- Clusterings computed by Lloyd's algorithm or by agglomerative clustering often do not compute clusterings that practitioners find intuitive or useful.
- Hence, there are many other clustering algorithms that try to find intuitive clusterings.
- These algorithms usually do not try do optimize some objective function (like Lloyd's algorithm or agglomerative clustering.
- DBSCAN (=density based spatial clustering of applications with noise) is an important example.
- It computes geometrically well-defined clusterings.

Figure: Geometric clusters defined by densities

 $D: M \times M \rightarrow \mathbb{R}$ symmetric distance measure, $P \subset M, \epsilon > 0, MinPts \in \mathbb{N}$

Definition 7.1

1. The ϵ -neighborhood $N_{\epsilon}(p)$ of a point p is defined as

$$N_{\epsilon}(p) = \{q \in P : D(p,q) \leq \epsilon\}.$$

p ∈ P is called core point, if |N_ε(p)| ≥ MinPts.
 p ∈ P is called border point, if |N_ε(p)| < MinPts.

Definition 7.2 $P \subset M, \epsilon > 0, MinPts \in \mathbb{N}, p, q \in P$ 1. *p* is directly density reachable form *q* (wrt. ϵ , MinPts), if (a) $p \in N_{\epsilon}(q)$ and (b) $|N_{\epsilon}(q)| \ge MinPts$, i.e. *q* is a core point.

- p is density reachable from q (wrt. ε, MinPts), if there is a sequence of points p₁,..., p_n, p₁ = q, p_n = p such that p_{i+1} is directly density reachable from p_i.
- 3. *p* is density connected to point *q* (wrt. ϵ , MinPts), if there is a point $r \in P$ such that *p* and *q* are density reachable from *r*.

p directly density reachable from qq not directly density reachable from p

Definition 7.3 $P \subset M, \epsilon > 0$, $MinPts \in \mathbb{N}$. A subset $C \subseteq P$ is called a density-based cluster (wrt. ϵ , MinPts), if (a) $\forall p, q \in P : (p \in C \text{ and } q \text{ density reachable from } p) \Rightarrow q \in C$ (b) $\forall p, q \in C: p$ is density connected to q.

Definition 7.4

 $P \subset M, \epsilon > 0$, $MinPts \in \mathbb{N}$. Let C_1, \ldots, C_k be the clusters of P (wrt. ϵ , MinPts). A point $q \notin \bigcup_{i=1}^k C_i$ is called a noise point.

Lemma 7.5

Let C, C' be two distinct density-based clusters of point set P wrt. to ϵ and MinPts. Then the intersection $C \cap C'$ of C, C' contains only border points.

Characterization of density-based clusters

Lemma 7.6 Let $p \in P$ such that $|N_{\epsilon}(p)| \ge MinPts$. Then the set

 $O := \{o \in P : o \text{ is density-reachable from } p \text{ w.r.t } \epsilon \text{ and } MinPts\}$

is a cluster w.r.t. ϵ and MinPts.

Lemma 7.7

Let C be a cluster of P w.r.t. ϵ and MinPts and let p be any point in C with $|N_{\epsilon}(p)| \ge MinPts$. Then

 $C = \{o \in P : o \text{ is density-reachable from } p \text{ w.r.t } e \text{ and } MinPts\}.$

Algorithm DBSCAN

DBSCAN(P)

```
i := 0, U := P / * U unclassified
```

repeat

```
choose p \in U;

if DENSREACH(p, P) \neq \emptyset then

| i := i + 1, C_i := DENSREACH<math>(p, P), U := U \setminus C_i

else

| U := U \setminus \{p\}

end

until U = \emptyset;

N := P \setminus \bigcup C_j;

return C_1, \ldots, C_k as clusters and N as set of noise points
```

*/

Algorithm DENSREACH

DENSREACH(p, P)

 $\begin{array}{l|l} \text{if } |N_{\epsilon}(p)| < \textit{MinPts then} \\ | & \text{return } \emptyset \end{array}$

else

$$\begin{array}{l} C := \{p\}, \ C' := \{p\}, \ F := \emptyset; \\ /* \ C \ cluster, \ C'/F \ reached/finished \ corepoints \ */ \\ \hline repeat \\ | \ choose \ q \in C' \setminus F; \\ C' := C' \cup \{r \in N_{\epsilon}(q) : |N_{\epsilon}(r)| \ge \operatorname{MinPts}\}; \\ C := C \cup N_{\epsilon}(q), \ F := F \cup \{q\}; \\ \hline until \ C' \setminus F = \emptyset; \\ \end{array}$$

return C

Algorithm DBSCAN

Theorem 7.8

On input a finite point set P, algorithm DBSCAN computes a partitioning of P into density-based clusters and noise points as defined in Definition 7.3 and in Definition 7.4.