diameter, radius, discrete radius

 $D:M imes M
ightarrow \mathbb{R}$ distance function, $S\subset M, |S|<\infty$

- diam^D(S) := max_{x,y \in S} D(x, y) (diameter of S)
- ▶ $\operatorname{rad}^{D}(S) := \min_{m \in M} \max_{x \in S} D(x, m)$ (radius of S)
- drad^D(S) := min_{m∈S} max_{x∈S} D(x, m) (discrete radius of S)

$$\begin{split} & P \subset M, |P| < \infty, \mathcal{C} = \{C_1, \dots, C_k\} \text{ partition of } P \\ & \bullet \quad \cosh^D_{\text{diam}}(\mathcal{C}) := \max_{1 \leq i \leq k} \text{diam}^D(C_i) \text{ (diameter cost)} \\ & \bullet \quad \cosh^D_{\text{rad}}(\mathcal{C}) := \max_{1 \leq i \leq k} \text{rad}^D(C_i) \text{ (radius cost)} \\ & \bullet \quad \cosh^D_{\text{drad}}(\mathcal{C}) := \max_{1 \leq i \leq k} \text{drad}^D(C_i) \text{ (discrete radius cost)} \end{split}$$

diameter, radius, discrete radius

Problem 6.1 (diameter k-clustering)

Given a set $P, |P| < \infty, k \in \mathbb{N}$, find a partition C of P into k clusters C_1, \ldots, C_k that minimizes $cost^D_{diam}(C)$.

Problem 6.2 (radius k-clustering)

Given a set $P, |P| < \infty, k \in \mathbb{N}$, find a partition C of P into k clusters C_1, \ldots, C_k that minimizes $cost_{rad}^D(C)$.

Problem 6.3 (discrete radius *k*-clustering)

Given a set $P, |P| < \infty, k \in \mathbb{N}$, find a partition C of P into k clusters C_1, \ldots, C_k that minimizes $cost^D_{drad}(C)$.

Diameter clustering

Agglomerative clustering - setup and idea

 $D: M \times M \to \mathbb{R}$ distance function, $P \subset M, |P| = n, P = \{p_1, \dots, p_n\}$

Basic idea of agglomerative clustering

- ▶ start with *n* clusters $C_i, 1 \le i \le n, C_i := \{p_i\}$
- ▶ in each step replace two clusters C_i, C_j that are "closest" by their union C_i ∪ C_j
- until single cluster is left.

Observation Computes k-clustering for k = n, ..., 1.

Complete linkage

Definition 6.4 For $C_1, C_2 \subset M$

$$D_{CL}(C_1, C_2) := \max_{x \in C_1, y \in C_2} D(x, y)$$

is called the complete linkage cost of C_1, C_2 .

Agglomerative clustering with complete linkage

$\overline{\text{AgglomerativeCompleteLinkage}(P)}$

$$\mathcal{C}_n := \{\{p_i\} | p_i \in P\};$$

for
$$i = n - 1, ..., 1$$
 do
find distinct cluster $A, B \in C_{i+1}$ minimizing $D_{CL}(A, B)$;
 $C_i := (C_{i+1} \setminus \{A, B\}) \cup \{A \cup B\}$;

end

return C_1, \ldots, C_n (or single C_k)

Agglomerative clustering with complete linkage

AgglomerativeCompleteLinkage(P)

 $C_n := \{\{p_i\} | p_i \in P\};$ for i = n - 1, ..., 1 do find distinct cluster $A, B \in C_{i+1}$ minimizing $D_{CL}(A, B);$ $C_i := (C_{i+1} \setminus \{A, B\}) \cup \{A \cup B\};$ end return $C_1, ..., C_n$ (or single C_k)

Theorem 6.5

Algorithm AGGLOMERATIVECOMPLETELINKAGE requires time $O(n^2 \log n)$ and space $O(n^2)$.

Approximation guarantees

• diam^D(S) := max_{x,y \in S}
$$D(x,y)$$
 (diameter of S)

•
$$\operatorname{cost}_{\operatorname{diam}}^{D}(\mathcal{C}) := \max_{1 \le i \le k} \operatorname{diam}^{D}(C_{i})$$
 (diameter cost)

•
$$\operatorname{opt}_{k}^{diam}(P) := \min_{|\mathcal{C}|=k} \operatorname{cost}_{diam}^{D}(\mathcal{C})$$

Theorem 6.6

Let D be a distance metric on $M \subseteq \mathbb{R}^d$. Then for all sets P and all $k \leq |P|$, Algorithm AggLOMERATIVECOMPLETELINKAGE computes a k-clustering C_k with

$$cost_{diam}^{D}(\mathcal{C}_{k}) \leq O\left(opt_{k}^{diam}(P)
ight),$$

where the constant hidden in the O-notation is double exponential in d.

