by $\{p(\cdot \mid \Theta)\}_{\Theta \in S}$ or simply $\{p(\cdot \mid \Theta)\}_{\Theta}$

Families of distributions

Families of continuous distributions
■ $d \in \mathbb{N}, S \subseteq \mathbb{R}^{s}$ for some $s \in \mathbb{N},|S|=\infty$
■ for each $\Theta \in S$ a density function $p(\cdot \mid \Theta): \mathbb{R}^{d} \rightarrow \mathbb{R}_{\geq 0}$, i.e.

$$
\int_{\mathbb{R}^{d}} p(x \mid \Theta) \mathrm{d} x=1
$$

- denote family of distributions or density functions by $\{p(\cdot \mid \Theta)\}_{\Theta \in S}$ or simply $\{p(\cdot \mid \Theta)\}_{\Theta}$

Example - univariate Gaussian distributions
■ $d=1, S=\mathbb{R} \times \mathbb{R}_{>0}, \Theta=(\mu, \sigma)$

- $p(\cdot \mid \Theta)=p(\cdot \mid \mu, \sigma)=\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right)$

Likelihood and negative log-likelihood

Definition 6.1

Let $X \subset \mathbb{R}^{d},|X|<\infty$ and $\{p(\cdot \mid \Theta)\}_{\Theta \in S}$ a family of density
functions.
$1 p(X \mid \Theta):=\prod_{y \in X} p(y \mid \Theta)$ is called the likelihood of X with respect to $p(\cdot \mid \Theta)$ or simply with respect to Θ.
$2 \mathcal{L}_{X}(\Theta)=-\ln (p(X \mid \Theta))=-\sum_{y \in X} \ln (p(y \mid \Theta)$ called negative log-likelihood of X with respect to Θ.

Maximum log-likelihood estimation

Problem 6.2 (Maximum likelihood estimation)
Given a family $\left\{p(\cdot \mid \Theta\}_{\Theta \in S}\right.$ of distributions on \mathbb{R}^{d} and a finite set $X \subset \mathbb{R}^{d}$, find $\Theta_{0} \in S$ that minimizes the negative log-likelihood $\mathcal{L}_{X}(\Theta)$.

Maximum log-likelihood estimation

Problem 6.2 (Maximum likelihood estimation)

Given a family $\left\{p(\cdot \mid \Theta\}_{\Theta \in S}\right.$ of distributions on \mathbb{R}^{d} and a finite set $X \subset \mathbb{R}^{d}$, find $\Theta_{0} \in S$ that minimizes the negative log-likelihood $\mathcal{L}_{X}(\Theta)$.

Remarks

- Depending on the definition of S the maximum likelihood estimation problem is not well defined.

Maximum log-likelihood estimation

Problem 6.2 (Maximum likelihood estimation)

Given a family $\left\{p(\cdot \mid \Theta\}_{\Theta \in S}\right.$ of distributions on \mathbb{R}^{d} and a finite set $X \subset \mathbb{R}^{d}$, find $\Theta_{0} \in S$ that minimizes the negative log-likelihood $\mathcal{L}_{X}(\Theta)$.

Remarks

- Depending on the definition of S the maximum likelihood estimation problem is not well defined.
- In other cases, the parameters Θ that have the minimal negative log-likelihood are not very useful.

Maximum log-likelihood estimation

Problem 6.2 (Maximum likelihood estimation)

Given a family $\left\{p(\cdot \mid \Theta\}_{\Theta \in S}\right.$ of distributions on \mathbb{R}^{d} and a finite set $X \subset \mathbb{R}^{d}$, find $\Theta_{0} \in S$ that minimizes the negative log-likelihood $\mathcal{L}_{X}(\Theta)$.

Remarks

- Depending on the definition of S the maximum likelihood estimation problem is not well defined.
- In other cases, the parameters Θ that have the minimal negative log-likelihood are not very useful.
- In this case, the goal is to find "useful" or "relevant" parameters Θ that model the point set X.

