The k-means problem and algorithm

- The k-means algorithm, also known as Lloyd's algorithm, together with its variants is probably the most popular clustering algorithm
- k-means tries to find good solutions to k-median problems by a simple two step approach
- it has various shortcomings that do not seem to affect its popularity
- it can be very inefficient and find poor solutions
- will also see a local improvement algorithms with provable approximation guarantees

The k-median problem

$D: M \times M \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$ dissimilarity measure
k-median problem
Given $P \subset M, k \in \mathbb{N}$, find $C=\left\{c_{1}, \ldots, c_{k}\right\} \subset M$ that minimizes

$$
\sum_{p \in P} \min _{1 \leq i \leq k} D\left(p, c_{i}\right) .
$$

$c_{i}^{\prime} s$ called centroids. For $D=D_{\ell_{2}^{2}}$ the k-median problem is called the k-means problem.

- Given $C=\left\{c_{1}, \ldots, c_{k}\right\}$, define

$$
C_{i}:=\left\{p \in P \mid \forall j D\left(p, c_{i}\right) \leq D\left(p, c_{j}\right)\right\} .
$$

- If ties are broken, $\mathcal{C}:=\left\{C_{1}, \ldots, C_{k}\right\}$ is a partition of P.

The k-median problem - notation

- $C \subset M,|C|<\infty$,

$$
D(x, C):=\min _{c \in C} D(x, c) .
$$

- $P, C \subset M,|P|,|C|<\infty$,

$$
D(P, C):=\sum_{p \in P} D(p, C)
$$

(D-) cost of P with respect to C

- $k \in \mathbb{N}$,

$$
\operatorname{cost}_{k}^{D}(P):=\min _{C \subset M,|C|=k} D(P, C)
$$

called k-median cost of P.

The k-median problem - again

k-median problem
Given $P \subset M, k \in \mathbb{N}$, find $C=\left\{c_{1}, \ldots, c_{k}\right\} \subset M$ such that

$$
D(P, C)=\operatorname{cost}_{k}^{D}(P)
$$

k-median problem - alternative view

- Given a subset $Q \subset M$

$$
c^{D}(Q):=\operatorname{argmin}_{x \in M} \sum_{p \in Q} D(p, x) .
$$

is called the centroid of set Q (with respect to D)

- For a partition $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ of set P, the cost of the partition \mathcal{C} is defined as the cost of the set of centroids $C=\left\{c^{D}\left(C_{1}\right), \ldots, c^{D}\left(C_{k}\right)\right\}$.
k-median problem - alternative definition
Given a set of points $P \subset M$ and $k \in \mathbb{N}$, find a partition of P into k subsets or clusters C_{1}, \ldots, C_{k} with corresponding set of centroids $C=\left\{c^{D}\left(C_{1}\right), \ldots, c^{D}\left(C_{k}\right)\right\}$ such that $D(P, C)=\operatorname{cost}_{k}^{D}(P)$.

The k-means algorithm - idea

Idea of k-means

1. choose k initial centers
2. repeat the following steps until there is no improvement in cost function
a) $C_{i}:=$ set of points closest to c_{i}
b) $c_{i}:=$ centroid of C_{i}

Questions

1. What are the centroids (with respect to D)?
2. Does k-means converge? If so, how fast?
3. How good are the solutions found by k-means?
4. For which dissimilarity measures can it be applied?

Centroids for Euclidean distance

Centroids for $D_{1_{2}}$

- called Weber points
- can not be represented exactly using simple functions $(+, \times, \sqrt[d]{\cdot}, d \in \mathbb{N})$ in original points

Centroids for squared Euclidean distance

Lemma 3.1

For any finite set $X \subset \mathbb{R}^{d}$ the centroid of X with respect to the squared euclidean distance $D_{1_{2}}$ is given by the center of gravity of the points in X, i.e.

$$
c(X)=\frac{1}{|X|} \sum_{x \in X} x
$$

More precisely, for any $y \in \mathbb{R}^{d}$:

$$
D_{l_{2}^{2}}(X, y)=D_{l_{2}^{2}}(X, c(X))+|X| \cdot D_{l_{2}^{2}}(c(X), y) .
$$

The k-means algorithm

K-MEANS (P)
choose k initial centroids c_{1}, \ldots, c_{k};
repeat

$$
\begin{aligned}
& \quad / * \text { assignment step } \\
& \text { for } i=1, \ldots, k \text { do } \\
& \quad C_{i}:=\text { set of points in } P \text { closest to } c_{i} ; \\
& / * \text { update step } \\
& \text { for } i=1, \ldots, k \text { do } \\
& \quad c_{i}:=c\left(C_{i}\right)=\frac{1}{\left|C_{i}\right|} \sum_{p \in C_{i}} p ; \\
& \text { until convergence; } \\
& \text { return } c_{1}, \ldots, c_{k} \text { and } C_{1}, \ldots, C_{k}
\end{aligned}
$$

convergence: quality of solution no longer improves

The k-means algorithm - an example and useful lemma

Lemma 3.2

Let $p, q \in \mathbb{R}^{d}$. The set of points x satisfying $D_{\ell_{2}^{2}}(p, x)=D_{\ell_{2}^{2}}(q, x)$ is given by the hyperplane orthogonal to $q-p$ and containing the midpoint $(p+q) / 2$ of the line segment between p and q.

