## Constant factor approximation for $k$-means

$D(\cdot, \cdot)$ squared Euclidean distance

Goal
A polynomial time algorithm Alg for which there is a constant $\gamma \geq 1$ such that for every $P \subset \mathbb{R}^{d},|P|<\infty$, and every $k \in \mathbb{N}$, algorithm Alg on input ( $P, k$ ) outputs a set $C$ of size $k$ satisfying

$$
D(P, C) \leq \gamma \cdot \operatorname{opt}_{k}(P)
$$

## Constant factor approximation for $k$-means

$P \subset \mathbb{R}^{d}, D(\cdot, \cdot)$ squared Euclidean distance, $T \subset \mathbb{R}^{d}, x \in T$

- $N_{T}(x):=\{q \in P \mid$ for all $y \in T: D(q, x) \leq D(q, y)\}$
- $q \in P: t_{q}:=$ closest point in $T$ to $q$
- $K \subseteq \mathbb{R}^{d}$ called $(c, k)$-approximate candidate set, if there is a set $S \subset K,|S|=k$, with $D(P, S) \leq c \cdot \operatorname{opt}_{k}(P)$, i.e. the best $k$-centroid set $S$ in $K$ is at most $c$ times worse than the optimal set of centroids.


## Constant factor approximation for $k$-means

Lemma 5.1
For all finite sets $P \subset \mathbb{R}^{d}$, and all $k \in N$, the set $P$ is a
$(2, k)$-approximate candidate set for itself.
Observation
If $K$ is a $(2, k)$-approximate candidate set for $P$ and if $D(P, S) \leq c \cdot \min _{T \subset K,|T|=k} D(P, T)$, then $D(P, S) \leq 2 c \cdot o p t_{k}(P)$.

## Stable sets

$O:=\operatorname{argmin}_{S \subset P,|S|=k} D(P, S)$, i.e. optimal set of centroids in $P$.
Definition 5.2
Let $S \subset P$.

1. $S$ is called stable, if for all $s \in S, s^{\prime} \in P \backslash S$

$$
D\left(P, S-\{s\} \cup\left\{s^{\prime}\right\}\right) \geq D(P, S)
$$

2. $S$ is called $\epsilon$-stable, if for all $s \in S, s^{\prime} \in P \backslash S$

$$
D\left(P, S-\{s\} \cup\left\{s^{\prime}\right\}\right) \geq(1-\epsilon) D(P, S)
$$

## Stable sets

Observation
If $S$ is stable, then for all $s \in S, o \in O$

$$
D(P, S-\{s\} \cup\{o\}) \geq D(P, S)
$$

## Local improvement for $k$-means

$k$-means-Li $(P)$
choose a set $S \subset P$ of $k$ initial centroids;
repeat
find $s \in S, s^{\prime} \in P \backslash S$ with
$D\left(P, S-\{s\} \cup\left\{s^{\prime}\right\}\right)<(1-\epsilon) D(P, S)$;
set $S:=S-\{s\} \cup\left\{s^{\prime}\right\}$;
until $S$ is $\epsilon$-stable;

## Local improvement for $k$-means

Theorem 5.3

- If $S$ is a stable set, then

$$
D(P, S) \leq 81 \cdot D(P, O)
$$

- If $S$ is a $\epsilon$-stable set, then

$$
D(P, S) \leq\left(\frac{9}{1-\epsilon}\right)^{2} \cdot D(P, O)
$$

Corollary 5.4
For any $\epsilon>0$, the $k$-means problem can be approximated with factor $162+\epsilon$ in time polynomial in the input size and in $1 / \epsilon$.

## Capturing points

$O \subset P,|O|=k$ optimal set of centroids in $P, S$ stable set, $|S|=k$, called set of heuristic centroids.

- If $s \in S$ is closest point in $S$ to $o \in O$, then $s$ captures $o, o$ is captured by $s$, and we write $s=s_{0}$.
- If $s \in S$ captures no element of $O$, then $s$ is called lonely.

Partitioning centroids
Partition $S$ into $S_{1}, \ldots, S_{m}$ and $O$ into $O_{1}, \ldots, O_{m}$ such that

- $\left|S_{i}\right|=\left|O_{i}\right|, i=1, \ldots, m$
- if $s \in S_{i}$, then either $s$ is lonely or $s$ captures all $o \in O_{i}$.


## Swap pairs

Partitioning centroids
Partition $S$ into $S_{1}, \ldots, S_{m}$ and $O$ into $O_{1}, \ldots, O_{m}$ such that

- $\left|S_{i}\right|=\left|O_{i}\right|, i=1, \ldots, m$
- if $s \in S_{i}$, then either $s$ is lonely or $s$ captures all $o \in O_{i}$.