Log-likelihood estimation for spherical Gaussians

Theorem 6.3

Let $S=\mathbb{R} \times \mathbb{R}_{>0}$ and $p(\cdot \mid \mu, \sigma)=\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right)$ for all $(\mu, \sigma) \in S$.
For a finite point set $X \subset \mathbb{R},|X| \geq 2$,
1 for fixed μ the value for σ^{2} minimizing $\mathcal{L}_{X}(\mu, \sigma)$ is given by

$$
\sigma^{2}=\frac{1}{|X|} \sum_{y \in X}(y-\mu)^{2}
$$

2 the parameters $\Theta=(\mu, \sigma)$ minimizing $\mathcal{L}_{X}(\mu, \sigma)$ are given by

$$
\mu=\frac{1}{|X|} \sum_{y \in X} y \quad \text { and } \quad \sigma^{2}=\frac{1}{|X|} \sum_{y \in X}(y-\mu)^{2}
$$

Consequently, given X the optimal values for μ and σ can be computed in time $\mathcal{O}(|X|)$.

Multivariate Gaussians

Spherical Gaussian distributions

- d arbitrary, fixed, $S=\mathbb{R}^{d} \times \mathbb{R}_{>0}, \Theta=(\mu, \sigma)$
- $\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}_{>0}$

$$
x \mapsto \frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \cdot \exp \left(-\frac{\|x-\mu\|^{2}}{2 \sigma^{2}}\right)
$$

Multivariate Gaussians

Spherical Gaussian distributions

■ d arbitrary, fixed, $S=\mathbb{R}^{d} \times \mathbb{R}_{>0}, \Theta=(\mu, \sigma)$

- $\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}_{>0}$

$$
x \mapsto \frac{1}{\left(2 \pi \sigma^{2}\right)^{d / 2}} \cdot \exp \left(-\frac{\|x-\mu\|^{2}}{2 \sigma^{2}}\right)
$$

Contours of constant probability density for spherical Gaussians

(c)

Multivariate Gaussians

Axis-aligned Gaussian distributions

d arbitrary, fixed, $S \subset \mathbb{R}^{d} \times \mathbb{R}_{>0}^{d}, \Theta=\left(\mu, \sigma_{1}, \ldots, \sigma_{d}\right)$

$$
\begin{aligned}
\mathcal{N}(\cdot \mid \Theta): \mathbb{R}^{d} & \rightarrow \mathbb{R}_{>0} \\
x & \mapsto \frac{1}{(2 \pi)^{d / 2}\left(\prod \sigma_{i}^{2}\right)^{1 / 2}} \cdot \exp \left(-\sum \frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

Multivariate Gaussians

Axis-aligned Gaussian distributions

d arbitrary, fixed, $S \subset \mathbb{R}^{d} \times \mathbb{R}_{>0}^{d}, \Theta=\left(\mu, \sigma_{1}, \ldots, \sigma_{d}\right)$

$$
\begin{aligned}
\mathcal{N}(\cdot \mid \Theta): \mathbb{R}^{d} & \rightarrow \mathbb{R}_{>0} \\
x & \mapsto \frac{1}{(2 \pi)^{d / 2}\left(\prod \sigma_{i}^{2}\right)^{1 / 2}} \cdot \exp \left(-\sum \frac{\left(x_{i}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
\end{aligned}
$$

Contours of constant probability density for axis-aligned Gaussians

(b)

Multivariate Gaussians

(General) Gaussian distributions

d arbitrary, fixed, $S \subset \mathbb{R}^{d} \times \mathbb{R}^{d \times d}, \Theta=(\mu, \Sigma), \Sigma$ positive definite

$$
\mathcal{N}(\cdot \mid \Theta): \mathbb{R}^{d} \rightarrow \mathbb{R}_{>0}
$$

$$
x \mapsto \frac{1}{(2 \pi)^{d / 2}(\operatorname{det}(\Sigma))^{1 / 2}} \cdot \exp \left(-\frac{(x-\mu)^{T} \Sigma^{-1}(x-\mu)}{2}\right)
$$

