

• If
$$V \subseteq \mathbb{R}^d$$
, then $V^{\perp} := \{y \in \mathbb{R}^d \mid \forall x \in V : \langle y, x \rangle = 0\}$ is the orthogonal complement of V

- If $V \subseteq \mathbb{R}^d$, then $V^{\perp} := \{y \in \mathbb{R}^d \mid \forall x \in V : \langle y, x \rangle = 0\}$ is the orthogonal complement of V
- $V \cap V^{\perp} = \{0\}$ and for all $x \in \mathbb{R}^d$ there exist unique $x' \in V, x'' \in V^{\perp}$ with x = x' + x''

- If $V \subseteq \mathbb{R}^d$, then $V^{\perp} := \{y \in \mathbb{R}^d \mid \forall x \in V : \langle y, x \rangle = 0\}$ is the orthogonal complement of V
- $V \cap V^{\perp} = \{0\}$ and for all $x \in \mathbb{R}^d$ there exist unique $x' \in V, x'' \in V^{\perp}$ with x = x' + x''
- $\pi_V : \mathbb{R}^d \to V, \pi_V(x) = x'$, orthogonal projection onto V, x'' denoted $\pi_V(x)^{\perp}$.

- If $V \subseteq \mathbb{R}^d$, then $V^{\perp} := \{y \in \mathbb{R}^d \mid \forall x \in V : \langle y, x \rangle = 0\}$ is the orthogonal complement of V
- $V \cap V^{\perp} = \{0\}$ and for all $x \in \mathbb{R}^d$ there exist unique $x' \in V, x'' \in V^{\perp}$ with x = x' + x''
- $\pi_V : \mathbb{R}^d \to V, \pi_V(x) = x'$, orthogonal projection onto V, x'' denoted $\pi_V(x)^{\perp}$.
- If $\dim(V) = 1, V = \operatorname{span}(v)$, then

$$\pi_V(x) = rac{\langle x,v
angle}{\langle v,v
angle} v \quad ext{and} \quad \pi_V(x)^\perp = x - rac{\langle x,v
angle}{\langle v,v
angle} v$$

Problem 5.1 (k-variance problem)

Given $P \subset \mathbb{R}^d$, |P| = n and $k \in \mathbb{N}$, Find the k-dimensional subspace V_k that minimizes

$$D(P,V) := \sum_{p \in P} \|p - \pi_V(p)\|^2.$$

The subspace V_k is called the (k-dimensional) singular value decomposition of P.

Characterization of optimal subspace

Lemma 5.2

For all $P \subset \mathbb{R}^d$

$$V_{k} = \operatorname{argmin}_{V:\dim(V)=k} \{D(P, V)\}$$
$$\Leftrightarrow V_{k} = \operatorname{argmax}_{V:\dim(V)=k} \left\{ \sum_{p \in P} \|\pi_{V}(p)\|^{2} \right\}$$

More generally, for every subspace $V \subseteq \mathbb{R}^d$

$$D(P, V) = \sum_{q \in P} \|q\|^2 - \sum_{q \in P} \|\pi_V(q)\|^2.$$

Theorem 5.3

For every $P \subset \mathbb{R}^d$ and $k \in \mathbb{N}$ the subspace V_k minimizing D(P, V) can be computed efficiently.

Complexity and relation to k-means

Theorem 5.3

For every $P \subset \mathbb{R}^d$ and $k \in \mathbb{N}$ the subspace V_k minimizing D(P, V) can be computed efficiently.

Lemma 5.4

For every $P \subset \mathbb{R}^d$ and $k \in \mathbb{N}$

 $D(P, V_k) \leq opt_k(P).$

Spectral algorithms

Spectral algorithms

Given $P \subset \mathbb{R}^d$,

- **I** compute the singular value decomposition V_k , i.e. the subspace minimizing D(P, V),
- 2 solve your favorite clustering problem with your favorite algorithm on input $\pi_{V_k}(P) := \{\pi_{V_k}(p) : p \in P\}$,
- **3** return the solution found in the previous step.

Orthonormal bases

Definition 5.5

Let $V \subseteq \mathbb{R}^d$ be a k-dimensional subspace of \mathbb{R}^d and let $B = \{v_1, \ldots, v_k\}$ be a basis of V. Basis B is an orthonormal basis (ONB) of V if

1
$$||v_i|| = 1, i = 1, \dots, k$$

2
$$\langle v_i, v_j \rangle = 0$$
 for $i \neq j, i, j = 1, \dots, n$.