## Swap pairs

Partitioning centroids
Partition $S$ into $S_{1}, \ldots, S_{m}$ and $O$ into $O_{1}, \ldots, O_{m}$ such that

- $\left|S_{i}\right|=\left|O_{i}\right|, i=1, \ldots, m$
- if $s \in S_{i}$, then either $s$ is lonely or $s$ captures all $o \in O_{i}$.



## Swap pairs

Partitioning centroids
Partition $S$ into $S_{1}, \ldots, S_{m}$ and $O$ into $O_{1}, \ldots, O_{m}$ such that

- $\left|S_{i}\right|=\left|O_{i}\right|, i=1, \ldots, m$
- if $s \in S_{i}$, then either $s$ is lonely or $s$ captures all $o \in O_{i}$.


## Swap pairs

$\left(s_{1}, o_{1}\right), \ldots,\left(s_{k}, o_{k}\right)$ are called swap pairs, if

- $\forall j:\left(s_{j}, o_{j}\right) \in \bigcup S_{i} \times O_{i}$
- each $o \in O$ is contained in exactly one pair,
- each $s$ is contained in at most two pairs,
- for each pair $\left(s_{j}, o_{j}\right)$ the element $s_{j}$ captures no $o^{\prime} \neq o_{j}$.


## Swap pairs

Partitioning centroids
Partition $S$ into $S_{1}, \ldots, S_{m}$ and $O$ into $O_{1}, \ldots, O_{m}$ such that

- $\left|S_{i}\right|=\left|O_{i}\right|, i=1, \ldots, m$
- if $s \in S_{i}$, then either $s$ is lonely or $s$ captures all $o \in O_{i}$.


## Observation

For each partitioning of centroids $S_{1}, \ldots, S_{m}$ and $O_{1}, \ldots, O_{m}$ there is a set of swap pairs.

## Swap pairs

## Swap pairs

$\left(s_{1}, o_{1}\right), \ldots,\left(s_{k}, o_{k}\right)$ are called swap pairs, if

- $\forall j:\left(s_{j}, o_{j}\right) \in \bigcup S_{i} \times O_{i}$
- each $o \in O$ is contained in exactly one pair,
- each $s$ is contained in at most two pairs,
- for each pair $\left(s_{j}, o_{j}\right)$ the element $s_{j}$ captures no $o^{\prime} \neq o_{j}$.



## Swap pairs

## Swap pairs

$\left(s_{1}, o_{1}\right), \ldots,\left(s_{k}, o_{k}\right)$ are called swap pairs, if

- $\forall j:\left(s_{j}, o_{j}\right) \in \bigcup S_{i} \times O_{i}$
- each $o \in O$ is contained in exactly one pair,
- each $s$ is contained in at most two pairs,
- for each pair $\left(s_{j}, o_{j}\right)$ the element $s_{j}$ captures no $o^{\prime} \neq o_{j}$.



## Reassignments

Let $(s, o)$ be a swap pair in set $\left\{\left(s_{1}, o_{1}\right), \ldots,\left(s_{k}, o_{k}\right)\right\}$ and let
$C_{1}, \ldots, C_{k}$ be the clusters for set $S=\left\{s_{1}, \ldots, s_{k}\right\}$.

## Reassigning points

For $S^{\prime}=S-\{s\} \cup\{0\}$ we define a new clustering of $P$ as follows

- if $q \notin N_{S}(s) \cup N_{O}(o)$, then o stays in its old cluster,
- if $q \in N_{O}(o)$, then $q$ is assigned to o's cluster,
- if $q \in N_{S}(s) \backslash N_{O}(o)$ then $q$ is assigned to the cluster belonging to $s_{o_{q}}$.

Observation

$$
0 \leq \sum_{q \in N_{O}(o)} D(q, o)-D\left(q, s_{q}\right)+\sum_{q \in N_{S}(s) \backslash N_{O}(o)} D\left(q, s_{o_{q}}\right)-D(q, s) .
$$

## Local improvenment for $k$-means - technical lemmas

Lemma 5.5
Let $S$ be a stable set. Then

$$
0 \leq D(P, O)-3 D(P, S)+2 R
$$

where $R:=\sum_{q \in P} D\left(q, s_{o_{q}}\right)$.

Lemma 5.6

$$
R \leq 4 D(P, O)+(1+4 / \alpha) D(P, S)
$$

where

$$
\alpha^{2}:=\frac{D(P, S)}{D(P, O)}
$$

## Local improvenment for $k$-means - technical lemmas

Lemma 5.7
Let $\beta_{n}, \ldots, \beta_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ be two sequences of real numbers and set

$$
\alpha^{2}:=\frac{\sum_{i=1}^{n} \gamma_{i}^{2}}{\sum_{i=1}^{n} \beta_{i}^{2}} .
$$

Then

$$
\sum_{i=1}^{n} \gamma_{i} \beta_{i} \leq \frac{1}{\alpha} \sum_{i=1}^{n} \gamma_{i}^{2}
$$