The k-means algorithm - an example and usefu lemma

Simple properties

Lemma 3.3

Algorithm K-Means always halts after a finite number of steps.
The number of assignment and update steps can be bounded by $n^{O\left(k^{2} \cdot d\right)}$.

Lemma 3.4
For every n there exists a set $P \subset \mathbb{R}^{2}$ with $n=|P|$, a number $k=\Theta(n)$ and initial centroids such that on input P K-MEANS uses $2^{\Omega(n)}$ assignment and update steps. If $k=o(n)$, then the lower bound on the number of assignment and update steps becomes $2^{\Omega(k)}$

Simple properties

Quality of solutions
Algorithm K-MEANS can get stuck in arbitrarily poor local minima.

Complexity of k-means

Theorem 3.5
The k-means problem is NP-complete. This remains true if

1. $d=2$ and k is arbitrary,
2. $k=2$ and d is arbitrary.

Theorem 3.6
If $\mathbf{P} \neq \mathbf{N P}$, then there is a constant $\epsilon>0$ such that there is no polynomial time algorithms that for any finite point set $P \subset \mathbb{R}^{d}$ and any $k \in \mathbb{N}$ computes a set $C,|C|=k$, satisfying $D(P, C) \leq(1+\epsilon) \cdot \operatorname{cost}_{k}^{D}(P)$. Here $D=D_{\ell_{2}^{2}}$ is the squared euclidean distance.

Bregman divergences

Definition 3.7
$S \subseteq \mathbb{R}^{d}, S \neq \emptyset$, convex, $\phi: S \rightarrow \mathbb{R}$ differentiable, strictly convex function. The Bregman divergence d_{ϕ} associated to ϕ is defined by

$$
\begin{aligned}
S \times S & \rightarrow \mathbb{R}_{\geq 0} \\
(x, y) & \mapsto \phi(x)-\phi(y)-\langle x-y, \nabla \phi(y)\rangle .
\end{aligned}
$$

Remarks

- S convex: $\forall x, y \in S, \lambda \in[0,1]: \lambda \cdot x+(1-\lambda) \cdot y \in S$
- ϕ strictly convex: $\forall x, y \in S, \lambda \in(0,1)$:

$$
\lambda \cdot \phi(x)+(1-\lambda) \cdot \phi(y)>\phi(\lambda \cdot x+(1-\lambda) \cdot y)
$$

- $\langle\cdot, \cdot\rangle$ denotes inner product
- $g: \mathbb{R}^{d} \rightarrow \mathbb{R},\left(x_{1}, \ldots, x_{d}\right) \mapsto g\left(x_{1}, \ldots, x_{d}\right)$, then

$$
\nabla g(y):=\left(\frac{\partial g}{x_{1}}(y), \ldots, \frac{\partial g}{x_{d}}(y)\right)
$$

Geometric interpretation

Examples

Observation

Suppose $\phi:(a, b) \rightarrow \mathbb{R}$ has a continuous second derivative $\phi^{\prime \prime}(\cdot)$ such that $\phi^{\prime \prime}(x)>0$ for all $x \in(a, b)$, then ϕ is strictly convex.

Examples

- $D_{l_{2}^{2}}$ is the Bregman divergence associated to

$$
\phi(x)=\langle x, x\rangle=\sum_{i=1}^{d} x_{i}^{2} .
$$

- $D_{A}, A \in \mathbb{R}^{d \times d}$ positive definite, is the Bregman divergence associated to $\phi(x)=x^{T} \cdot A \cdot x$.

Examples

Observation

Suppose $\phi:(a, b) \rightarrow \mathbb{R}$ has a continuous second derivative $\phi^{\prime \prime}(\cdot)$ such that $\phi^{\prime \prime}(x)>0$ for all $x \in(a, b)$, then ϕ is strictly convex.

Examples

- $D_{K L}$ is the Bregman divergence associated to

$$
\phi(x)=\sum_{i=1}^{d} x_{i} \log x_{i}
$$

Properties

Lemma 3.8

Bregman divergences are positive and reflexive.

Lemma 3.9
Let $d_{\phi}: S \times S \rightarrow \mathbb{R}_{\geq 0}$ be a Bregman divergence and $X \subset S,|X|<\infty$. Then

$$
c(X):=\frac{1}{|X|} \sum_{x \in X} x=\operatorname{argmin}_{y \in S} d_{\phi}(X, y)
$$

More precisely, for any $y \in S$:

$$
d_{\phi}(X, y)=d_{\phi}(X, c(X))+|X| \cdot d_{\phi}(c(X), y)
$$

The k-means algorithm for Bregman divergences

BREGMAN K-MEANs (P)
choose k initial centroids c_{1}, \ldots, c_{k};
repeat
/* assignment step
for $i=1, \ldots, k$ do
$C_{i}:=$ set of points in P closest to c_{i} with respect to d_{ϕ};
/* update step
for $i=1, \ldots, k$ do
$c_{i}:=c\left(C_{i}\right)=\frac{1}{\left|C_{i}\right|} \sum_{p \in C_{i}} p ;$
until convergence;
return c_{1}, \ldots, c_{k} and C_{1}, \ldots, C_{k}
d_{ϕ} a Bregman divergence.