Multivariate Gaussians

(General) Gaussian distributions

d arbitrary, fixed, $S \subset \mathbb{R}^{d} \times \mathbb{R}^{d \times d}, \Theta=(\mu, \Sigma), \Sigma$ positive definite
$\mathcal{N}(\cdot \mid \Theta): \mathbb{R}^{d} \rightarrow \mathbb{R}_{>0}$

$$
x \mapsto \frac{1}{(2 \pi)^{d / 2}(\operatorname{det}(\Sigma))^{1 / 2}} \cdot \exp \left(-\frac{(x-\mu)^{T} \Sigma^{-1}(x-\mu)}{2}\right)
$$

Contours of constant probability density for general Gaussians

(a)

Multivariate Gaussians

(General) Gaussian distributions

d arbitrary, fixed, $S \subset \mathbb{R}^{d} \times \mathbb{R}^{d \times d}, \Theta=(\mu, \Sigma), \Sigma$ positive definite
$\mathcal{N}(\cdot \mid \Theta): \mathbb{R}^{d} \rightarrow \mathbb{R}_{>0}$

$$
x \mapsto \frac{1}{(2 \pi)^{d / 2}(\operatorname{det}(\Sigma))^{1 / 2}} \cdot \exp \left(-\frac{(x-\mu)^{T} \Sigma^{-1}(x-\mu)}{2}\right)
$$

Contour in terms of eigenvalues and eigenvectors of Σ

Log-likelihood estimation for spherical multivariate Gaussi

Theorem 6.4

Let $S=\mathbb{R}^{d} \times \mathbb{R}_{>0}$ and $p(\cdot \mid \mu, \sigma)=\mathcal{N}\left(\cdot \mid \mu, \sigma^{2}\right)$ for all $(\mu, \sigma) \in S$.
For a finite point set $X \subset \mathbb{R}^{d},|X| \geq 2$,
1 for fixed μ the value for σ^{2} minimizing $\mathcal{L}_{X}(\mu, \sigma)$ is given by

$$
\sigma^{2}=\frac{1}{d|X|} \sum_{y \in X}\|y-\mu\|^{2},
$$

2 the parameters $\Theta=(\mu, \sigma)$ minimizing $\mathcal{L}_{X}(\mu, \sigma)$ are given by

$$
\mu=\frac{1}{|X|} \sum_{y \in X} y \quad \text { and } \quad \sigma^{2}=\frac{1}{d|X|} \sum_{y \in X}\|y-\mu\|^{2}
$$

Consequently, given X the optimal values for μ and σ can be computed in time $\mathcal{O}(|X|)$.

Log-likelihood estimation for multivariate Gaussians

Theorem 6.5

Let $d \in \mathbb{N}, S \subset \mathbb{R}^{d} \times \mathbb{R}_{d \times d}, p(\cdot \mid \Theta)=\mathcal{N}(\cdot \mid \Theta), \Theta=(\mu, \Sigma)$, $\Sigma \in \mathbb{R}^{d \times d}$ positive definite. For a finite point set $X \subset \mathbb{R}^{d},|X| \geq 2$,

1 for fixed μ the value for σ^{2} minimizing $\mathcal{L}_{X}(\mu, \sigma)$ is given by

$$
\Sigma=\frac{1}{|X|} \sum_{y \in X}(y-\mu) \cdot(y-\mu)^{T}
$$

2 the parameters $\Theta=(\mu, \sigma)$ minimizing $\mathcal{L}_{X}(\mu, \sigma)$ are given by

$$
\mu=\frac{1}{|X|} \sum_{y \in X} y \quad \text { and } \quad \Sigma=\frac{1}{|X|} \sum_{y \in X}(y-\mu) \cdot(y-\mu)^{T} .
$$

Mixtures of Gaussians

Gaussian mixture distributions

■ d, K arbitrary, fixed, $\Theta=\left(\Theta_{1}, \ldots, \Theta_{K}, \pi\right), \Theta_{k}$ models for d-variate Gaussian distributions, $\pi \in \mathbb{R}_{\geq 0}^{k},\|\pi\|_{1}=1$

