diameter, radius, discrete radius

D : M x M — R distance function, S C M, |S| < oo
» diamP(S) := max, yes D(x,y) (diameter of S)
» radP(S) := minnep maxyes D(x, m) (radius of S)

» dradP(S) := minpes maxyes D(x, m) (discrete radius of S)

PcC M,|P| <o,C={C,...,Cy} partition of P
» costy (C) := maxi<i<x diamP(C;) (diameter cost)
> cost? (C) 1= maxy<j<k rad®(C;) (radius cost)

» cost? ,(C) := maxj<;<x drad®(C;) (discrete radius cost)



diameter, radius, discrete radius

Problem 6.1 (diameter k-clustering)

Given a set P,|P| < oo,k € N, find a partition C of P into k
clusters Cy, ..., Cx that minimizes costl. (C).

Problem 6.2 (radius k-clustering)

Given a set P,|P| < oo, k € N, find a partition C of P into k
clusters Ci, ..., C that minimizes cost ,(C).

Problem 6.3 (discrete radius k-clustering)

Given a set P,|P| < oo,k € N, find a partition C of P into k
clusters Ci,. .., Cx that minimizes costl _(C).



Diameter clustering



Agglomerative clustering - setup and idea

D : M x M — R distance function,
Pc M,|Pl=nP={p1,...,pn}

Basic idea of agglomerative clustering
» start with n clusters C;,1 < i <n, G :={p;}

» in each step replace two clusters C;, C; that are "closest” by
their union C; U G

> until single cluster is left.

Observation Computes k-clustering for k =n, ... 1.



Complete linkage
Definition 6.4
For G, G M

D (G, @) = elax D(x,y)

is called the complete linkage cost of C1, ;.

Dq(q) G



Agglomerative clustering with complete linkage

AGGLOMERATIVECOMPLETELINKAGE(P)

Cn:={{pi}lpi € P}

fori=n—-1,...,1do
find distinct cluster A, B € Cjy1 minimizing D¢ (A, B);
Ci:=(Ci+1\{A,B})U{AU B},

end

return Cq,...,Cp (or single Cy)




Agglomerative clustering with complete linkage

AGGLOMERATIVECOMPLETELINKAGE(P)

Cn == {{pitlpi € P};

fori=n—-1,...,1do
find distinct cluster A, B € Cj;1 minimizing D¢ (A, B);
Ci:=(Cix1\{A B})U{AU B};

end

return Cq,...,Cp (or single Cy)

Theorem 6.5
Algorithm AGGLOMERATIVECOMPLETELINKAGE requires time
O(n?log n) and space O(n?).



Approximation guarantees

» diamP(S) := max, yes D(x,y) (diameter of S)
» costD (C) := maxi<j<x diamP(C;) (diameter cost)
> opt§@™(P) := min|c— cost, (C)

Theorem 6.6

Let D be a distance metric on M C RY. Then for all sets P and all
k < |P|, Algorithm AGGLOMERATIVECOMPLETELINKAGE
computes a k-clustering Cy with

costg,-am(Ck) <0 <optﬂi‘9m(P)> ,

where the constant hidden in the O-notation is double exponential
ind.



Approximation guarantees

Theorem 6.7
There is a point set P C R? such that for the metric Dy

algorithm AGGLOMERATIVECOMPLETELINKAGE computes a
clustering Cj with

costl (Cx) = 3 - opti™™(P).




Approximation garantees

Theorem 6.8

There is a point set P C RY, d = k + log k such that for the metric
Dy, algorithm AGGLOMERATIVECOMPLETELINKAGE computes a
clustering Cy with

1 ,
COStc?igm(Ck) > 5 log k - Optzlam(P),

Corollary 6.9

For every 1 < p < oo, there is a point set P C R, d = k + log k
such that for the metric D, algorithm
AGGLOMERATIVECOMPLETELINKAGE computes a clustering Cy

with
cost.” (Cx) > { fll k - optdiam(p
diam\“k 2 og opty ( )



Hardness of diameter clustering

Theorem 6.10
For the metric D), the diameter k-clustering problem is NP-hard.
Moreover, assuming P # NP, there is no polynomial time

approximation for the diameter k-clustering with approximation
factor < 1.96.



Hardness of diameter clustering

> A€ RIY", Ay 1= (x,y)-entry in A, 1< x,y <n
» C={G,...,Ck} partition of {1,...,n}

A R
> costy,,, = Maxi<j<k MaXy yeC; Axy

Problem 6.11 (matrix diameter k-clustering)
Given a matrix A € R%”, k € N, find a partition C of {1,...,n}
into k clusters Ci,..., C that minimizes cost3, (C).

Theorem 6.12

The matrix diameter k-clustering problem is NP-hard. Moreover,
assuming P £ NP, there is no polynomial time approximation for
the diameter k-clustering with approximation factor o > 1
arbitrary.



