diameter, radius, discrete radius

$D: M \times M \rightarrow \mathbb{R}$ distance function, $S \subset M,|S|<\infty$

- $\operatorname{diam}^{D}(S):=\max _{x, y \in S} D(x, y)$ (diameter of S)
- $\operatorname{rad}^{D}(S):=\min _{m \in M} \max _{x \in S} D(x, m)$ (radius of S)
- $\operatorname{drad}^{D}(S):=\min _{m \in S} \max _{x \in S} D(x, m)$ (discrete radius of S)
$P \subset M,|P|<\infty, \mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ partition of P
- $\operatorname{cost}_{\text {diam }}^{D}(\mathcal{C}):=\max _{1 \leq i \leq k} \operatorname{diam}^{D}\left(C_{i}\right)$ (diameter cost)
- $\operatorname{cost}_{\text {rad }}^{D}(\mathcal{C}):=\max _{1 \leq i \leq k} \operatorname{rad}^{D}\left(C_{i}\right)$ (radius cost)
- $\operatorname{cost}_{\mathrm{drad}}^{D}(\mathcal{C}):=\max _{1 \leq i \leq k} \operatorname{drad}^{D}\left(C_{i}\right)$ (discrete radius cost)

diameter, radius, discrete radius

Problem 6.1 (diameter k-clustering)
Given a set $P,|P|<\infty, k \in \mathbb{N}$, find a partition \mathcal{C} of P into k clusters C_{1}, \ldots, C_{k} that minimizes $\operatorname{cost}_{\text {diam }}^{D}(\mathcal{C})$.

Problem 6.2 (radius k-clustering)
Given a set $P,|P|<\infty, k \in \mathbb{N}$, find a partition \mathcal{C} of P into k clusters C_{1}, \ldots, C_{k} that minimizes $\operatorname{cost}_{r a d}^{D}(\mathcal{C})$.

Problem 6.3 (discrete radius k-clustering)
Given a set $P,|P|<\infty, k \in \mathbb{N}$, find a partition \mathcal{C} of P into k clusters C_{1}, \ldots, C_{k} that minimizes $\operatorname{cost}_{d r a d}^{D}(\mathcal{C})$.

Diameter clustering

Agglomerative clustering - setup and idea

$D: M \times M \rightarrow \mathbb{R}$ distance function,
$P \subset M,|P|=n, P=\left\{p_{1}, \ldots, p_{n}\right\}$
Basic idea of agglomerative clustering

- start with n clusters $C_{i}, 1 \leq i \leq n, C_{i}:=\left\{p_{i}\right\}$
- in each step replace two clusters C_{i}, C_{j} that are "closest" by their union $C_{i} \cup C_{j}$
- until single cluster is left.

Observation Computes k-clustering for $k=n, \ldots, 1$.

Complete linkage

Definition 6.4
For $C_{1}, C_{2} \subset M$

$$
D_{C L}\left(C_{1}, C_{2}\right):=\max _{x \in C_{1}, y \in C_{2}} D(x, y)
$$

is called the complete linkage cost of C_{1}, C_{2}.

Agglomerative clustering with complete linkage
AgGlomerativeCompleteLinkage (P)

$$
\begin{aligned}
& \mathcal{C}_{n}:=\left\{\left\{p_{i}\right\} \mid p_{i} \in P\right\} ; \\
& \text { for } i=n-1, \ldots, 1 \text { do }
\end{aligned}
$$

$$
\text { find distinct cluster } A, B \in \mathcal{C}_{i+1} \text { minimizing } D_{C L}(A, B) \text {; }
$$

$$
\mathcal{C}_{i}:=\left(\mathcal{C}_{i+1} \backslash\{A, B\}\right) \cup\{A \cup B\} ;
$$

end
return $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ (or single \mathcal{C}_{k})

Agglomerative clustering with complete linkage

AgGlomerativeCompleteLinkage (P)
$\mathcal{C}_{n}:=\left\{\left\{p_{i}\right\} \mid p_{i} \in P\right\} ;$
for $i=n-1, \ldots, 1$ do
find distinct cluster $A, B \in \mathcal{C}_{i+1}$ minimizing $D_{C L}(A, B)$;
$\mathcal{C}_{i}:=\left(\mathcal{C}_{i+1} \backslash\{A, B\}\right) \cup\{A \cup B\} ;$
end
return $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}\left(\right.$ or single $\left.\mathcal{C}_{k}\right)$

Theorem 6.5
Algorithm AgglomerativeCompleteLinkage requires time $O\left(n^{2} \log n\right)$ and space $O\left(n^{2}\right)$.

