

 The k-means algorithm, also known as Lloyd's algorithm, together with its variants is probably the most popular clustering algorithm

- The k-means algorithm, also known as Lloyd's algorithm, together with its variants is probably the most popular clustering algorithm
- k-means tries to find good solutions to k-median problems by a simple two step approach

- The k-means algorithm, also known as Lloyd's algorithm, together with its variants is probably the most popular clustering algorithm
- k-means tries to find good solutions to k-median problems by a simple two step approach
- it has various shortcomings that do not seem to affect its popularity

- The k-means algorithm, also known as Lloyd's algorithm, together with its variants is probably the most popular clustering algorithm
- k-means tries to find good solutions to k-median problems by a simple two step approach
- it has various shortcomings that do not seem to affect its popularity
- it can be very inefficient and find poor solutions

- The k-means algorithm, also known as Lloyd's algorithm, together with its variants is probably the most popular clustering algorithm
- k-means tries to find good solutions to k-median problems by a simple two step approach
- it has various shortcomings that do not seem to affect its popularity
- it can be very inefficient and find poor solutions
- will also see a local improvement algorithms with provable approximation guarantees

 $D: M imes M o \mathbb{R}_{\geq 0} \cup \{\infty\}$ dissimilarity measure

k-median problem

Given $P \subset M, k \in \mathbb{N}$, find $C = \{c_1, \ldots, c_k\} \subset M$ that minimizes

$$\sum_{p\in P}\min_{1\leq i\leq k}D(p,c_i).$$

 $c_i's$ called centroids. For $D=D_{\ell_2^2}$ the k-median problem is called the k-means problem.

 $D: M imes M o \mathbb{R}_{\geq 0} \cup \{\infty\}$ dissimilarity measure

k-median problem

Given $P \subset M, k \in \mathbb{N}$, find $C = \{c_1, \ldots, c_k\} \subset M$ that minimizes

$$\sum_{p\in P}\min_{1\leq i\leq k}D(p,c_i).$$

 $c_i's$ called centroids. For $D=D_{\ell_2^2}$ the k-median problem is called the k-means problem.

• Given $C = \{c_1, \ldots, c_k\}$, define

$$C_i := \{ p \in P | \forall j \ D(p,c_i) \leq D(p,c_j) \}.$$

If ties are broken, $\mathcal{C} := \{C_1, \dots, C_k\}$ is a partition of P.

The k-median problem - notation

•
$$C \subset M, |C| < \infty$$
,

$$D(x, C) := \min_{c \in C} D(x, c).$$

• $P, C \subset M, |P|, |C| < \infty$,

$$D(P,C) := \sum_{p \in P} D(p,C)$$

(D-) cost of P with respect to C • $k \in \mathbb{N}$,

$$\operatorname{cost}_{k}^{D}(P) := \min_{C \subset M, |C|=k} D(P, C),$$

called k-median cost of P.

The k-median problem - again

k-median problem

Given $P \subset M, k \in \mathbb{N}$, find $C = \{c_1, \ldots, c_k\} \subset M$ such that

$$D(P,C) = \operatorname{cost}_k^D(P).$$

• Given a subset
$$Q \subset M$$

$$c^{D}(Q) := \operatorname{argmin}_{x \in M} \sum_{p \in Q} D(p, x).$$

is called the *centroid* of set Q (with respect to D)

■ For a partition C = {C₁,..., C_k} of set P, the cost of the partition C is defined as the cost of the set of centroids C = {c^D(C₁),..., c^D(C_k)}.

• Given a subset
$$Q \subset M$$

$$c^{D}(Q) := \operatorname{argmin}_{x \in M} \sum_{p \in Q} D(p, x).$$

is called the *centroid* of set Q (with respect to D)

For a partition C = {C₁,..., C_k} of set P, the cost of the partition C is defined as the cost of the set of centroids
 C = {c^D(C₁),..., c^D(C_k)}.

k-median problem - alternative definition

Given a set of points $P \subset M$ and $k \in \mathbb{N}$, find a partition of P into k subsets or clusters C_1, \ldots, C_k with corresponding set of centroids $C = \{c^D(C_1), \ldots, c^D(C_k)\}$ such that $D(P, C) = \operatorname{cost}_k^D(P)$.

