
The k-variance problem

Orthogonal projections

If V ⊆ Rd , then V⊥ := {y ∈ Rd | ∀x ∈ V : 〈y , x〉 = 0} is the
orthogonal complement of V

V ∩ V⊥ = {0} and for all x ∈ Rd there exist unique
x ′ ∈ V , x ′′ ∈ V⊥ with x = x ′ + x ′′

πV : Rd → V , πV (x) = x ′, orthogonal projection onto V , x ′′

denoted πV (x)⊥.

If dim(V ) = 1,V = span(v), then

πV (x) =
〈x , v〉
〈v , v〉

v and πV (x)⊥ = x − 〈x , v〉
〈v , v〉

v
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The k-variance problem

Problem 5.1 (k-variance problem)

Given P ⊂ Rd , |P| = n and k ∈ N, Find the k-dimensional
subspace Vk that minimizes

D(P,V ) :=
∑
p∈P
‖p − πV (p)‖2.

The subspace Vk is called the (k-dimensional) singular value
decomposition of P.
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Characterization of optimal subspace

Lemma 5.2

For all P ⊂ Rd

Vk = argminV :dim(V )=k{D(P,V )}

⇔ Vk = argmaxV :dim(V )=k

∑
p∈P
‖πV (p)‖2

 .

More generally, for every subspace V ⊆ Rd

D(P,V ) =
∑
q∈P
‖q‖2 −

∑
q∈P
‖πV (q)‖2.
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Complexity and relation to k-means

Theorem 5.3

For every P ⊂ Rd and k ∈ N the subspace Vk minimizing D(P,V )
can be computed efficiently.

Lemma 5.4

For every P ⊂ Rd and k ∈ N

D(P,Vk) ≤ optk(P).
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Spectral algorithms

Spectral algorithms

Given P ⊂ Rd ,

1 compute the singular value decomposition Vk , i.e. the
subspace minimizing D(P,V ),

2 solve your favorite clustering problem with your favorite
algorithm on input πVk

(P) := {πVk
(p) : p ∈ P},

3 return the solution found in the previous step.
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Orthonormal bases

Definition 5.5

Let V ⊆ Rd be a k-dimensional subspace of Rd and let
B = {v1, . . . , vk} be a basis of V . Basis B is an orthonormal basis
(ONB) of V if

1 ‖vi‖ = 1, i = 1, . . . , k

2 〈vi , vj〉 = 0 for i 6= j , i , j = 1, . . . , n.

Theorem 5.6

Every subspace V ⊆ Rd has an orthonormal basis. Moreover, any
orthonormal basis of V can be extended to an orthonormal basis of
Rd .
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Length-preserving linear maps

V ⊆ Rd subspace with orthonormal basis BV = {v1, . . . , vk}.

U ∈ Rk×d matrix with rows vT1 , . . . , v
T
k .

ΠV denotes function ΠV : Rd → Rk , x 7→ U · x

Theorem 5.7

The linear function ΠV has the following properties:

1 ΠV is surjective.

2 ΠV is length-preserving on V , i.e. for all
x ∈ V : ‖x‖ = ‖ΠV (x)‖.
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Spectral algorithms revisited

Spectral algorithms

Given P ⊂ Rd ,

1 compute the singular value decomposition Vk , i.e. the
subspace minimizing D(P,V ),

2 solve your favorite clustering problem with your favorite
algorithm on input πVk

(P) := {πVk
(p) : p ∈ P},

i.e. compute
an orthonormal basis for Vk and apply your favorite clustering
algorithm on the set ΠVk

(πVk
(P))

3 return the solution found in the previous step.
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k-variance and k-means

Lemma 5.8

Let P ⊂ Rd and let V be an arbitrary k-dimensional subspace of
Rd . Then

optk(πV (P)) ≤ optk(P),

where optk(P) denotes the cost of an optimal solution of k-means
with input P.
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k-variance and k-means

Lemma 5.9

Let P ⊂ Rd and let V be an arbitrary k-dimensional subspace of
Rd . Assume Ĉ = {Ĉ1, . . . , Ĉk} is a k-clustering of πV (P) and
denote by C := {C1, . . . ,Ck} with Ci := {p ∈ P : πV (p) ∈ Ĉi}, the
corresponding k-clustering of P. Then

cost(πV (P), Ĉ) ≤ cost(P, C) ≤ cost(πV (P), Ĉ) + D(P,V ).