Approximation guarantees

- $\operatorname{diam}^{D}(S):=\max _{x, y \in S} D(x, y)$ (diameter of S)
- $\operatorname{cost}_{\operatorname{diam}}^{D}(\mathcal{C}):=\max _{1 \leq i \leq k} \operatorname{diam}^{D}\left(C_{i}\right)$ (diameter cost)
- $\operatorname{opt}_{k}^{\operatorname{diam}}(P):=\min _{|\mathcal{C}|=k} \operatorname{cost}_{\text {diam }}^{D}(\mathcal{C})$

Theorem 6.6
Let D be a distance metric on $M \subseteq \mathbb{R}^{d}$. Then for all sets P and all $k \leq|P|$, Algorithm AgglomerativeCompleteLinkage computes a k-clustering \mathcal{C}_{k} with

$$
\operatorname{cost}_{d i a m}^{D}\left(\mathcal{C}_{k}\right) \leq O\left(\operatorname{opt}_{k}^{\operatorname{diam}}(P)\right)
$$

where the constant hidden in the O-notation is double exponential in d.

Approximation guarantees

Theorem 6.7
There is a point set $P \subset \mathbb{R}^{2}$ such that for the metric $D_{l_{\infty}}$ algorithm AgGlomerativeCompleteLinkage computes a clustering \mathcal{C}_{k} with

$$
\operatorname{cost}_{d i a m}^{D}\left(\mathcal{C}_{k}\right)=3 \cdot \text { opt }_{k}^{d i a m}(P)
$$

Approximation garantees

Theorem 6.8
There is a point set $P \subset \mathbb{R}^{d}, d=k+\log k$ such that for the metric $D_{l_{1}}$ algorithm AgGlomerativeCompleteLinkage computes a clustering \mathcal{C}_{k} with

$$
\operatorname{cost}_{d i a m}^{D_{l_{1}}}\left(\mathcal{C}_{k}\right) \geq \frac{1}{2} \log k \cdot \text { opt }_{k}^{\text {diam }}(P)
$$

Corollary 6.9
For every $1 \leq p<\infty$, there is a point set $P \subset \mathbb{R}^{d}, d=k+\log k$ such that for the metric $D_{I_{p}}$ algorithm
AgGlomerative CompleteLinkage computes a clustering \mathcal{C}_{k} with

$$
\operatorname{cost}_{d i a m}^{D_{l}}\left(\mathcal{C}_{k}\right) \geq \sqrt[p]{\frac{1}{2} \log k} \cdot \text { opt }_{k}^{\text {diam }}(P)
$$

Hardness of diameter clustering

Theorem 6.10
For the metric $D_{l_{2}}$ the diameter k-clustering problem is NP-hard.
Moreover, assuming $\mathbf{P} \neq \mathbf{N P}$, there is no polynomial time approximation for the diameter k-clustering with approximation factor ≤ 1.96.

Hardness of diameter clustering

- $\Delta \in \mathbb{R}_{\geq 0}^{n \times n}, \Delta_{x y}:=(x, y)$-entry in $\Delta, 1 \leq x, y \leq n$
- $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ partition of $\{1, \ldots, n\}$
- cost ${ }_{\text {diam }}^{\Delta}:=\max _{1 \leq i \leq k} \max _{x, y \in C_{i}} \Delta_{x y}$

Problem 6.11 (matrix diameter k-clustering)

Given a matrix $\Delta \in \mathbb{R}_{\geq 0}^{n \times n}, k \in \mathbb{N}$, find a partition \mathcal{C} of $\{1, \ldots, n\}$ into k clusters C_{1}, \ldots, C_{k} that minimizes cost ${ }_{\text {diam }}^{\Delta}(\mathcal{C})$.