Maximum distance k-clustering

Problem 6.13 (maximum distance k-clustering)

Given distance measure D : M x M — R, k € N, and P C M, find
a partition C = {Cy,..., Cc} of P into k clusters that maximizes

min D(x
x€Ciy€Ci# b65),

i.e. a partition that maximizes the minimum distance between

points in different clusters.

Definition 6.14
For G, G C M

Ds (G, G) = Xegfi}ﬁecz D(x,y)

is called the single linkage cost of Cy, C;.



Agglomerative clustering with single linkage

AGGLOMERATIVESINGLELINKAGE(P)

Cn = {{pi}lpi € P}

fori=n—-1,...,1do
find distinct cluster A, B € Cjy1 minimizing Ds; (A, B);
Ci:=(Ci+1\{A,B})U{AU B},

end

return Cq,...,Cp (or single Cy)

Theorem 6.15
Algorithm AGGLOMERATIVESINGLELINKAGE optimally solves the
maximum distance k-clustering problem.



diam, rad, and drad

» drad®(S) := minmes maxees D(x, m) (discrete radius of S)
> costD_,(C) := max;<;<x drad®(C;) (discrete radius cost)

» find a partition C of P into k clusters C, ..., C; that
. . . D D
minimizes costg, . (C) or cost,_,(C).

Theorem 6.16
Let D: M x M — R be a metricc PC M andC ={Cy,...,Ci} a
partition of P. Then

1. costgrad(C) < costgiam(C) <

2
2. % . COStdrad(C) < COStrad(C) < COStdfad(C)

- COStgrad(C)



diam, rad, and drad

Corollary 6.17

Let D: M x M — R be a metric, k € N, and P C M. Then
1. optf*(P) < optiem(P) < 2. opts™(P)
2. 3 - opt{*I(P) < opti?¥(P) < opt{*(P)

Corollary 6.18

Assume there is a polynomial time c-approximation algorithm for
the discrete radius k-clustering problem. Then there is a
polynomial time 2c-approximation algorithm for the diameter
k-clustering problem.



Clustering and Gonzales' algorithm

GONZALESALGORITHM(P, k)

C := {p} for p € P arbitrary;
fori=1,....kdo
q = argmax,cpD(y, C);
C:=CuU{qg};
end
compute partition C = {Cy, ..., Cx} corresponding to C;
return C and C

Theorem 6.19
Algorithm GONZALESALGORITHM s a 2-approximation algorithm
for the diameter, radius, and discrete radius k-clustering problem.



Agglomerative clustering and discrete radius clustering

» drad®(S) := mincs maxyes D(x, m) (discrete radius of S)
> costD_,(C) := maxy<;<x drad®(C;) (discrete radius cost)

» find a partition C of P into k clusters Cy, ..., C, that
minimizes cost?_,(C).

Discrete radius measure

Dyrad(Cr1, o) = drad(G U Gy)



Agglomerative clustering with dradius cost

AGGLOMERATIVEDISCRETERADIUS(P)

Cn = {{pi}t|pi € P};

fori=n—1,...,1do
find distinct clusters A, B € Ciy1 minimizing Dg,ad(A, B);
Ci:=(Ci+1\{A B})U{AU B};

end

return Cy,...,C, (or single Cx)

Theorem 6.20

Let D be a distance metric on M C RY. Then for all sets P ¢ M
and all k < |P|, Algorithm AGGLOMERATIVEDISCRETERADIUS
computes a k-clustering Cy with

costi?d(C) < O(d) - opty.



Hierarchical clusterings and dendrograms

Hierarchical clustering Given distance measure
D:MxM—=R,keN, and P C M,|P| = n, a sequence of
clusterings C,, ...,C1 with |Cx| = k is called hierarchical clustering
of P if for all A € Cy

1. A€ Cyyq or

2. 3B, C€Cki1:A=BUC and Ck:Ck+1\{B7C}U{A}.

Dendrograms A dendrogram on n nodes is a rooted binary tree
T = (V, E) with an index function
X : V\ {leaves of T} — {1,..., n} such that

> Vv £ w:x(v) # x(w)

» x(root) =n

» VYu,v: if v parent of u, then x(v) > x(u).



From hierarchical clusterings to dendrograms

Cp,...,Cq hierarchical clustering of P.

Construction of dendrogram
» create leaf for each point p € P
> interior nodes correspond to union of clusters

» if k-th cluster is obtained by union of clusters B, C, create
new node with index k and with children B, C.



Dendrograms

AGGLOMERATIVECOMPLETELINKAGE

» Start with one cluster for each input object.

> lteratively merge the two closest clusters.

Complete linkage measure

Dci (G, Go) = emax D(x,y)

_
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