The k-variance problem

Orthogonal projections

- If $V \subseteq \mathbb{R}^{d}$, then $V^{\perp}:=\left\{y \in \mathbb{R}^{d} \mid \forall x \in V:\langle y, x\rangle=0\right\}$ is the orthogonal complement of V
- $V \cap V^{\perp}=\{0\}$ and for all $x \in \mathbb{R}^{d}$ there exist unique $x^{\prime} \in V, x^{\prime \prime} \in V^{\perp}$ with $x=x^{\prime}+x^{\prime \prime}$
■ $\pi_{V}: \mathbb{R}^{d} \rightarrow V, \pi_{V}(x)=x^{\prime}$, orthogonal projection onto $V, x^{\prime \prime}$ denoted $\pi_{V}(x)^{\perp}$.
- If $\operatorname{dim}(V)=1, V=\operatorname{span}(v)$, then

$$
\pi_{v}(x)=\frac{\langle x, v\rangle}{\langle v, v\rangle} v \quad \text { and } \quad \pi_{v}(x)^{\perp}=x-\frac{\langle x, v\rangle}{\langle v, v\rangle} v
$$

The k-variance problem

Problem 5.1 (k-variance problem)
Given $P \subset \mathbb{R}^{d},|P|=n$ and $k \in \mathbb{N}$, Find the k-dimensional subspace V_{k} that minimizes

$$
D(P, V):=\sum_{p \in P}\left\|p-\pi_{V}(p)\right\|^{2}
$$

The subspace V_{k} is called the (k-dimensional) singular value decomposition of P.

Characterization of optimal subspace

Lemma 5.2
For all $P \subset \mathbb{R}^{d}$

$$
\begin{aligned}
& V_{k}=\operatorname{argmin}_{V: \operatorname{dim}(V)=k}\{D(P, V)\} \\
& \\
& \qquad V_{k}=\operatorname{argmax}_{V: \operatorname{dim}(V)=k}\left\{\sum_{p \in P}\left\|\pi_{V}(p)\right\|^{2}\right\} .
\end{aligned}
$$

More generally, for every subspace $V \subseteq \mathbb{R}^{d}$

$$
D(P, V)=\sum_{q \in P}\|q\|^{2}-\sum_{q \in P}\left\|\pi_{V}(q)\right\|^{2} .
$$

Complexity and relation to k-means

Theorem 5.3
For every $P \subset \mathbb{R}^{d}$ and $k \in \mathbb{N}$ the subspace V_{k} minimizing $D(P, V)$ can be computed efficiently.

Lemma 5.4
For every $P \subset \mathbb{R}^{d}$ and $k \in \mathbb{N}$

$$
D\left(P, V_{k}\right) \leq o p t_{k}(P)
$$

Spectral algorithms

Spectral algorithms
Given $P \subset \mathbb{R}^{d}$,
1 compute the singular value decomposition V_{k}, i.e. the subspace minimizing $D(P, V)$,
2 solve your favorite clustering problem with your favorite algorithm on input $\pi v_{k}(P):=\left\{\pi v_{k}(p): p \in P\right\}$,
3 return the solution found in the previous step.

Definition 5.5
Let $V \subseteq \mathbb{R}^{d}$ be a k-dimensional subspace of \mathbb{R}^{d} and let $B=\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis of V. Basis B is an orthonormal basis (ONB) of V if

$$
\begin{aligned}
& 1 \quad\left\|v_{i}\right\|=1, i=1, \ldots, k \\
& 2\left\langle v_{i}, v_{j}\right\rangle=0 \text { for } i \neq j, i, j=1, \ldots, n .
\end{aligned}
$$

Theorem 5.6
Every subspace $V \subseteq \mathbb{R}^{d}$ has an orthonormal basis. Moreover, any orthonormal basis of V can be extended to an orthonormal basis of \mathbb{R}^{d}.

Length-preserving linear maps

■ $V \subseteq \mathbb{R}^{d}$ subspace with orthonormal basis $B_{V}=\left\{v_{1}, \ldots, v_{k}\right\}$.

- $U \in \mathbb{R}^{k \times d}$ matrix with rows $v_{1}^{T}, \ldots, v_{k}^{T}$.
- Π_{V} denotes function $\Pi_{V}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, x \mapsto U \cdot x$

Theorem 5.7
The linear function Π_{V} has the following properties:
$1 \Pi_{V}$ is surjective.
$2 \Pi_{V}$ is length-preserving on V, i.e. for all $x \in V:\|x\|=\left\|\Pi_{V}(x)\right\|$.