Theorem 6.12
The matrix diameter k-clustering problem is NP-hard. Moreover, assuming $\mathbf{P} \neq \mathbf{N P}$, there is no polynomial time approximation for the diameter k-clustering with approximation factor $\alpha \geq 1$ arbitrary.

Maximum distance k-clustering

Problem 6.13 (maximum distance k-clustering)
Given distance measure $D: M \times M \rightarrow \mathbb{R}, k \in \mathbb{N}$, and $P \subset M$, find a partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of P into k clusters that maximizes

$$
\min _{x \in C_{i}, y \in C_{j}, i \neq j} D(x, y)
$$

i.e. a partition that maximizes the minimum distance between points in different clusters.

Definition 6.14
For $C_{1}, C_{2} \subset M$

$$
D_{S L}\left(C_{1}, C_{2}\right):=\min _{x \in C_{1}, y \in C_{2}} D(x, y)
$$

is called the single linkage cost of C_{1}, C_{2}.

Agglomerative clustering with single linkage

AgGlomerativeSingleLinkage(P)
$\mathcal{C}_{n}:=\left\{\left\{p_{i}\right\} \mid p_{i} \in P\right\} ;$
for $i=n-1, \ldots, 1$ do
find distinct cluster $A, B \in \mathcal{C}_{i+1}$ minimizing $D_{S L}(A, B)$;

$$
\mathcal{C}_{i}:=\left(\mathcal{C}_{i+1} \backslash\{A, B\}\right) \cup\{A \cup B\} ;
$$

end
return $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ (or single \mathcal{C}_{k})

Theorem 6.15
Algorithm AgglomerativeSingleLinkage optimally solves the maximum distance k-clustering problem.

diam, rad, and drad

- $\operatorname{drad}^{D}(S):=\min _{m \in S} \max _{x \in S} D(x, m)$ (discrete radius of S)
- $\operatorname{cost}_{\mathrm{drad}}^{D}(\mathcal{C}):=\max _{1 \leq i \leq k} \operatorname{drad}^{D}\left(C_{i}\right)$ (discrete radius cost)
- find a partition \mathcal{C} of P into k clusters C_{1}, \ldots, C_{k} that minimizes $\operatorname{cost}_{\mathrm{drad}}^{D}(\mathcal{C})$ or $\operatorname{cost}_{\text {rad }}^{D}(\mathcal{C})$.

Theorem 6.16
Let $D: M \times M \rightarrow \mathbb{R}$ be a metric, $P \subset M$ and $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ a partition of P. Then

$$
\begin{aligned}
& \text { 1. } \operatorname{cost}_{d r a d}(\mathcal{C}) \leq \operatorname{cost}_{d i a m}(\mathcal{C}) \leq 2 \cdot \operatorname{cost}_{d r a d}(\mathcal{C}) \\
& \text { 2. } \frac{1}{2} \cdot \operatorname{cost}_{d r a d}(\mathcal{C}) \leq \operatorname{cost}_{\text {rad }}(\mathcal{C}) \leq \operatorname{cost}_{d r a d}(\mathcal{C})
\end{aligned}
$$

diam, rad, and drad

Corollary 6.17

Let $D: M \times M \rightarrow \mathbb{R}$ be a metric, $k \in \mathbb{N}$, and $P \subset M$. Then

1. $\operatorname{opt}_{k}^{\text {drad }}(P) \leq o p t_{k}^{\text {diam }}(P) \leq 2 \cdot o p t_{k}^{\text {drad }}(P)$
2. $\frac{1}{2} \cdot o p t_{k}^{d r a d}(P) \leq o p t_{k}^{r a d}(P) \leq o p t_{k}^{d r a d}(P)$

Corollary 6.18

Assume there is a polynomial time c-approximation algorithm for the discrete radius k-clustering problem. Then there is a polynomial time $2 c$-approximation algorithm for the diameter k-clustering problem.