10 / 20



Approximation guarantees for spectral algorithms

Spectral algorithms

Given P ⊂ Rd ,

1 compute the singular value decomposition Vk , i.e. the
subspace minimizing D(P,C ),

2 solve your favorite clustering problem with your favorite
algorithm on input πVk

(P) := {πVk
(p) : p ∈ P},

3 return the solution found in the previous step.

Theorem 5.10

Let P ⊂ Rd and let Vk be the k-dimensional subspace of Rd

minimizing D(P,V ). If Ĉ is a γ-approximate k-clustering for
πVk

(P), then the corresponding k-clustering C as defined in the
previous lemma is a (γ + 1)-approximate k-clustering for P.
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An excact algorithm for k-means

Exact-k-Means(P, k)

Compute the set K of sets of t hyperplanes with k ≤ t ≤
(
k
2

)
where each

hyperplane contains d affinely independent points from P;

for S ∈ K do
check that S defines an arrangement of exactly k cells;

for all assignments aS of points of P on hyperplanes in S to cells do
for all cells do

compute the centroid of points of P in the cell;

end

CS,as := set of centroids computed in the previous step;

end

CS := argminCS,aS
{D(P,CS,aS )};

end

return argminCS
{D(P,CS)};

12 / 20



An excact algorithm for k-means

Theorem 5.11

Algorithm Exact-k-Means solves the k-means problem
optimally in time O

(
ndk

2/2
)
.
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A spectral approximation algorithm

Spectral-k-Means(P, k)

Compute Vk := argminV :dim(V )=k{D(P,V )};
C̄ := Exact-k-Means(πVk

(P), k);

return C̄ ;

Theorem 5.12

Spectral-k-Means is an approximation algorithm for the
k-means problem with running time O

(
n · d2 + nk

3/2
)

and
approximation factor 2.
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Matrix representation of point sets

P = {p1, . . . , pn} ⊂ Rd

matrix A ∈ Rd×n with columns pi called matrix representation
of P

rows of AT ∈ Rn×d are pTi
for every v ∈ Rd :

AT · v = (〈p1, v〉, . . . , 〈pn, v〉)T ∈ Rn

‖AT · v‖2 = vT · A · AT · v =
∑n

i=1〈pi , v〉2
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Characterization of k-variance solutions

Theorem 5.13

For every set of points P ⊂ Rd , |P| = n, with matrix representation
A ∈ Rd×n :

argmaxV :dim(V )=k

∑
p∈P
‖πV (p)‖2

 =

argmaxONB B : |B| = k

{∑
v∈B

vT · A · AT · v

}
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Eigenvalues and eigenvectors

Definition 5.14

Let M ∈ Rd×d , λ ∈ R and v ∈ Rd , v 6= 0.Then λ is called an
eigenvalue of M to eigenvector v (and vice versa) if M · v = λ · v.

Theorem 5.15

For every A ∈ Rd×n the matrix M = A · AT ∈ Rd×d has
non-negative eigenvalues λ1 ≥ · · ·λd ≥ 0. Moreover, there is an
orthonormal basis B = {v1, . . . , vd} such that λi is an eigenvalue
of M to eigenvector vi , i = 1, . . . , d.
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Solutions to the k-variance problem

Theorem 5.16

Let P ⊂ Rd be a finite set of points with matrix representation
A ∈ Rd×n and k ∈ N. If A · AT has eigenvalues λ1 ≥ · · · ≥ λd and
B = {v1, . . . , vd} is an orthonormal basis consisting of
eigenvectors, i.e. vi is an eigenvector to eigenvalue λi , i = 1 . . . , d,
then

span{v1, . . . , vk} = argminV :dim(V )=k{D(P,V )}.
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Singular values and vectors

M ∈ Rn×d ,

case d = n: v ∈ Rd eigenvector to eigenvalue σ if
M · v = σ · v
generalization to n 6= d?

can one compute eigenvectors and eigenvalues of A · AT

without computing the matrix product?

Singular vectors and singular values

σ ∈ R is called singular value of M with corresponding singular
vectors v ∈ Rd , u ∈ Rn if

1 M · v = σ · u
2 uT ·M = σ · vT .
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Eigenvectors and singular vectors

Lemma 5.17

Let M ∈ Rn×d . Then σ ∈ R is a singular value of M with
corresponding singular vectors v ∈ Rd and u ∈ Rn if and only if

1 σ2 is an eigenvalue of MT ·M,

2 v is a right eigenvector of MT ·M to eigenvalue σ2,

3 uT is a left eigenvector of M ·MT to eigenvalue σ2.
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