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...
The k-means problem and algorithm

The k-means algorithm, also known as Lloyd’s algorithm,
together with its variants is probably the most popular
clustering algorithm

k-means tries to find good solutions to k-median problems by
a simple two step approach

it has various shortcomings that do not seem to affect its
popularity

it can be very inefficient and find poor solutions

will also see a local improvement algorithms with provable
approximation guarantees
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..

...
The k-median problem

D : M ×M → R≥0 ∪ {∞} dissimilarity measure
.
k-median problem
..

......

Given P ⊂ M, k ∈ N, find C = {c1, . . . , ck} ⊂ M that minimizes∑
p∈P

min
1≤i≤k

D(p, ci ).

c ′i s called centroids. For D = Dℓ22
the k-median problem is called

the k-means problem.

Given C = {c1, . . . , ck}, define

Ci := {p ∈ P|∀j D(p, ci ) ≤ D(p, cj)}.

If ties are broken, C := {C1, . . . ,Ck} is a partition of P .
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The k-median problem - notation

C ⊂ M, |C | < ∞,

D(x ,C ) := min
c∈C

D(x , c).

P ,C ⊂ M, |P|, |C | < ∞,

D(P,C ) :=
∑
p∈P

D(p,C )

(D-) cost of P with respect to C

k ∈ N,

costDk (P) := min
C⊂M,|C |=k

D(P,C ),

called k-median cost of P.
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...
The k-median problem - again

.
k-median problem
..

......

Given P ⊂ M, k ∈ N, find C = {c1, . . . , ck} ⊂ M such that

D(P,C ) = costDk (P).
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...
k-median problem - alternative view

Given a subset Q ⊂ M

cD(Q) := argminx∈M
∑
p∈Q

D(p, x).

is called the centroid of set Q (with respect to D)

For a partition C = {C1, . . . ,Ck} of set P, the cost of the
partition C is defined as the cost of the set of centroids
C = {cD(C1), . . . , c

D(Ck)}.

.
k-median problem - alternative definition
..

......

Given a set of points P ⊂ M and k ∈ N, find a partition of P into
k subsets or clusters C1, . . . ,Ck with corresponding set of centroids
C = {cD(C1), . . . , c

D(Ck)} such that D(P ,C ) = costDk (P).
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...
The k-means algorithm - idea

.
Idea of k-means
..

......

1 choose k initial centers

2 repeat the following steps until there is no improvement in
cost function

a) Ci := set of points closest to ci
b) ci := centroid of Ci

.
Questions
..

......

1 What are the centroids (with respect to D)?

2 Does k-means converge? If so, how fast?

3 How good are the solutions found by k-means?

4 For which dissimilarity measures can it be applied?
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...
Centroids for Euclidean distance

.
Centroids for Dl2..

......

called Weber points

can not be represented exactly using simple functions
(+,×, d

√
·, d ∈ N) in original points
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...
Centroids for squared Euclidean distance

.
Lemma 2.1
..

......

For any finite set X ⊂ Rd the centroid of X with respect to the
squared euclidean distance Dl22

is given by the center of gravity of
the points in X , i.e.

c(X ) =
1

|X |
∑
x∈X

x .

More precisely, for any y ∈ Rd :

Dl22
(X , y) = Dl22

(X , c(X )) + |X | · Dl22
(c(X ), y).
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...
The k-means algorithm

k-Means(P)

choose k initial centroids c1, . . . , ck ;

repeat

/* assignment step */

for i = 1, . . . , k do
Ci := set of points in P closest to ci ;

/* update step */

for i = 1, . . . , k do
ci := c(Ci ) =

1
|Ci |

∑
p∈Ci

p;

until convergence;

return c1, . . . , ck and C1, . . . ,Ck

convergence: quality of solution no longer improves
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...
The k-means algorithm - an example and useful lemma
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The k-means algorithm - an example and useful lemma

.
Lemma 2.2
..

......

Let p, q ∈ Rd . The set of points x satisfying Dℓ22
(p, x) = Dℓ22

(q, x)
is given by the hyperplane orthogonal to q − p and containing the
midpoint (p + q)/2 of the line segment between p and q.
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The k-means algorithm - an example and usefu lemma
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..

...
Simple properties

.
Lemma 2.3
..

......