PADERBORN

The k-means algorithm - idea

Idea of *k*-means

- 1 choose k initial centers
- **2** repeat the following steps until there is no improvement in cost function
 - a) $C_i :=$ set of points closest to c_i
 - b) $c_i := \text{centroid of } C_i$

The k-means algorithm - idea

Idea of *k*-means

- 1 choose k initial centers
- **2** repeat the following steps until there is no improvement in cost function
 - a) $C_i :=$ set of points closest to c_i
 - b) $c_i := \text{centroid of } C_i$

Questions

- 1 What are the centroids (with respect to *D*)?
- 2 Does k-means converge? If so, how fast?
- **3** How good are the solutions found by *k*-means?
- 4 For which dissimilarity measures can it be applied?

Centroids for Euclidean distance

Centroids for D_{l_2}

- called Weber points
- can not be represented exactly using simple functions $(+, \times, \sqrt[d]{\cdot}, d \in \mathbb{N})$ in original points

Lemma 2.1

For any finite set $X \subset \mathbb{R}^d$ the centroid of X with respect to the squared euclidean distance $D_{l_2^2}$ is given by the center of gravity of the points in X, i.e.

$$c(X) = \frac{1}{|X|} \sum_{x \in X} x.$$

More precisely, for any $y \in \mathbb{R}^d$:

 $D_{l_2^2}(X,y) = D_{l_2^2}(X,c(X)) + |X| \cdot D_{l_2^2}(c(X),y).$

 $ext{K-MEANS}(P)$

choose k initial centroids c_1, \ldots, c_k ;

repeat

for
$$i = 1, ..., k$$
 do
 $| C_i :=$ set of points in P closest to c_i ;
for $i = 1, ..., k$ do
 $| c_i := c(C_i) = \frac{1}{|C_i|} \sum_{p \in C_i} p$;

until *convergence*;

return c_1, \ldots, c_k and C_1, \ldots, C_k

 $\overline{\text{K-MEANS}(P)}$

choose k initial centroids c_1, \ldots, c_k ;

repeat

for
$$i = 1, ..., k$$
 do
 $| C_i := \text{ set of points in } P \text{ closest to } c_i$
for $i = 1, ..., k$ do
 $| c_i := c(C_i) = \frac{1}{|C_i|} \sum_{p \in C_i} p;$

;

until convergence;

return c_1, \ldots, c_k and C_1, \ldots, C_k

convergence: quality of solution no longer improves

*/

$\overline{\text{K-MEANS}(P)}$

choose k initial centroids c_1, \ldots, c_k ;

repeat

/* assignment step
for i = 1, ..., k do
| C_i := set of points in P closest to c_i;
for i = 1, ..., k do
| c_i := c(C_i) =
$$\frac{1}{|C_i|} \sum_{p \in C_i} p;$$

until convergence;

return c_1, \ldots, c_k and C_1, \ldots, C_k

convergence: quality of solution no longer improves

$\overline{\text{K-MEANS}(P)}$

choose k initial centroids c_1, \ldots, c_k ;

repeat

/* assignment step */
for
$$i = 1, ..., k$$
 do
| $C_i :=$ set of points in P closest to c_i ;
/* update step */
for $i = 1, ..., k$ do
| $c_i := c(C_i) = \frac{1}{|C_i|} \sum_{p \in C_i} p$;

until convergence;

return c_1, \ldots, c_k and C_1, \ldots, C_k

convergence: quality of solution no longer improves

Lemma 2.2

Let $p, q \in \mathbb{R}^d$. The set of points x satisfying $D_{\ell_2^2}(p, x) = D_{\ell_2^2}(q, x)$ is given by the hyperplane orthogonal to q - p and containing the midpoint (p + q)/2 of the line segment between p and q.

Lemma 2.2

Let $p, q \in \mathbb{R}^d$. The set of points x satisfying $D_{\ell_2^2}(p, x) = D_{\ell_2^2}(q, x)$ is given by the hyperplane orthogonal to q - p and containing the midpoint (p + q)/2 of the line segment between p and q.

Lemma 2.2

Let $p, q \in \mathbb{R}^d$. The set of points x satisfying $D_{\ell_2^2}(p, x) = D_{\ell_2^2}(q, x)$ is given by the hyperplane orthogonal to q - p and containing the midpoint (p + q)/2 of the line segment between p and q.