Spectral algorithms revisited

Spectral algorithms
Given $P \subset \mathbb{R}^{d}$,
1 compute the singular value decomposition V_{k}, i.e. the subspace minimizing $D(P, V)$,
2 solve your favorite clustering problem with your favorite algorithm on input $\pi_{v_{k}}(P):=\left\{\pi_{v_{k}}(p): p \in P\right\}$, i.e. compute an orthonormal basis for V_{k} and apply your favorite clustering algorithm on the set $\Pi_{V_{k}}\left(\pi_{V_{k}}(P)\right)$
3 return the solution found in the previous step.

Lemma 5.8
Let $P \subset \mathbb{R}^{d}$ and let V be an arbitrary k-dimensional subspace of \mathbb{R}^{d}. Then

$$
\operatorname{opt}_{k}\left(\pi_{V}(P)\right) \leq \operatorname{opt}_{k}(P)
$$

where opt $t_{k}(P)$ denotes the cost of an optimal solution of k-means with input P.

Lemma 5.9

Let $P \subset \mathbb{R}^{d}$ and let V be an arbitrary k-dimensional subspace of \mathbb{R}^{d}. Assume $\hat{\mathcal{C}}=\left\{\hat{C}_{1}, \ldots, \hat{C}_{k}\right\}$ is a k-clustering of $\pi_{V}(P)$ and denote by $\mathcal{C}:=\left\{C_{1}, \ldots, C_{k}\right\}$ with $C_{i}:=\left\{p \in P: \pi_{V}(p) \in \hat{C}_{i}\right\}$, the corresponding k-clustering of P. Then

$$
\operatorname{cost}\left(\pi_{V}(P), \hat{\mathcal{C}}\right) \leq \operatorname{cost}(P, \mathcal{C}) \leq \operatorname{cost}\left(\pi_{V}(P), \hat{\mathcal{C}}\right)+D(P, V)
$$

Approximation guarantees for spectral algorithms

Spectral algorithms

Given $P \subset \mathbb{R}^{d}$,
1 compute the singular value decomposition V_{k}, i.e. the subspace minimizing $D(P, C)$,
2 solve your favorite clustering problem with your favorite algorithm on input $\pi_{v_{k}}(P):=\left\{\pi_{v_{k}}(p): p \in P\right\}$,
3 return the solution found in the previous step.
Theorem 5.10
Let $P \subset \mathbb{R}^{d}$ and let V_{k} be the k-dimensional subspace of \mathbb{R}^{d} minimizing $D(P, V)$. If $\hat{\mathcal{C}}$ is a γ-approximate k-clustering for $\pi_{v_{k}}(P)$, then the corresponding k-clustering \mathcal{C} as defined in the previous lemma is a $(\gamma+1)$-approximate k-clustering for P.

An excact algorithm for k-means

```
ExACT-K-MEANS(P,k)
Compute the set K}\mathrm{ of sets of t hyperplanes with k}\leqt\leq(\begin{array}{l}{k}\\{2}\end{array})\mathrm{ where each
    hyperplane contains d affinely independent points from P;
for S }\in
    check that S defines an arrangement of exactly k cells;
        for all assignments as of points of P on hyperplanes in S to cells do
                        for all cells do
                        compute the centroid of points of P in the cell;
        end
        C}\mp@subsup{C}{S,\mp@subsup{a}{s}{}}{}:=\mathrm{ set of centroids computed in the previous step;
        end
```



```
end
return argmin}\mp@subsup{C}{S}{}{D(P,\mp@subsup{C}{S}{})}
```


An excact algorithm for k-means

Theorem 5.11
Algorithm Exact-K-Means solves the k-means problem optimally in time $O\left(n^{d k^{2} / 2}\right)$.

A spectral approximation algorithm
$\overline{\operatorname{SpECTRAL}-K-M E A N S}(P, k)$
Compute $V_{k}:=\operatorname{argmin}_{V: \operatorname{dim}}(V)=k\{D(P, V)\}$;
$\bar{C}:=\operatorname{ExACT}-K-\operatorname{MEANS}\left(\pi v_{k}(P), k\right)$;
return \bar{C};

Theorem 5.12
Spectral-K-Means is an approximation algorithm for the k-means problem with running time $O\left(n \cdot d^{2}+n^{k^{3} / 2}\right)$ and approximation factor 2 .