Clustering and Gonzales' algorithm

$\overline{\operatorname{GONZALESALGORITHm}(~} P, k)$
$C:=\{p\}$ for $p \in P$ arbitrary;
for $i=1, \ldots, k$ do

$$
q:=\operatorname{argmax}_{y \in P} D(y, C) ;
$$

$$
C:=C \cup\{q\}
$$

end
compute partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ corresponding to C;
return \mathcal{C} and C
Theorem 6.19
Algorithm GonzalesAlgorithm is a 2-approximation algorithm for the diameter, radius, and discrete radius k-clustering problem.

Agglomerative clustering and discrete radius clustering

- $\operatorname{drad}^{D}(S):=\min _{m \in S} \max _{x \in S} D(x, m)$ (discrete radius of S)
- $\operatorname{cost}_{\mathrm{drad}}^{D}(\mathcal{C}):=\max _{1 \leq i \leq k} \operatorname{drad}^{D}\left(C_{i}\right)$ (discrete radius cost)
- find a partition \mathcal{C} of P into k clusters C_{1}, \ldots, C_{k} that minimizes $\operatorname{cost}_{\text {drad }}^{D}(\mathcal{C})$.

Discrete radius measure

$$
D_{\mathrm{drad}}\left(C_{1}, C_{2}\right)=\operatorname{drad}\left(C_{1} \cup C_{2}\right)
$$

Agglomerative clustering with dradius cost

AgGlomerativeDiscreteRadius (P)
$\mathcal{C}_{n}:=\left\{\left\{p_{i}\right\} \mid p_{i} \in P\right\} ;$
for $i=n-1, \ldots, 1$ do find distinct clusters $A, B \in \mathcal{C}_{i+1}$ minimizing $D_{\mathrm{drad}}(A, B)$;
$\mathcal{C}_{i}:=\left(\mathcal{C}_{i+1} \backslash\{A, B\}\right) \cup\{A \cup B\} ;$
end
return $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ (or single \mathcal{C}_{k})
Theorem 6.20
Let D be a distance metric on $M \subseteq \mathbb{R}^{d}$. Then for all sets $P \subset M$ and all $k \leq|P|$, Algorithm AgglomerativeDiscreteRadius computes a k-clustering \mathcal{C}_{k} with

$$
\operatorname{cost}_{k}^{d r a d}\left(\mathcal{C}_{k}\right)<O(d) \cdot o p t_{k}
$$

Hierarchical clusterings and dendrograms

Hierarchical clustering Given distance measure
$D: M \times M \rightarrow \mathbb{R}, k \in \mathbb{N}$, and $P \subset M,|P|=n$, a sequence of clusterings $\mathcal{C}_{n}, \ldots, \mathcal{C}_{1}$ with $\left|\mathcal{C}_{k}\right|=k$ is called hierarchical clustering of P if for all $A \in \mathcal{C}_{k}$

1. $A \in \mathcal{C}_{k+1}$ or
2. $\exists B, C \in \mathcal{C}_{k+1}: A=B \cup C$ and $\mathcal{C}_{k}=\mathcal{C}_{k+1} \backslash\{B, C\} \cup\{A\}$.

Dendrograms A dendrogram on n nodes is a rooted binary tree $T=(V, E)$ with an index function
$\chi: V \backslash\{$ leaves of $T\} \rightarrow\{1, \ldots, n\}$ such that

- $\forall v \neq w: \chi(v) \neq \chi(w)$
- $\chi($ root $)=n$
- $\forall u, v$: if v parent of u, then $\chi(v)>\chi(u)$.

From hierarchical clusterings to dendrograms

$\mathcal{C}_{n}, \ldots, \mathcal{C}_{1}$ hierarchical clustering of P.
Construction of dendrogram

- create leaf for each point $p \in P$
- interior nodes correspond to union of clusters
- if k-th cluster is obtained by union of clusters B, C, create new node with index k and with children B, C.

Dendrograms

AgglomerativeCompleteLinkage

- Start with one cluster for each input object.
- Iteratively merge the two closest clusters.

Complete linkage measure

$$
D_{C L}\left(C_{1}, C_{2}\right)=\max _{x \in C_{1}, y \in C_{2}} D(x, y)
$$

