k-means ++ seeding

■ Have seen that the k-means algorithm can output arbitrarily poor solutions, if started with a bad set of initial centroids
■ k-means++ is a simple, probabilistic algorithm to compute initial centroids

- These centroids are already a reasonably good solution for the k-problem (provably)
- In practice, combining k-means++ seeding wit a few rounds of the k-means algorithm usually leads to very good solutions to the k-means problem.

k-means ++ seeding

Notation

■ D denotes the squared Euclidean distance, $P \subset \mathbb{R}^{d},|P|<\infty$
$■ x \in \mathbb{R}^{d}, C \subset \mathbb{R}^{d},|C|<\infty, D(x, C):=\min _{c \in C} D(x, c)$

- $A \subseteq P: D(A, C):=\sum_{a \in A} D(a, C)$
- $C,|C|=k$, set of centroids with corresponding set of clusters $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$, both simply called clustering.
■ For $A \subseteq P$ denote by $D_{\mathrm{opt}}(A):=D\left(A, C_{\mathrm{opt}}\right), C_{\mathrm{opt}}:=$ optimal k-clustering, the contribution of A to the cost of an optimal clustering.
- Write $\operatorname{cost}_{k}(P)$ instead of $\operatorname{cost}_{k}^{D}(P)$.

■ If $A \in C_{\text {opt }}$, then $D_{\text {opt }}(A)=\operatorname{cost}_{1}(A)$.

k-means++ seeding - distribution

k-means++ distribution

For any set $C \subset \mathbb{R}^{d},|C|<\infty$, denote by $p_{C}(\cdot)$ the distribution on P defined by

$$
\forall p \in P: p_{C}(p):=\frac{D(p, C)}{D(P, C)}
$$

k-means + + seeding - algorithm

K-MEAns $++(P, k)$
choose $c \in P$ uniformly at random, $C:=\{c\}$;
repeat
chosse $c \in P$ according to distribution $p_{c}(\cdot)$; $C:=C \cup\{c\} ;$
until $|C|=k$;
run k-Means on P with initial centers C;
return C;

k-means++ seeding - main theorem

Theorem 4.1

For any finite set of points $P \subset \mathbb{R}^{d}$ and any $k \in \mathbb{N}$, algorithm k-MEANS ++ computes a k-clustering C of P such that

$$
E[D(P, C)] \leq 8 \cdot(2+\ln k) \cdot o p t_{k}(P)
$$

k-means++ seeding - main lemmas

Lemma 4.2

Let $A \subseteq P$ be a cluster of $C_{\text {opt }}$. If $a \in A$ is chosen uniformly at random from P, then

$$
E[D(A,\{a\}) \mid a \in A]=2 \cdot D_{\text {opt }}(A) .
$$

k-means++ seeding - main lemmas

Lemma 4.2

Let $A \subseteq P$ be a cluster of $C_{\text {opt }}$. If $a \in A$ is chosen uniformly at random from P, then

$$
E[D(A,\{a\}) \mid a \in A]=2 \cdot D_{\text {opt }}(A) .
$$

Lemma 4.3

Let $A \subseteq P$ be a cluster of $C_{\text {opt }}$ and let $C,|C|<k$, be arbitrary. If a is chosen according to $p_{C}(\cdot)$, then

$$
E[D(A, C \cup\{a\}) \mid a \in A] \leq 8 \cdot D_{\text {opt }}(A) .
$$

k-means++ seeding - main lemmas

Lemma 4.4

Let $0<u<k, 0 \leq t \leq u$. Let P^{u} be the union of u different clusters of $C_{\text {opt }}$ and set $P^{c}:=P \backslash P^{u}$. Finally, let $B \subseteq P^{c}$ and set $C_{0}:=B$ and $C_{j}:=C_{j-1} \cup\left\{a_{j}\right\}, j=1, \ldots, t$, where a_{j} is chosen according to $p_{C_{j-1}}$. Then

$$
\begin{aligned}
& E\left[D\left(P, C_{t}\right)\right] \leq\left(1+H_{t}\right)\left(D\left(P^{c}, B\right)+8 \cdot D_{\text {opt }}\left(P^{u}\right)\right) \\
& +\frac{u-t}{u} \cdot D\left(P^{u}, B\right),
\end{aligned}
$$

where $H_{t}=\sum_{i=1}^{t} \frac{1}{i}$.