Definition 5.5

Let $V \subseteq \mathbb{R}^d$ be a k-dimensional subspace of \mathbb{R}^d and let $B = \{v_1, \ldots, v_k\}$ be a basis of V. Basis B is an orthonormal basis (ONB) of V if

1
$$||v_i|| = 1, i = 1, \dots, k$$

2
$$\langle v_i, v_j \rangle = 0$$
 for $i \neq j, i, j = 1, \dots, n$.

Theorem 5.6

Every subspace $V \subseteq \mathbb{R}^d$ has an orthonormal basis. Moreover, any orthonormal basis of V can be extended to an orthonormal basis of \mathbb{R}^d .

• $V \subseteq \mathbb{R}^d$ subspace with orthonormal basis $B_V = \{v_1, \ldots, v_k\}$.

V ⊆ ℝ^d subspace with orthonormal basis B_V = {v₁,..., v_k}.
U ∈ ℝ^{k×d} matrix with rows v₁^T,..., v_k^T.

- $V \subseteq \mathbb{R}^d$ subspace with orthonormal basis $B_V = \{v_1, \ldots, v_k\}$.
- $U \in \mathbb{R}^{k \times d}$ matrix with rows v_1^T, \ldots, v_k^T .
- Π_V denotes function $\Pi_V : \mathbb{R}^d \to \mathbb{R}^k, x \mapsto U \cdot x$

- $V \subseteq \mathbb{R}^d$ subspace with orthonormal basis $B_V = \{v_1, \ldots, v_k\}$.
- $U \in \mathbb{R}^{k \times d}$ matrix with rows v_1^T, \ldots, v_k^T .
- Π_V denotes function $\Pi_V : \mathbb{R}^d \to \mathbb{R}^k, x \mapsto U \cdot x$

• $V \subseteq \mathbb{R}^d$ subspace with orthonormal basis $B_V = \{v_1, \ldots, v_k\}$.

- $U \in \mathbb{R}^{k \times d}$ matrix with rows v_1^T, \ldots, v_k^T .
- Π_V denotes function $\Pi_V : \mathbb{R}^d \to \mathbb{R}^k, x \mapsto U \cdot x$

Theorem 5.7

The linear function Π_V has the following properties:

- **1** Π_V is surjective.
- 2 Π_V is length-preserving on V, i.e. for all $x \in V : ||x|| = ||\Pi_V(x)||.$

Spectral algorithms revisited

Spectral algorithms

Given $P \subset \mathbb{R}^d$,

- **I** compute the singular value decomposition V_k , i.e. the subspace minimizing D(P, V),
- 2 solve your favorite clustering problem with your favorite algorithm on input $\pi_{V_k}(P) := \{\pi_{V_k}(p) : p \in P\}$,

3 return the solution found in the previous step.

Spectral algorithms revisited

Spectral algorithms

Given $P \subset \mathbb{R}^d$,

- **I** compute the singular value decomposition V_k , i.e. the subspace minimizing D(P, V),
- 2 solve your favorite clustering problem with your favorite algorithm on input $\pi_{V_k}(P) := \{\pi_{V_k}(p) : p \in P\}$, i.e. compute an orthonormal basis for V_k and apply your favorite clustering algorithm on the set $\Pi_{V_k}(\pi_{V_k}(P))$
- **3** return the solution found in the previous step.

k-variance and k-means

Lemma 5.8

Let $P \subset \mathbb{R}^d$ and let V be an arbitrary k-dimensional subspace of $\mathbb{R}^d.$ Then

 $opt_k(\pi_V(P)) \leq opt_k(P),$

where $opt_k(P)$ denotes the cost of an optimal solution of k-means with input P.

k-variance and k-means

Lemma 5.9

Let $P \subset \mathbb{R}^d$ and let V be an arbitrary k-dimensional subspace of \mathbb{R}^d . Assume $\hat{C} = \{\hat{C}_1, \ldots, \hat{C}_k\}$ is a k-clustering of $\pi_V(P)$ and denote by $\mathcal{C} := \{C_1, \ldots, C_k\}$ with $C_i := \{p \in P : \pi_V(p) \in \hat{C}_i\}$, the corresponding k-clustering of P. Then

 $cost(\pi_V(P), \hat{C}) \leq cost(P, C) \leq cost(\pi_V(P), \hat{C}) + D(P, V).$

Spectral algorithms

Given $P \subset \mathbb{R}^d$,

- **1** compute the singular value decomposition V_k , i.e. the subspace minimizing D(P, C),
- 2 solve your favorite clustering problem with your favorite algorithm on input $\pi_{V_k}(P) := \{\pi_{V_k}(p) : p \in P\}$,
- **3** return the solution found in the previous step.