Algorithm k-Means always halts after a finite number of steps.
The number of assignment and update steps can be bounded by
nO(k2·d).

.
Lemma 2.4
..

......

For every n there exists a set P ⊂ R2 with n = |P|, a number
k = Θ(n) and initial centroids such that on input P k-Means
uses 2Ω(n) assignment and update steps. If k = o(n), then the
lower bound on the number of assignment and update steps
becomes 2Ω(k)
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..

...
Simple properties

.
Quality of solutions
..
......Algorithm k-Means can get stuck in arbitrarily poor local minima.

a

b

c

d

b
c1

b
c2

b
ĉ1

b
ĉ2

optimal cluster

Ĉ2

optimal cluster

Ĉ1

k-means cluster C1

k-means cluster C2
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ĉ1

b
ĉ2
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..

...
Complexity of k-means

.
Theorem 2.5
..

......

The k-means problem is NP-complete. This remains true if

1 d = 2 and k is arbitrary,

2 k = 2 and d is arbitrary.

.
Theorem 2.6
..

......

If P ̸= NP, then there is a constant ϵ > 0 such that there is no
polynomial time algorithms that for any finite point set P ⊂ Rd

and any k ∈ N computes a set C , |C | = k, satisfying
D(P ,C ) ≤ (1 + ϵ) · costDk (P). Here D = Dℓ22

is the squared
euclidean distance.
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..

...
Bregman divergences

.
Definition 2.7
..

......

S ⊆ Rd , S ̸= ∅, convex, ϕ : S → R differentiable, strictly convex
function. The Bregman divergence dϕ associated to ϕ is defined by

S × S → R≥0

(x , y) 7→ ϕ(x)− ϕ(y)− ⟨x − y ,∇ϕ(y)⟩.

.
Remarks
..

......

S convex: ∀x , y ∈ S , λ ∈ [0, 1] : λ · x + (1− λ) · y ∈ S

ϕ strictly convex: ∀x , y ∈ S , λ ∈ (0, 1) :
λ · ϕ(x) + (1− λ) · ϕ(y) > ϕ(λ · x + (1− λ) · y)
⟨·, ·⟩ denotes inner product
g : Rd → R, (x1, . . . , xd) 7→ g(x1, . . . , xd), then

∇g(y) :=
(
∂g
x1
(y), . . . , ∂gxd (y)

)
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...
Geometric interpretation

ϕ

xy

b

b

ϕ(y) + ⟨x − y ,∇ϕ(y)⟩

dϕ(x , y)
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..

...
Examples

.
Observation
..

......

Suppose ϕ : (a, b) → R has a continuous second derivative ϕ′′(·)
such that ϕ′′(x) > 0 for all x ∈ (a, b), then ϕ is strictly convex.

.
Examples
..

......

Dl22
is the Bregman divergence associated to

ϕ(x) = ⟨x , x⟩ =
d∑

i=1

x2i .

DA,A ∈ Rd×d positive definite, is the Bregman divergence
associated to ϕ(x) = xT · A · x .
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DKL is the Bregman divergence associated to

ϕ(x) =
d∑

i=1

xi log xi .
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..

...
Properties

.
Lemma 2.8
..

......Bregman divergences are positive and reflexive.

.
Lemma 2.9
..

......

Let dϕ : S × S → R≥0 be a Bregman divergence and
X ⊂ S , |X | < ∞. Then

c(X ) :=
1

|X |
∑
x∈X

x = argminy∈Sdϕ(X , y).

More precisely, for any y ∈ S:

dϕ(X , y) = dϕ(X , c(X )) + |X | · dϕ(c(X ), y).
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Proof sketch for Lemma 2.8

ϕ

xy

b

b

ϕ(y) + ⟨x − y ,∇ϕ(y)⟩

dϕ(x , y)
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..

...
The k-means algorithm for Bregman divergences

Bregman k-Means(P)

choose k initial centroids c1, . . . , ck ;

repeat
/* assignment step */

for i = 1, . . . , k do
Ci := set of points in P closest to ci with respect to dϕ;

/* update step */

for i = 1, . . . , k do
ci := c(Ci ) =

1
|Ci |

∑
p∈Ci

p;

until convergence;

return c1, . . . , ck and C1, . . . ,Ck

dϕ a Bregman divergence.
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