Matrix representation of point sets

- $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$
- matrix $A \in \mathbb{R}^{d \times n}$ with columns p_{i} called matrix representation of P
- rows of $A^{T} \in \mathbb{R}^{n \times d}$ are p_{i}^{T}
- for every $v \in \mathbb{R}^{d}$:
- $A^{T} \cdot v=\left(\left\langle p_{1}, v\right\rangle, \ldots,\left\langle p_{n}, v\right\rangle\right)^{T} \in \mathbb{R}^{n}$
- $\left\|A^{T} \cdot v\right\|^{2}=v^{T} \cdot A \cdot A^{T} \cdot v=\sum_{i=1}^{n}\left\langle p_{i}, v\right\rangle^{2}$

Characterization of k-variance solutions

Theorem 5.13
For every set of points $P \subset \mathbb{R}^{d},|P|=n$, with matrix representation $A \in \mathbb{R}^{d \times n}$:

$$
\begin{aligned}
\operatorname{argmax}_{V: \operatorname{dim}(V)=k} & \left\{\sum_{p \in P}\left\|\pi_{V}(p)\right\|^{2}\right\}= \\
& \operatorname{argmax}_{O N B} B:|B|=k\left\{\sum_{v \in B} v^{T} \cdot A \cdot A^{T} \cdot v\right\}
\end{aligned}
$$

Eigenvalues and eigenvectors

Definition 5.14
Let $M \in \mathbb{R}^{d \times d}, \lambda \in \mathbb{R}$ and $v \in \mathbb{R}^{d}, v \neq 0$. Then λ is called an eigenvalue of M to eigenvector v (and vice versa) if $M \cdot v=\lambda \cdot v$.

Theorem 5.15
For every $A \in \mathbb{R}^{d \times n}$ the matrix $M=A \cdot A^{T} \in \mathbb{R}^{d \times d}$ has non-negative eigenvalues $\lambda_{1} \geq \cdots \lambda_{d} \geq 0$. Moreover, there is an orthonormal basis $B=\left\{v_{1}, \ldots, v_{d}\right\}$ such that λ_{i} is an eigenvalue of M to eigenvector $v_{i}, i=1, \ldots, d$.

Solutions to the k-variance problem

Theorem 5.16
Let $P \subset \mathbb{R}^{d}$ be a finite set of points with matrix representation $A \in \mathbb{R}^{d \times n}$ and $k \in \mathbb{N}$. If $A \cdot A^{T}$ has eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{d}$ and $B=\left\{v_{1}, \ldots, v_{d}\right\}$ is an orthonormal basis consisting of eigenvectors, i.e. v_{i} is an eigenvector to eigenvalue $\lambda_{i}, i=1 \ldots, d$, then

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}=\operatorname{argmin}_{V: \operatorname{dim}(V)=k}\{D(P, V)\} .
$$

Singular values and vectors

- $M \in \mathbb{R}^{n \times d}$,
- case $d=n: v \in \mathbb{R}^{d}$ eigenvector to eigenvalue σ if $M \cdot v=\sigma \cdot v$
- generalization to $n \neq d$?
- can one compute eigenvectors and eigenvalues of $A \cdot A^{T}$ without computing the matrix product?

Singular vectors and singular values
$\sigma \in \mathbb{R}$ is called singular value of M with corresponding singular vectors $v \in \mathbb{R}^{d}, u \in \mathbb{R}^{n}$ if
$1 M \cdot v=\sigma \cdot u$
$2 u^{T} \cdot M=\sigma \cdot v^{T}$.

Eigenvectors and singular vectors

Lemma 5.17
Let $M \in \mathbb{R}^{n \times d}$. Then $\sigma \in \mathbb{R}$ is a singular value of M with corresponding singular vectors $v \in \mathbb{R}^{d}$ and $u \in \mathbb{R}^{n}$ if and only if
$1 \sigma^{2}$ is an eigenvalue of $M^{T} \cdot M$,
$2 v$ is a right eigenvector of $M^{T} \cdot M$ to eigenvalue σ^{2},
$3 u^{T}$ is a left eigenvector of $M \cdot M^{T}$ to eigenvalue σ^{2}.