Theorem 5.10

Let $P \subset \mathbb{R}^d$ and let V_k be the k-dimensional subspace of \mathbb{R}^d minimizing D(P, V). If \hat{C} is a γ -approximate k-clustering for $\pi_{V_k}(P)$, then the corresponding k-clustering C as defined in the previous lemma is a $(\gamma + 1)$ -approximate k-clustering for P.

ADERBORN tionsgeselischeft

EXACT-K-MEANS(P, k)

```
Compute the set K of sets of t hyperplanes with k \le t \le {k \choose 2} where each hyperplane contains d affinely independent points from P;
```

```
for S \in K do
```

```
check that S defines an arrangement of exactly k cells;
```

```
for all assignments a<sub>S</sub> of points of P on hyperplanes in S to cells do
for all cells do
```

compute the centroid of points of P in the cell;

end

```
C_{S,a_s} := set of centroids computed in the previous step;
```

end

$$C_{\mathcal{S}} := \operatorname{argmin}_{C_{\mathcal{S},a_{\mathcal{S}}}} \{ D(P, C_{\mathcal{S},a_{\mathcal{S}}}) \};$$

end

return $\operatorname{argmin}_{C_{S}} \{ D(P, C_{S}) \};$

Theorem 5.11

Algorithm EXACT-K-MEANS solves the k-means problem optimally in time $O(n^{dk^2/2})$.

Spectral-K-Means(P, k)

Compute $V_k := \operatorname{argmin}_{V:\dim(V)=k} \{D(P, V)\};$ $\overline{C} := \operatorname{EXACT-K-MEANS}(\pi_{V_k}(P), k);$ return $\overline{C};$

Spectral-K-Means(P, k)

Compute $V_k := \operatorname{argmin}_{V:\dim(V)=k} \{D(P, V)\};$ $\overline{C} := \operatorname{EXACT-K-MEANS}(\pi_{V_k}(P), k);$ return $\overline{C};$

Theorem 5.12

SPECTRAL-K-MEANS is an approximation algorithm for the k-means problem with running time $O(n \cdot d^2 + n^{k^3/2})$ and approximation factor 2.

$$\bullet P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$$

$$\bullet P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$$

■ matrix $A \in \mathbb{R}^{d \times n}$ with columns p_i called *m*atrix representation of *P*

$$\bullet P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$$

- matrix $A \in \mathbb{R}^{d \times n}$ with columns p_i called matrix representation of P
- rows of $A^T \in \mathbb{R}^{n \times d}$ are p_i^T

$$\bullet P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$$

- matrix $A \in \mathbb{R}^{d \times n}$ with columns p_i called *m*atrix representation of *P*
- rows of $A^T \in \mathbb{R}^{n \times d}$ are p_i^T
- for every $v \in \mathbb{R}^d$:

$$\bullet P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$$

- matrix $A \in \mathbb{R}^{d \times n}$ with columns p_i called *m*atrix representation of *P*
- rows of $A^T \in \mathbb{R}^{n \times d}$ are p_i^T
- for every $v \in \mathbb{R}^d$: • $A^T \cdot v = (\langle p_1, v \rangle, \dots, \langle p_n, v \rangle)^T \in \mathbb{R}^n$

$$\bullet P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^d$$

- matrix $A \in \mathbb{R}^{d \times n}$ with columns p_i called matrix representation of P
- rows of $A^T \in \mathbb{R}^{n \times d}$ are p_i^T
- for every $v \in \mathbb{R}^d$: • $A^T \cdot v = (\langle p_1, v \rangle, \dots, \langle p_n, v \rangle)^T \in \mathbb{R}^n$ • $\|A^T \cdot v\|^2 = v^T \cdot A \cdot A^T \cdot v = \sum_{i=1}^n \langle p_i, v \rangle^2$

Theorem 5.13

For every set of points $P \subset \mathbb{R}^d$, |P| = n, with matrix representation $A \in \mathbb{R}^{d \times n}$:

$$argmax_{V:\dim(V)=k} \left\{ \sum_{p \in P} \|\pi_V(p)\|^2 \right\} = argmax_{ONB \ B \ : \ |B|=k} \left\{ \sum_{v \in B} v^T \cdot A \cdot A^T \cdot v \right\}$$

Eigenvalues and eigenvectors

Definition 5.14

Let $M \in \mathbb{R}^{d \times d}$, $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^d$, $v \neq 0$. Then λ is called an eigenvalue of M to eigenvector v (and vice versa) if $M \cdot v = \lambda \cdot v$.

