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The k-means problem and algorithm

m The k-means algorithm, also known as Lloyd's algorithm,
together with its variants is probably the most popular
clustering algorithm
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The k-means problem and algorithm

The k-means algorithm, also known as Lloyd's algorithm,
together with its variants is probably the most popular
clustering algorithm

k-means tries to find good solutions to k-median problems by
a simple two step approach

it has various shortcomings that do not seem to affect its
popularity

it can be very inefficient and find poor solutions

will also see a local improvement algorithms with provable
approximation guarantees
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The k-median problem

D:Mx M — RsoU {oo} dissimilarity measure

k-median problem

Given P C M,k € N, find C = {c1,...,c} C M that minimizes

c!s called centroids. For D = Dy the k-median problem is called
the k-means problem.




The k-median problem

D:Mx M — RsoU {oo} dissimilarity measure

k-median problem

Given P C M,k € N, find C = {c1,...,c} C M that minimizes

c!s called centroids. For D = Dy the k-median problem is called
the k-means problem.

m Given C = {c1,...,ck}, define
Ci:={p € P|Vj D(p,ci) < D(p,cj)}.

m If ties are broken, C := {Cy,..., Ck} is a partition of P.lL(‘mymmmgﬁmﬂ
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The k-median problem - notation

m CCM,|C|< o0,

D(x, C) := min D(x, c).

ceC
m P,CC M,|P|,|C| < o0,
D(P,C) = D(p,C)
peP

(D-) cost of P with respect to C
m keN,

cost?(P) := Ccl\Ti\2|:k D(P, C),

called k-median cost of P. "A(‘m,vwezsg',zm,'zsﬁz.e::::
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The k-median problem - again

k-median problem

Given P C M,k € N, find C = {ci,...,c} C M such that

D(P, C) = cost?(P).
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k-median problem - alternative view

m Given a subset Q C M

c2(Q) = argminycy > D(p.x).
pPEQ
is called the centroid of set Q (with respect to D)

m For a partition C = {Cy, ..., Cx} of set P, the cost of the
partition C is defined as the cost of the set of centroids

C={c2(q1),...,cP(C)}
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k-median problem - alternative view -

m Given a subset Q C M

c2(Q) = argminycy > D(p.x).
pPEQ
is called the centroid of set Q (with respect to D)

m For a partition C = {Cy, ..., Cx} of set P, the cost of the
partition C is defined as the cost of the set of centroids

C={c2(q1),...,cP(C)}

k-median problem - alternative definition

Given a set of points P C M and k € N, find a partition of P into
k subsets or clusters Cy, ..., Cx with corresponding set of centroids
C ={cP(G1),...,cP(C)} such that D(P, C) = cost?(P).




The k-means algorithm - idea

Idea of k-means

choose k initial centers

repeat the following steps until there is no improvement in
cost function
a) C; :=set of points closest to ¢;
b) ¢; := centroid of C;
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The k-means algorithm - idea

Idea of k-means

choose k initial centers

repeat the following steps until there is no improvement in
cost function
a) C; :=set of points closest to ¢;
b) ¢; := centroid of C;

What are the centroids (with respect to D)?

Does k-means converge? If so, how fast?
How good are the solutions found by k-means?

For which dissimilarity measures can it be applied?
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Centroids for Euclidean distance

Centroids for D,

m called Weber points

m can not be represented exactly using simple functions
(4, %, &/-,d € N) in original points
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Centroids for squared Euclidean distance

Lemma 2.1

For any finite set X C RY the centroid of X with respect to the
squared euclidean distance D,22 is given by the center of gravity of
the points in X, i.e.

1
c(X) = WZX

xeX

More precisely, for any y € R9:

Dp(X,y) = Dp(X, c(X)) + [X] - Dp(c(X), y).




The k-means algorithm

K-MEANS(P)

choose k initial centroids ¢y, ..., ck;

repeat

fori=1,...,kdo
‘ C; := set of points in P closest to ¢;;

fori=1,...,kdo
‘ ¢ :=c(C)= ‘é_| ZPEC,' p;

until convergence;

return c1,...,cc and Gy, ..., C
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The k-means algorithm

K-MEANS(P)

choose k initial centroids ¢y, ..., ck;
repeat

/* assignment step */
fori=1,...,kdo
‘ C; := set of points in P closest to ¢;;

fori=1,...,kdo
‘ ¢ :=c(C)= ‘é_| ZPEC,' p;

until convergence;

return c1,...,cc and Gy, ..., C

convergence: quality of solution no longer improves
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The k-means algorithm

K-MEANS(P)

choose k initial centroids ¢y, ..., ck;
repeat
/* assignment step */
fori=1,...,kdo

‘ C; := set of points in P closest to ¢;;

/* update step */
fori=1,...,kdo

‘ ¢ =c(G)= ‘él_| ZPEC,- p;

until convergence;

return c1,...,cc and Gy, ..., C

convergence: quality of solution no longer improves 'L(‘mmsg',Im:issm.?!m
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Let p,q € RY. The set of points x satisfying Dg(p,x) = Dg(q,x)
is given by the hyperplane orthogonal to q — p and containing the
midpoint (p + q)/2 of the line segment between p and q.
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The k-means algorithm - an example and useful lemma

Tﬂm“ml h

!

Let p,q € RY. The set of points x satisfying Dg(p,x) = Dg(q,x)
is given by the hyperplane orthogonal to q — p and containing the
midpoint (p + q)/2 of the line segment between p and q.
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li

Simple properties

Tﬂm“ml h

Algorithm K-MEANS always halts after a finite number of steps.

The number of assignment and update steps can be bounded by
O(k?-d)

n .
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Simple properties

Lemma 2.3

Algorithm K-MEANS always halts after a finite number of steps.

