
diameter, radius, discrete radius

D : M ×M → R distance function, S ⊂ M, |S | < ∞
▶ diamD(S) := maxx ,y∈S D(x , y) (diameter of S)

▶ radD(S) := minm∈M maxx∈S D(x ,m) (radius of S)

▶ dradD(S) := minm∈S maxx∈S D(x ,m) (discrete radius of S)

P ⊂ M, |P | < ∞, C = {C1, . . . ,Ck} partition of P

▶ costDdiam(C) := max1≤i≤k diam
D(Ci) (diameter cost)

▶ costDrad(C) := max1≤i≤k rad
D(Ci) (radius cost)

▶ costDdrad(C) := max1≤i≤k drad
D(Ci) (discrete radius cost)

diameter, radius, discrete radius

Problem 6.1 (diameter k-clustering)

Given a set P , |P | < ∞, k ∈ N, find a partition C of P into k
clusters C1, . . . ,Ck that minimizes costDdiam(C).

Problem 6.2 (radius k-clustering)

Given a set P , |P | < ∞, k ∈ N, find a partition C of P into k
clusters C1, . . . ,Ck that minimizes costDrad(C).

Problem 6.3 (discrete radius k-clustering)

Given a set P , |P | < ∞, k ∈ N, find a partition C of P into k
clusters C1, . . . ,Ck that minimizes costDdrad(C).

Diameter clustering

Agglomerative clustering - setup and idea

D : M ×M → R distance function,
P ⊂ M, |P | = n,P = {p1, . . . , pn}

Basic idea of agglomerative clustering

▶ start with n clusters Ci , 1 ≤ i ≤ n,Ci := {pi}
▶ in each step replace two clusters Ci ,Cj that are ”closest” by

their union Ci ∪ Cj

▶ until single cluster is left.

Observation Computes k-clustering for k = n, . . . , 1.

Complete linkage

Definition 6.4
For C1,C2 ⊂ M

DCL(C1,C2) := max
x∈C1,y∈C2

D(x , y)

is called the complete linkage cost of C1,C2.

DCL(C1 ,C2)

Agglomerative clustering with complete linkage

AgglomerativeCompleteLinkage(P)

Cn := {{pi}|pi ∈ P};
for i = n − 1, . . . , 1 do

find distinct cluster A,B ∈ Ci+1 minimizing DCL(A,B);

Ci := (Ci+1 \ {A,B}) ∪ {A ∪ B};
end

return C1, . . . , Cn (or single Ck)

b

b

b
b

bA

B

C
D

E

Agglomerative clustering with complete linkage

AgglomerativeCompleteLinkage(P)

Cn := {{pi}|pi ∈ P};
for i = n − 1, . . . , 1 do

find distinct cluster A,B ∈ Ci+1 minimizing DCL(A,B);

Ci := (Ci+1 \ {A,B}) ∪ {A ∪ B};
end

return C1, . . . , Cn (or single Ck)

Theorem 6.5
Algorithm AgglomerativeCompleteLinkage requires time
O(n2 log n) and space O(n2).

Approximation guarantees

▶ diamD(S) := maxx ,y∈S D(x , y) (diameter of S)

▶ costDdiam(C) := max1≤i≤k diam
D(Ci) (diameter cost)

▶ optdiamk (P) := min|C|=k cost
D
diam(C)

Theorem 6.6
Let D be a distance metric on M ⊆ Rd . Then for all sets P and all
k ≤ |P |, Algorithm AgglomerativeCompleteLinkage
computes a k-clustering Ck with

costDdiam(Ck) ≤ O
(
optdiamk (P)

)
,

where the constant hidden in the O-notation is double exponential
in d.

Approximation guarantees

Theorem 6.7
There is a point set P ⊂ R2 such that for the metric Dl∞

algorithm AgglomerativeCompleteLinkage computes a
clustering Ck with

costDdiam(Ck) = 3 · optdiamk (P).

A

B

C

D

E

F

G

H

Approximation garantees

Theorem 6.8
There is a point set P ⊂ Rd , d = k + log k such that for the metric
Dl1 algorithm AgglomerativeCompleteLinkage computes a
clustering Ck with

cost
Dl1
diam(Ck) ≥

1

2
log k · optdiamk (P).

Corollary 6.9

For every 1 ≤ p < ∞, there is a point set P ⊂ Rd , d = k + log k
such that for the metric Dlp algorithm
AgglomerativeCompleteLinkage computes a clustering Ck
with

cost
Dlp

diam(Ck) ≥
p

√
1

2
log k · optdiamk (P).

Hardness of diameter clustering

Theorem 6.10
For the metric Dl2 the diameter k-clustering problem is NP-hard.
Moreover, assuming P ̸= NP, there is no polynomial time
approximation for the diameter k-clustering with approximation
factor ≤ 1.96.

Hardness of diameter clustering

▶ ∆ ∈ Rn×n
≥0 ,∆xy := (x , y)-entry in ∆, 1 ≤ x , y ≤ n

▶ C = {C1, . . . ,Ck} partition of {1, . . . , n}
▶ cost∆diam := max1≤i≤k maxx ,y∈Ci

∆xy

Problem 6.11 (matrix diameter k-clustering)

Given a matrix ∆ ∈ Rn×n
≥0 , k ∈ N, find a partition C of {1, . . . , n}

into k clusters C1, . . . ,Ck that minimizes cost∆diam(C).