- $x \mapsto \sum_{k} \pi_{k} \mathcal{N}\left(x \mid \Theta_{k}\right)$

Mixtures of Gaussians

Gaussian mixture distributions

■ d, K arbitrary, fixed, $\Theta=\left(\Theta_{1}, \ldots, \Theta_{K}, \pi\right), \Theta_{k}$ models for d-variate Gaussian distributions, $\pi \in \mathbb{R}_{\geq 0}^{k},\|\pi\|_{1}=1$

- $x \mapsto \sum_{k} \pi_{k} \mathcal{N}\left(x \mid \Theta_{k}\right)$

Mixture of three univariate Gaussian distributions

Mixtures of Gaussians

Contours of

constant probability densities for three
Gaussians

Mixtures of Gaussians

Contours of
constant probability densities for three Gaussians

Contours of

constant probability densities for mixture of three Gaussians

Mixtures of Gaussians

Contours of constant probability densities for three Gaussians

Contours of
constant probability densities for mixture of three Gaussians

Surface plot for mixture of three Gaussians

Old Faithful and mixtures of Gaussians

Explaining Old Faithful with a

 single multivariate Gaussian

Old Faithful and mixtures of Gaussians

Explaining Old Faithful with a single multivariate Gaussian

Explaining Old Faithful with a mixture of two multivariate Gaussians

Graphical representation of Gaussian mixtures

To generate a point distributed according to a mixture of Gaussians:
1 choose an index k according to the distribution

$$
\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)
$$

2 choose a point x according to the distribution $\mathcal{N}\left(\cdot \mid \Theta_{k}\right)$.

Likelihood for mixtures of Gaussians

Gaussian mixture distributions

■ d, K arbitrary, fixed, $\Theta=\left(\Theta_{1}, \ldots, \Theta_{K}, \pi\right), \Theta_{k}$ models for d-variate Gaussian distributions, $\pi \in \mathbb{R}_{\geq 0}^{k},\|\pi\|_{1}=1$

- $x \mapsto \sum_{k} \pi_{k} \mathcal{N}\left(x \mid \Theta_{k}\right)$

Likelihoods

$$
\begin{aligned}
& X \subset \mathbb{R}^{d},|X|=N, X=\left\{x_{1}, \ldots, x_{N}\right\} \\
& \text { - } p(X \mid \Theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \Theta\right)=\prod_{n=1}^{N}\left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \Theta_{k}\right)\right) \\
& \text { - } \mathcal{L}_{X}(\Theta)=-\ln (p(X \mid \Theta))=-\sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \Theta_{k}\right)\right)
\end{aligned}
$$

Likelihood for mixtures of Gaussians

Gaussian mixture distributions

■ d, K arbitrary, fixed, $\Theta=\left(\Theta_{1}, \ldots, \Theta_{K}, \pi\right), \Theta_{k}$ models for d-variate Gaussian distributions, $\pi \in \mathbb{R}_{\geq 0}^{k},\|\pi\|_{1}=1$

- $x \mapsto \sum_{k} \pi_{k} \mathcal{N}\left(x \mid \Theta_{k}\right)$

Likelihoods

$$
\begin{aligned}
& X \subset \mathbb{R}^{d},|X|=N, X=\left\{x_{1}, \ldots, x_{N}\right\} \\
& \text { - } p(X \mid \Theta)=\prod_{n=1}^{N} p\left(x_{n} \mid \Theta\right)=\prod_{n=1}^{N}\left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \Theta_{k}\right)\right) \\
& \text { - } \mathcal{L}_{X}(\Theta)=-\ln (p(X \mid \Theta))=-\sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \Theta_{k}\right)\right)
\end{aligned}
$$

Likelihood for mixtures of spherical Gaussians

Gaussian mixture distributions

- d, K arbitrary, fixed, $\Theta=\left(\Theta_{1}, \ldots, \Theta_{K}, \pi\right), \Theta_{k}=\left(\mu_{k}, \sigma_{k}\right)$, models for d-variate spherical Gaussian distributions, $\pi \in \mathbb{R}_{\geq 0}^{k},\|\pi\|_{1}=1$
- $x \mapsto \sum_{k} \pi_{k} \mathcal{N}\left(x \mid \Theta_{k}\right)$