Approximation guarantees

Theorem 6.7 There is a point set $P \subset \mathbb{R}^2$ such that for the metric $D_{I_{\infty}}$ algorithm AgglomerativeCompleteLinkage computes a clustering C_k with

$$\textit{cost}_{\textit{diam}}^{D}(\mathcal{C}_{k}) = 3 \cdot \textit{opt}_{k}^{\textit{diam}}(P).$$

Approximation garantees

Theorem 6.8

There is a point set $P \subset \mathbb{R}^d$, $d = k + \log k$ such that for the metric D_{l_1} algorithm AGGLOMERATIVECOMPLETELINKAGE computes a clustering C_k with

$$cost_{diam}^{D_{l_1}}(\mathcal{C}_k) \geq rac{1}{2}\log k \cdot opt_k^{diam}(P).$$

Corollary 6.9

For every $1 \leq p < \infty$, there is a point set $P \subset \mathbb{R}^d$, $d = k + \log k$ such that for the metric D_{l_p} algorithm AGGLOMERATIVECOMPLETELINKAGE computes a clustering C_k with

$$cost_{diam}^{D_{l_{p}}}(\mathcal{C}_{k}) \geq \sqrt[p]{rac{1}{2}\log k} \cdot opt_{k}^{diam}(P).$$

Hardness of diameter clustering

Theorem 6.10

For the metric D_{l_2} the diameter k-clustering problem is **NP**-hard. Moreover, assuming $\mathbf{P} \neq \mathbf{NP}$, there is no polynomial time approximation for the diameter k-clustering with approximation factor ≤ 1.96 .

Hardness of diameter clustering

►
$$\Delta \in \mathbb{R}_{\geq 0}^{n \times n}, \Delta_{xy} := (x, y)$$
-entry in $\Delta, 1 \le x, y \le n$
► $C = \{C_1, \dots, C_k\}$ partition of $\{1, \dots, n\}$
► $\operatorname{cost}_{diam}^{\Delta} := \max_{1 \le i \le k} \max_{x, y \in C_i} \Delta_{xy}$

Problem 6.11 (matrix diameter k-clustering) Given a matrix $\Delta \in \mathbb{R}_{\geq 0}^{n \times n}$, $k \in \mathbb{N}$, find a partition C of $\{1, \ldots, n\}$ into k clusters C_1, \ldots, C_k that minimizes $cost_{diam}^{\Delta}(C)$.

Theorem 6.12

The matrix diameter k-clustering problem is **NP**-hard. Moreover, assuming $\mathbf{P} \neq \mathbf{NP}$, there is no polynomial time approximation for the diameter k-clustering with approximation factor $\alpha \geq 1$ arbitrary.

Maximum distance k-clustering

Problem 6.13 (maximum distance k-clustering)

Given distance measure $D: M \times M \to \mathbb{R}, k \in \mathbb{N}$, and $P \subset M$, find a partition $C = \{C_1, \ldots, C_k\}$ of P into k clusters that maximizes

$$\min_{x\in C_i,y\in C_j,i\neq j}D(x,y),$$

i.e. a partition that maximizes the minimum distance between points in different clusters.

Definition 6.14 For $C_1, C_2 \subset M$

$$D_{SL}(C_1, C_2) := \min_{x \in C_1, y \in C_2} D(x, y)$$

is called the single linkage cost of C_1, C_2 .

Agglomerative clustering with single linkage

AgglomerativeSingleLinkage(P)

$$C_{n} := \{\{p_{i}\} | p_{i} \in P\};$$

for $i = n - 1, ..., 1$ do
find distinct cluster $A, B \in C_{i+1}$ minimizing $D_{SL}(A, B);$
 $C_{i} := (C_{i+1} \setminus \{A, B\}) \cup \{A \cup B\};$
end
return $C_{1}, ..., C_{n}$ (or single C_{k})

Theorem 6.15

Algorithm AGGLOMERATIVESINGLELINKAGE *optimally solves the maximum distance k*-*clustering problem.*

diam, rad, and drad

- drad^D(S) := min_{m∈S} max_{x∈S} D(x, m) (discrete radius of S)
- $\operatorname{cost}_{\operatorname{drad}}^{D}(\mathcal{C}) := \max_{1 \le i \le k} \operatorname{drad}^{D}(C_{i})$ (discrete radius cost)
- ▶ find a partition C of P into k clusters C₁,..., C_k that minimizes cost^D_{drad}(C) or cost^D_{rad}(C).