Theorem 6.12
The matrix diameter k-clustering problem is NP-hard. Moreover,
assuming P ̸= NP, there is no polynomial time approximation for
the diameter k-clustering with approximation factor α ≥ 1
arbitrary.

Maximum distance k-clustering

Problem 6.13 (maximum distance k-clustering)

Given distance measure D : M ×M → R, k ∈ N, and P ⊂ M, find
a partition C = {C1, . . . ,Ck} of P into k clusters that maximizes

min
x∈Ci ,y∈Cj ,i ̸=j

D(x , y),

i.e. a partition that maximizes the minimum distance between
points in different clusters.

Definition 6.14
For C1,C2 ⊂ M

DSL(C1,C2) := min
x∈C1,y∈C2

D(x , y)

is called the single linkage cost of C1,C2.

Agglomerative clustering with single linkage

AgglomerativeSingleLinkage(P)

Cn := {{pi}|pi ∈ P};
for i = n − 1, . . . , 1 do

find distinct cluster A,B ∈ Ci+1 minimizing DSL(A,B);

Ci := (Ci+1 \ {A,B}) ∪ {A ∪ B};
end

return C1, . . . , Cn (or single Ck)

Theorem 6.15
Algorithm AgglomerativeSingleLinkage optimally solves the
maximum distance k-clustering problem.

diam, rad, and drad

▶ dradD(S) := minm∈S maxx∈S D(x ,m) (discrete radius of S)

▶ costDdrad(C) := max1≤i≤k drad
D(Ci) (discrete radius cost)

▶ find a partition C of P into k clusters C1, . . . ,Ck that
minimizes costDdrad(C) or costDrad(C).

Theorem 6.16
Let D : M ×M → R be a metric, P ⊂ M and C = {C1, . . . ,Ck} a
partition of P. Then

1. costdrad(C) ≤ costdiam(C) ≤ 2 · costdrad(C)
2. 1

2 · costdrad(C) ≤ costrad(C) ≤ costdrad(C)

diam, rad, and drad

Corollary 6.17

Let D : M ×M → R be a metric, k ∈ N, and P ⊂ M. Then

1. optdradk (P) ≤ optdiamk (P) ≤ 2 · optdradk (P)

2. 1
2 · optdradk (P) ≤ optradk (P) ≤ optdradk (P)

Corollary 6.18

Assume there is a polynomial time c-approximation algorithm for
the discrete radius k-clustering problem. Then there is a
polynomial time 2c-approximation algorithm for the diameter
k-clustering problem.

Clustering and Gonzales’ algorithm

GonzalesAlgorithm(P, k)

C := {p} for p ∈ P arbitrary;

for i = 1, . . . , k do
q := argmaxy∈PD(y ,C);

C := C ∪ {q};
end

compute partition C = {C1, . . . ,Ck} corresponding to C ;

return C and C

Theorem 6.19
Algorithm GonzalesAlgorithm is a 2-approximation algorithm
for the diameter, radius, and discrete radius k-clustering problem.

Agglomerative clustering and discrete radius clustering

▶ dradD(S) := minm∈S maxx∈S D(x ,m) (discrete radius of S)

▶ costDdrad(C) := max1≤i≤k drad
D(Ci) (discrete radius cost)

▶ find a partition C of P into k clusters C1, . . . ,Ck that
minimizes costDdrad(C).

Discrete radius measure

Ddrad(C1,C2) = drad(C1 ∪ C2)

Agglomerative clustering with dradius cost

AgglomerativeDiscreteRadius(P)

Cn := {{pi}|pi ∈ P};
for i = n − 1, . . . , 1 do

find distinct clusters A,B ∈ Ci+1 minimizing Ddrad(A,B);

Ci := (Ci+1 \ {A,B}) ∪ {A ∪ B};
end

return C1, . . . , Cn (or single Ck)

Theorem 6.20
Let D be a distance metric on M ⊆ Rd . Then for all sets P ⊂ M
and all k ≤ |P|, Algorithm AgglomerativeDiscreteRadius
computes a k-clustering Ck with

costdradk (Ck) < O(d) · optk .

Hierarchical clusterings and dendrograms

Hierarchical clustering Given distance measure
D : M ×M → R, k ∈ N, and P ⊂ M, |P| = n, a sequence of
clusterings Cn, . . . , C1 with |Ck | = k is called hierarchical clustering
of P if for all A ∈ Ck
1. A ∈ Ck+1 or

2. ∃B,C ∈ Ck+1 : A = B ∪ C and Ck = Ck+1 \ {B,C} ∪ {A}.

Dendrograms A dendrogram on n nodes is a rooted binary tree
T = (V ,E) with an index function
χ : V \ {leaves of T} → {1, . . . , n} such that

▶ ∀v ̸= w : χ(v) ̸= χ(w)

▶ χ(root) = n

▶ ∀u, v : if v parent of u, then χ(v) > χ(u).

From hierarchical clusterings to dendrograms

Cn, . . . , C1 hierarchical clustering of P .

Construction of dendrogram

▶ create leaf for each point p ∈ P

▶ interior nodes correspond to union of clusters

▶ if k-th cluster is obtained by union of clusters B,C , create
new node with index k and with children B,C .

Dendrograms

AgglomerativeCompleteLinkage

▶ Start with one cluster for each input object.

▶ Iteratively merge the two closest clusters.

Complete linkage measure

DCL(C1,C2) = max
x∈C1,y∈C2

D(x , y)

A B C D E

b

b

b
b

bA

B

C
D

E

	Agglomerative clustering