Lemma 2.3

Algorithm K-MEANS always halts after a finite number of steps. The number of assignment and update steps can be bounded by $n^{O(k^2 \cdot d)}$.

Lemma 2.3

Algorithm K-MEANS always halts after a finite number of steps. The number of assignment and update steps can be bounded by $n^{O(k^2 \cdot d)}$.

Lemma 2.4

For every n there exists a set $P \subset \mathbb{R}^2$ with n = |P|, a number $k = \Theta(n)$ and initial centroids such that on input P K-MEANS uses $2^{\Omega(n)}$ assignment and update steps. If k = o(n), then the lower bound on the number of assignment and update steps becomes $2^{\Omega(k)}$

Quality of solutions

Quality of solutions

Algorithm $\operatorname{K-MEANS}$ can get stuck in arbitrarily poor local minima.

а

(c)

Quality of solutions

Quality of solutions

Quality of solutions

Quality of solutions

Theorem 2.5

The k-means problem is NP-complete. This remains true if

- 1 d = 2 and k is arbitrary,
- **2** k = 2 and d is arbitrary.

Theorem 2.5

The k-means problem is **NP**-complete. This remains true if

- 1 d = 2 and k is arbitrary,
- **2** k = 2 and d is arbitrary.

Theorem 2.6

If $\mathbf{P} \neq \mathbf{NP}$, then there is a constant $\epsilon > 0$ such that there is no polynomial time algorithms that for any finite point set $P \subset \mathbb{R}^d$ and any $k \in \mathbb{N}$ computes a set C, |C| = k, satisfying $D(P, C) \leq (1 + \epsilon) \cdot \operatorname{cost}_k^D(P)$. Here $D = D_{\ell_2^2}$ is the squared euclidean distance.

Definition 2.7

 $S \subseteq \mathbb{R}^d, S \neq \emptyset$, convex, $\phi : S \to \mathbb{R}$ differentiable, strictly convex function. The Bregman divergence d_{ϕ} associated to ϕ is defined by

$$egin{array}{rcl} S imes S& o&\mathbb{R}_{\geq 0}\ (x,y)&\mapsto&\phi(x)-\phi(y)-\langle x-y,
abla\phi(y)
angle. \end{array}$$

Definition 2.7

 $S \subseteq \mathbb{R}^d, S \neq \emptyset$, convex, $\phi : S \to \mathbb{R}$ differentiable, strictly convex function. The Bregman divergence d_{ϕ} associated to ϕ is defined by

$$egin{array}{rcl} S imes S& o&\mathbb{R}_{\geq 0}\ (x,y)&\mapsto&\phi(x)-\phi(y)-\langle x-y,
abla \phi(y)
angle. \end{array}$$

Remarks

• S convex: $\forall x, y \in S, \lambda \in [0, 1] : \lambda \cdot x + (1 - \lambda) \cdot y \in S$

Definition 2.7

 $S \subseteq \mathbb{R}^d, S \neq \emptyset$, convex, $\phi : S \to \mathbb{R}$ differentiable, strictly convex function. The Bregman divergence d_{ϕ} associated to ϕ is defined by

$$egin{array}{rcl} \mathcal{S} imes \mathcal{S} & o & \mathbb{R}_{\geq 0} \ (x,y) & \mapsto & \phi(x) - \phi(y) - \langle x-y,
abla \phi(y)
angle. \end{array}$$

Remarks

- S convex: $\forall x, y \in S, \lambda \in [0, 1] : \lambda \cdot x + (1 \lambda) \cdot y \in S$
- ϕ strictly convex: $\forall x, y \in S, \lambda \in (0, 1)$: $\lambda \cdot \phi(x) + (1 - \lambda) \cdot \phi(y) > \phi(\lambda \cdot x + (1 - \lambda) \cdot y)$

ADERBORN tionsgesellischaft

Definition 2.7

 $S \subseteq \mathbb{R}^d, S \neq \emptyset$, convex, $\phi : S \to \mathbb{R}$ differentiable, strictly convex function. The Bregman divergence d_{ϕ} associated to ϕ is defined by

$$egin{array}{rcl} \mathcal{S} imes \mathcal{S} & o & \mathbb{R}_{\geq 0} \ (x,y) & \mapsto & \phi(x) - \phi(y) - \langle x - y,
abla \phi(y)
angle. \end{array}$$