Theorem 6.16

Let $D: M \times M \to \mathbb{R}$ be a metric, $P \subset M$ and $C = \{C_1, \ldots, C_k\}$ a partition of P. Then

- 1. $cost_{drad}(\mathcal{C}) \leq cost_{diam}(\mathcal{C}) \leq 2 \cdot cost_{drad}(\mathcal{C})$
- 2. $\frac{1}{2} \cdot cost_{drad}(\mathcal{C}) \leq cost_{rad}(\mathcal{C}) \leq cost_{drad}(\mathcal{C})$

diam, rad, and drad

Corollary 6.17 Let $D: M \times M \to \mathbb{R}$ be a metric, $k \in \mathbb{N}$, and $P \subset M$. Then 1. $opt_k^{drad}(P) \leq opt_k^{diam}(P) \leq 2 \cdot opt_k^{drad}(P)$ 2. $\frac{1}{2} \cdot opt_k^{drad}(P) \leq opt_k^{rad}(P) \leq opt_k^{drad}(P)$

Corollary 6.18

Assume there is a polynomial time c-approximation algorithm for the discrete radius k-clustering problem. Then there is a polynomial time 2c-approximation algorithm for the diameter k-clustering problem.

Clustering and Gonzales' algorithm

 $\begin{array}{l} \hline GONZALESALGORITHM(P, k) \\ \hline C := \{p\} \text{ for } p \in P \text{ arbitrary;} \\ \textbf{for } i = 1, \dots, k \text{ do} \\ & | \quad q := \operatorname{argmax}_{y \in P} D(y, C); \\ & C := C \cup \{q\}; \\ \hline \textbf{end} \\ \text{compute partition } \mathcal{C} = \{C_1, \dots, C_k\} \text{ corresponding to } C; \\ \textbf{return } \mathcal{C} \text{ and } C \end{array}$

Theorem 6.19

Algorithm GONZALESALGORITHM is a 2-approximation algorithm for the diameter, radius, and discrete radius k-clustering problem.

Agglomerative clustering and discrete radius clustering

- drad^D(S) := min_{m∈S} max_{x∈S} D(x, m) (discrete radius of S)
- $\operatorname{cost}_{\operatorname{drad}}^{D}(\mathcal{C}) := \max_{1 \le i \le k} \operatorname{drad}^{D}(C_{i})$ (discrete radius cost)
- ▶ find a partition C of P into k clusters C₁,..., C_k that minimizes cost^D_{drad}(C).

Discrete radius measure

$$D_{\mathsf{drad}}(\mathit{C}_1,\mathit{C}_2) = \mathsf{drad}(\mathit{C}_1 \cup \mathit{C}_2)$$

Agglomerative clustering with dradius cost

AGGLOMERATIVEDISCRETERADIUS(P)

$$C_n := \{\{p_i\} | p_i \in P\};$$

for $i = n - 1, \dots, 1$ do
find distinct clusters $A, B \in C_{i+1}$ minimizing $D_{drad}(A, B);$
 $C_i := (C_{i+1} \setminus \{A, B\}) \cup \{A \cup B\};$

end

return C_1, \ldots, C_n (or single C_k)

Theorem 6.20

Let D be a distance metric on $M \subseteq \mathbb{R}^d$. Then for all sets $P \subset M$ and all $k \leq |P|$, Algorithm AgglomerativeDiscreteRadius computes a k-clustering C_k with

 $cost_k^{drad}(\mathcal{C}_k) < O(d) \cdot opt_k.$

Hierarchical clusterings and dendrograms

Hierarchical clustering Given distance measure $D: M \times M \to \mathbb{R}, k \in \mathbb{N}$, and $P \subset M, |P| = n$, a sequence of clusterings C_n, \ldots, C_1 with $|C_k| = k$ is called *hierarchical clustering* of P if for all $A \in C_k$

1. $A \in \mathcal{C}_{k+1}$ or 2. $\exists B, C \in \mathcal{C}_{k+1} : A = B \cup C$ and $\mathcal{C}_k = \mathcal{C}_{k+1} \setminus \{B, C\} \cup \{A\}.$

Dendrograms A dendrogram on *n* nodes is a rooted binary tree T = (V, E) with an index function $\chi : V \setminus \{\text{leaves of } T\} \rightarrow \{1, \dots, n\}$ such that $\forall v \neq w : \chi(v) \neq \chi(w)$

- $\chi(\text{root}) = n$
- $\forall u, v$: if v parent of u, then $\chi(v) > \chi(u)$.

From hierarchical clusterings to dendrograms

 $\mathcal{C}_n, \ldots, \mathcal{C}_1$ hierarchical clustering of P.

Construction of dendrogram

- create leaf for each point $p \in P$
- interior nodes correspond to union of clusters
- ▶ if k-th cluster is obtained by union of clusters B, C, create new node with index k and with children B, C.

Dendrograms

AgglomerativeCompleteLinkage

- Start with one cluster for each input object.
- Iteratively merge the two closest clusters.

Complete linkage measure

$$D_{CL}(C_1, C_2) = \max_{x \in C_1, y \in C_2} D(x, y)$$