Likelihood for mixtures of spherical Gaussians

Gaussian mixture distributions

■ d, K arbitrary, fixed, $\Theta=\left(\Theta_{1}, \ldots, \Theta_{K}, \pi\right), \Theta_{k}=\left(\mu_{k}, \sigma_{k}\right)$, models for d-variate spherical Gaussian distributions, $\pi \in \mathbb{R}_{\geq 0}^{k},\|\pi\|_{1}=1$

- $x \mapsto \sum_{k} \pi_{k} \mathcal{N}\left(x \mid \Theta_{k}\right)$

Likelihoods

$X \subset \mathbb{R}^{d},|X|=N, X=\left\{x_{1}, \ldots, x_{N}\right\}$. Set $\mu_{1}=x_{1}, \pi_{1} \neq 0$. Then

$$
\lim _{\sigma_{1} \rightarrow 0} \mathcal{L}_{X}(\Theta)=-\infty
$$

i.e. negative log-likelihood not well-defined.

Optimality conditions for $d=1$

No closed formula for

$$
\operatorname{argmin}_{\Theta} \mathcal{L}_{X}(\theta)=\operatorname{argmin}_{\Theta}-\sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \Theta_{k}\right)\right)
$$

Optimality conditions for $d=1$

No closed formula for

$$
\operatorname{argmin}_{\Theta} \mathcal{L}_{X}(\theta)=\operatorname{argmin}_{\Theta}-\sum_{n=1}^{N} \ln \left(\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x_{n} \mid \Theta_{k}\right)\right)
$$

Taking derivatives (with Lagrange multipliers) yields

$$
\begin{align*}
\mu_{k} & =\frac{1}{R_{k}} \sum_{n=1}^{N} \gamma_{n k} x_{n}, k=1, \ldots, K \tag{1}\\
\sigma_{k}^{2} & =\frac{1}{R_{k}} \sum_{n=1}^{N} \gamma_{n k}\left(x_{n}-\mu_{k}\right)^{2}, k=1, \ldots, K \tag{2}\\
\pi_{k} & =\frac{R_{k}}{N}, k=1, \ldots, K \tag{3}
\end{align*}
$$

where $R_{k}=\sum_{n=1}^{N} \gamma_{n k}$, and $\gamma_{n k}:=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \sigma_{j}\right)}$.

The EM algorithm

$\overline{\operatorname{EM}(X), X=\left\{x_{1}, \ldots, x_{n}\right\}}$
choose K initial means, variances, and mixing coefficients
$\mu_{k}, \sigma_{k}^{2}, \pi_{k}, i=1, \ldots, K$;

repeat

$$
\begin{aligned}
& \text { for all } n=1, \ldots, N, k=1 \ldots, K \text { set } \gamma_{n k}:=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \sigma_{j}\right)} ; \\
& \text { for } k=1, \ldots K \text { set } \mu_{k}^{n e w}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k} x_{n}, \\
& \sigma_{k}^{2 \text { new }}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}^{n e w}\right)^{2}, R_{k}:=\sum_{n} \gamma_{n k}, \pi_{k}^{n e w}:=\frac{R_{k}}{N} ;
\end{aligned}
$$

until convergence;
return $\mu_{k}, \sigma_{k}^{2}, \pi_{k}, k=1, \ldots, K$

The EM algorithm

$\overline{\operatorname{EM}(X), X=\left\{x_{1}, \ldots, x_{n}\right\}}$
choose K initial means, variances, and mixing coefficients
$\mu_{k}, \sigma_{k}^{2}, \pi_{k}, i=1, \ldots, K$;

repeat

$$
\begin{aligned}
& \text { for all } n=1, \ldots, N, k=1 \ldots, K \text { set } \gamma_{n k}:=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \sigma_{j}\right)} ; \\
& \text { for } k=1, \ldots K \text { set } \mu_{k}^{n e w}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k} x_{n}, \\
& \sigma_{k}^{2 n e w}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}^{n e w}\right)^{2}, R_{k}:=\sum_{n} \gamma_{n k}, \pi_{k}^{n e w}:=\frac{R_{k}}{N} ;
\end{aligned}
$$

until convergence;
return $\mu_{k}, \sigma_{k}^{2}, \pi_{k}, k=1, \ldots, K$
convergence: quality of solution no longer improves