Eigenvalues and eigenvectors

Definition 5.14

Let $M \in \mathbb{R}^{d \times d}$, $\lambda \in \mathbb{R}$ and $v \in \mathbb{R}^d$, $v \neq 0$. Then λ is called an eigenvalue of M to eigenvector v (and vice versa) if $M \cdot v = \lambda \cdot v$.

Theorem 5.15

For every $A \in \mathbb{R}^{d \times n}$ the matrix $M = A \cdot A^T \in \mathbb{R}^{d \times d}$ has non-negative eigenvalues $\lambda_1 \ge \cdots \lambda_d \ge 0$. Moreover, there is an orthonormal basis $B = \{v_1, \dots, v_d\}$ such that λ_i is an eigenvalue of M to eigenvector $v_i, i = 1, \dots, d$.

Theorem 5.16

Let $P \subset \mathbb{R}^d$ be a finite set of points with matrix representation $A \in \mathbb{R}^{d \times n}$ and $k \in \mathbb{N}$. If $A \cdot A^T$ has eigenvalues $\lambda_1 \ge \cdots \ge \lambda_d$ and $B = \{v_1, \dots, v_d\}$ is an orthonormal basis consisting of eigenvectors, i.e. v_i is an eigenvector to eigenvalue $\lambda_i, i = 1..., d$, then

$$span\{v_1,\ldots,v_k\} = argmin_{V:dim(V)=k}\{D(P,V)\}.$$

•
$$M \in \mathbb{R}^{n \times d}$$
,

•
$$M \in \mathbb{R}^{n \times d}$$
,

• case d = n: $v \in \mathbb{R}^d$ eigenvector to eigenvalue σ if $M \cdot v = \sigma \cdot v$

•
$$M \in \mathbb{R}^{n \times d}$$
,

- case d = n: $v \in \mathbb{R}^d$ eigenvector to eigenvalue σ if $M \cdot v = \sigma \cdot v$
- generalization to $n \neq d$?

- $M \in \mathbb{R}^{n \times d}$,
- case d = n: $v \in \mathbb{R}^d$ eigenvector to eigenvalue σ if $M \cdot v = \sigma \cdot v$
- generalization to $n \neq d$?
- can one compute eigenvectors and eigenvalues of *A* · *A*^{*T*} without computing the matrix product?

- $M \in \mathbb{R}^{n \times d}$,
- case d = n: $v \in \mathbb{R}^d$ eigenvector to eigenvalue σ if $M \cdot v = \sigma \cdot v$
- generalization to $n \neq d$?
- can one compute eigenvectors and eigenvalues of *A* · *A*^{*T*} without computing the matrix product?

•
$$M \in \mathbb{R}^{n \times d}$$
,

- case d = n: $v \in \mathbb{R}^d$ eigenvector to eigenvalue σ if $M \cdot v = \sigma \cdot v$
- generalization to $n \neq d$?
- can one compute eigenvectors and eigenvalues of *A* · *A*^{*T*} without computing the matrix product?

Singular vectors and singular values

 $\sigma \in \mathbb{R}$ is called singular value of M with corresponding singular vectors $v \in \mathbb{R}^d$, $u \in \mathbb{R}^n$ if

$$\mathbf{1} \quad M \cdot \mathbf{v} = \sigma \cdot \mathbf{u}$$

$$2 \quad u^T \cdot M = \sigma \cdot v^T.$$

Eigenvectors and singular vectors

Lemma 5.17

- Let $M \in \mathbb{R}^{n \times d}$. Then $\sigma \in \mathbb{R}$ is a singular value of M with corresponding singular vectors $v \in \mathbb{R}^d$ and $u \in \mathbb{R}^n$ if and only if σ^2 is an eigenvalue of $M^T \cdot M$,
 - **2** v is a right eigenvector of $M^T \cdot M$ to eigenvalue σ^2 ,
 - **3** u^T is a left eigenvector of $M \cdot M^T$ to eigenvalue σ^2 .