Remarks

- S convex: $\forall x, y \in S, \lambda \in [0,1] : \lambda \cdot x + (1-\lambda) \cdot y \in S$
- ϕ strictly convex: $\forall x, y \in S, \lambda \in (0, 1)$: $\lambda \cdot \phi(x) + (1 - \lambda) \cdot \phi(y) > \phi(\lambda \cdot x + (1 - \lambda) \cdot y)$
- $\blacksquare \langle \cdot, \cdot \rangle$ denotes inner product

Definition 2.7

 $S \subseteq \mathbb{R}^d, S \neq \emptyset$, convex, $\phi : S \to \mathbb{R}$ differentiable, strictly convex function. The Bregman divergence d_{ϕ} associated to ϕ is defined by

$$egin{array}{rcl} S imes S& o&\mathbb{R}_{\geq 0}\ (x,y)&\mapsto&\phi(x)-\phi(y)-\langle x-y,
abla \phi(y)
angle. \end{array}$$

Remarks

- S convex: $\forall x, y \in S, \lambda \in [0,1] : \lambda \cdot x + (1-\lambda) \cdot y \in S$
- ϕ strictly convex: $\forall x, y \in S, \lambda \in (0, 1)$: $\lambda \cdot \phi(x) + (1 - \lambda) \cdot \phi(y) > \phi(\lambda \cdot x + (1 - \lambda) \cdot y)$
- $\blacksquare \langle \cdot, \cdot \rangle$ denotes inner product

•
$$g : \mathbb{R}^d \to \mathbb{R}, (x_1, \dots, x_d) \mapsto g(x_1, \dots, x_d)$$
, then
 $\nabla g(y) := \left(\frac{\partial g}{x_1}(y), \dots, \frac{\partial g}{x_d}(y)\right)$

Geometric interpretation

Suppose $\phi : (a, b) \to \mathbb{R}$ has a continuous second derivative $\phi''(\cdot)$ such that $\phi''(x) > 0$ for all $x \in (a, b)$, then ϕ is strictly convex.

Suppose $\phi : (a, b) \to \mathbb{R}$ has a continuous second derivative $\phi''(\cdot)$ such that $\phi''(x) > 0$ for all $x \in (a, b)$, then ϕ is strictly convex.

Examples

• $D_{l_2^2}$ is the Bregman divergence associated to

$$\phi(x) = \langle x, x \rangle = \sum_{i=1}^d x_i^2.$$

Suppose $\phi : (a, b) \to \mathbb{R}$ has a continuous second derivative $\phi''(\cdot)$ such that $\phi''(x) > 0$ for all $x \in (a, b)$, then ϕ is strictly convex.

Examples

• $D_{l_2^2}$ is the Bregman divergence associated to

$$\phi(\mathbf{x}) = \langle \mathbf{x}, \mathbf{x} \rangle = \sum_{i=1}^d x_i^2.$$

D_A, A ∈ ℝ^{d×d} positive definite, is the Bregman divergence associated to φ(x) = x^T ⋅ A ⋅ x.

Suppose $\phi : (a, b) \to \mathbb{R}$ has a continuous second derivative $\phi''(\cdot)$ such that $\phi''(x) > 0$ for all $x \in (a, b)$, then ϕ is strictly convex.

Examples

• D_{KL} is the Bregman divergence associated to

$$\phi(x) = \sum_{i=1}^d x_i \log x_i.$$

Lemma 2.8

Bregman divergences are positive and reflexive.

Lemma 2.8

Bregman divergences are positive and reflexive.

Lemma 2.9

Let $d_{\phi}: S \times S \to \mathbb{R}_{\geq 0}$ be a Bregman divergence and $X \subset S, |X| < \infty$. Then

$$c(X) := rac{1}{|X|} \sum_{x \in X} x = \operatorname{argmin}_{y \in S} d_{\phi}(X, y).$$

More precisely, for any $y \in S$:

$$d_{\phi}(X,y) = d_{\phi}(X,c(X)) + |X| \cdot d_{\phi}(c(X),y).$$

ADERBORN

Proof sketch for Lemma 2.8

BREGMAN K-MEANS(P)

```
choose k initial centroids c_1, \ldots, c_k;
```

repeat

until convergence;

return c_1, \ldots, c_k and C_1, \ldots, C_k

 d_{ϕ} a Bregman divergence.