The EM algorithm

$\overline{\operatorname{EM}}(X), X=\left\{x_{1}, \ldots, x_{n}\right\}$
choose K initial means, variances, and mixing coefficients
$\mu_{k}, \sigma_{k}^{2}, \pi_{k}, i=1, \ldots, K$;

repeat

$$
\begin{aligned}
& \text { /* expectation step } \\
& \text { for all } n=1, \ldots, N, k=1 \ldots, K \text { set } \gamma_{n k}:=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \sigma_{j}\right)} \text {; } \\
& \text { for } k=1, \ldots K \text { set } \mu_{k}^{\text {new }}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k} x_{n}, \\
& \sigma_{k}^{2 \text { new }}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}^{n e w}\right)^{2}, R_{k}:=\sum_{n} \gamma_{n k}, \pi_{k}^{\text {new }}:=\frac{R_{k}}{N} \text {; }
\end{aligned}
$$

until convergence;
return $\mu_{k}, \sigma_{k}^{2}, \pi_{k}, k=1, \ldots, K$
convergence: quality of solution no longer improves

The EM algorithm

$\overline{\operatorname{EM}(X), X=\left\{x_{1}, \ldots, x_{n}\right\}}$
choose K initial means, variances, and mixing coefficients
$\mu_{k}, \sigma_{k}^{2}, \pi_{k}, i=1, \ldots, K$;

repeat

$$
\begin{aligned}
& \text { /* expectation step } \\
& \text { for all } n=1, \ldots, N, k=1 \ldots, K \text { set } \gamma_{n k}:=\frac{\pi_{k} \mathcal{N}\left(x_{n} \mid \mu_{k}, \sigma_{k}\right)}{\sum_{j} \pi_{j} \mathcal{N}\left(x_{n} \mid \mu_{j}, \sigma_{j}\right)} \text {; } \\
& \text { /* maximization step } \\
& \text { for } k=1, \ldots K \text { set } \mu_{k}^{n e w}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k} x_{n}, \\
& \sigma_{k}^{2 n e w}:=\frac{1}{R_{k}} \sum_{n} \gamma_{n k}\left(x_{n}-\mu_{k}^{n e w}\right)^{2}, R_{k}:=\sum_{n} \gamma_{n k}, \pi_{k}^{n e w}:=\frac{R_{k}}{N} ;
\end{aligned}
$$

until convergence;
return $\mu_{k}, \sigma_{k}^{2}, \pi_{k}, k=1, \ldots, K$
convergence: quality of solution no longer improves

The k-means algorithm

K-MEAns (P)
choose k initial centroids c_{1}, \ldots, c_{k};
repeat
/* assignment step
for $i=1, \ldots, k$ do
$C_{i}:=$ set of points in P closest to c_{i};
end
/* estimation step */
for $i=1, \ldots, k$ do
$c_{i}:=c\left(C_{i}\right)=\frac{1}{\left|C_{i}\right|} \sum_{p \in C_{i}} p ;$
end
until convergence;
return c_{1}, \ldots, c_{k} and C_{1}, \ldots, C_{k}

Properties of EM

■ EM very popular in practice

Properties of EM

■ EM very popular in practice
■ EM is reasonably efficient

Properties of EM

■ EM very popular in practice
■ EM is reasonably efficient

- EM usually finds good solutions

Properties of EM

■ EM very popular in practice
■ EM is reasonably efficient

- EM usually finds good solutions

■ Quality of solutions depends crucially on initial solution