The number of assignment and update steps can be bounded by
O(k?-d)
n .

Lemma 2.4

| A\

For every n there exists a set P C R? with n = |P|, a number
k = ©(n) and initial centroids such that on input P K-MEANS
uses 2" assignment and update steps. If k = o(n), then the
lower bound on the number of assignment and update steps
becomes 29(K)

A
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Simple properties

Quality of solutions

Algorithm K-MEANS can get stuck in arbitrarily poor local minima.
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Simple properties

Quality of solutions
Algorithm K-MEANS can get stuck in arbitrarily poor local minima.

k-means cluster G

optimal cluster
G

k-means cluster C;
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li

Complexity of k-means

Tﬂm“ml h

The k-means problem is NP-complete. This remains true if
d =2 and k is arbitrary,

k =2 and d is arbitrary.
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Complexity of k-means

The k-means problem is NP-complete. This remains true if
d =2 and k is arbitrary,
k =2 and d is arbitrary.

Theorem 2.6

If P # NP, then there is a constant ¢ > 0 such that there is no
polynomial time algorithms that for any finite point set P C RY
and any k € N computes a set C,|C| = k, satisfying

D(P,C) < (1+¢)- costP(P). Here D = Dy is the squared
euclidean distance.

e




Bregman divergences

Definition 2.7

SCRY, S+, convex, ¢ : S — R differentiable, strictly convex
function. The Bregman divergence d4 associated to ¢ is defined by

SxS5 —= Ry
(x,y) = o(x) = oly) — (x—y,Vo(y)).
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Bregman divergences

SCRY, S+, convex, ¢ : S — R differentiable, strictly convex
function. The Bregman divergence d4 associated to ¢ is defined by

SxS5 —= Ry
(x,y) = o(x) = oly) — (x—y,Vo(y)).

Remarks

m Sconvex: Vx,y € S, Ae€[0,1]: A -x+(1—A)-yeS

Definition 2.7
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Bregman divergences

Definition 2.7

SCRY, S+, convex, ¢ : S — R differentiable, strictly convex
function. The Bregman divergence d4 associated to ¢ is defined by

SxS5 —= Ry
(x,y) = o(x) = oly) — (x—y,Vo(y)).

m Sconvex: Vx,y € S, Ae€[0,1]: A -x+(1—A)-yeS
m ¢ strictly convex: Vx,y € S, A € (0,1):
Ap(x)+ (1 =A)-d(y) > d(A-x+(1-A)-y)
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Bregman divergences

SxS5 —= Ry
(x,y) = o(x) = oly) — (x—y,Vo(y)).

m Sconvex: Vx,y € S,A€[0,1]:A-x+(1—-)X)-yeS
m ¢ strictly convex: Vx,y € S, A € (0,1):

A o)+ (1=A)-d(y) > d(A-x+(1=A)-y)
m (-,-) denotes inner product

Definition 2.7

SCRY, S+, convex, ¢ : S — R differentiable, strictly convex
function. The Bregman divergence d4 associated to ¢ is defined by
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Bregman divergences % )|<<

Definition 2.7

SCRY, S+, convex, ¢ : S — R differentiable, strictly convex
function. The Bregman divergence d4 associated to ¢ is defined by

SxS5 —= Ry
(x,y) = o(x) = oly) — (x—y,Vo(y)).

m Sconvex: Vx,y € S,A€[0,1]:A-x+(1—-)X)-yeS
m ¢ strictly convex: Vx,y € S, A € (0,1):

A o)+ (1=A)-d(y) > d(A-x+(1=A)-y)
m (-,-) denotes inner product

mg: RS R, (x1,...,x9) = g(x1,...,%g), then
8 8 ADERBORN
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Observation

Tﬂm“ml h

8K

Suppose ¢ : (a, b) — R has a continuous second derivative ¢"(+)
such that ¢'(x) > 0 for all x € (a, b), then ¢ is strictly convex.
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Suppose ¢ : (a, b) — R has a continuous second derivative ¢"(+)

such that ¢""(x) > 0 for all x € (a, b), then ¢ is strictly convex.

m Dp is the Bregman divergence associated to

d
2

o0x) = (x,x) =Y .

i=1
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Suppose ¢ : (a, b) — R has a continuous second derivative ¢"(+)

such that ¢""(x) > 0 for all x € (a, b), then ¢ is strictly convex.

m Dp is the Bregman divergence associated to

d
2

o0x) = (x,x) =Y .

i=1

m Dy, A € RY%9 positive definite, is the Bregman divergence

associated to ¢(x) = xT - A- x.
_/ \DERBORN
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mlm”mlh

Suppose ¢ : (a, b) — R has a continuous second derivative ¢"(+)
such that ¢""(x) > 0 for all x € (a, b), then ¢ is strictly convex.

E]E

m Dy, is the Bregman divergence associated to

d
o(x) = Zx,- log x;.
i=1
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Properties

Lemma 2.8

Bregman divergences are positive and reflexive.
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Lemma 2.8

Bregman divergences are positive and reflexive.

Let dy : S x S — R>q be a Bregman divergence and
X CS,|X| <oo. Then

1
c(X) = X ;x = argmin,csdy(X, y).
X

More precisely, for any y € S:

dy(X, y) = dp(X; c(X)) + |X] - dy(c(X), y)-

ADERBORN
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The k-means algorithm for Bregman divergences

BREGMAN K-MEANS(P)

choose k initial centroids ¢y, ..., ck;

repeat
/* assignment step */

fori=1,...,kdo

‘ Ci := set of points in P closest to ¢; with respect to d;
/* update step */
fori=1...,kdo

| = c(G) = 16 Xpec P

until convergence;

return ¢1,...,c and Cq,..., Cy

dy a Bregman divergence.
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