
Final Documentation

Project Group:

Re(AC)t
Reputation and Anonymous Credentials

for Access Control (t=2)

Supervisors:

Prof. Dr. Johannes Blömer
Jan Bobolz

Fabian Eidens

Research Group
Codes and Cryptography

Participants of the Project Group

Kai Bemmann Henrik Bröcher

Denis Diemert Lukas Eilers

Jan Haltermann Burhan Otour

Laurens Porzenheim Simon Pukrop

Erik Schilling Michael Schlichtig

Marcel Stienemeier

Contents

1 Introduction 1

I Theory Documentation 5

2 Notation 7

3 Building Blocks 9
3.1 Bilinear Groups . 10
3.2 Computational Assumptions . 10
3.3 Hash Functions . 13
3.4 Digital Signatures . 14
3.5 Commitment Schemes . 22
3.6 Secret-Sharing Schemes . 27
3.7 Zero-Knowledge Arguments of Knowledge . 29
3.8 Σ-Protocols . 33
3.9 Damgård’s Technique . 37
3.10 Fiat-Shamir Heuristic . 41
3.11 Proofs of Partial Knowledge . 42
3.12 Accumulators . 45

4 Anonymous Credential and Reputation System 53
4.1 Preliminaries . 54
4.2 Basic Anonymous Credential System . 68
4.3 Extended Anonymous Credential System . 83
4.4 Attribute-Based Anonymous Credential and Reputation System 100
4.5 Further Extensions . 107

II Practical Realization 111

5 From Theory to Practice 113

6 Implementation 117
6.1 Introduction . 118
6.2 Architecture . 118
6.3 Building Blocks . 119
6.4 Zero-Knowledge Component . 131
6.5 Reputation System . 141
6.6 API . 142
6.7 Example Application . 148

7 Conclusion 155

Bibliography 157

i

1 Introduction

The usage of the Internet brings along many advantages that make our everyday life easier. But
apart from that, it can be abused to collect private data of users. Important to note is that
the user often is not in control which data is revealed. Consider the example of authentication.
Here, the user often is asked to share some sensitive data to get access to a service, even though
some of the information might not be needed in the context of the service. This point is quite
critical because the services can abuse this information for their advantage, e.g. sell parts of the
information.
The standard methods of authentication are either using a combination of login name and

password or authenticating through a third party. The first option requires the user to remember
all different combinations for all services, while in the second case the third party can track the
user’s activities. Note that in both cases the service provider can identify and track the user.
A better alternative is to introduce an anonymous credential system (ACS). Instead of authen-

ticating through a third party, one uses credentials, which are a certificate over some attributes.
The certificate is issued by some organization that the user sent a request to. Then, the user
can show the credential to some service provider, which can verify the validity of the credential
to allow the user to access the service. Obviously, the service provider should only grant access
if the user truly was issued credentials that allow her access to the service. This means that a
user can neither create valid credentials herself nor show others’ credentials to gain access. One
important thing for the verification is that it is possible with only public information, meaning
that the issuing organization is not needed in this step. This allows the user to not reveal to
the issuing organization which services she is using. Furthermore, a user wants to stay anony-
mous which is achieved by using pseudonyms. By allowing the user to choose new pseudonyms
whenever she wants to, her activities can only be tracked if she chooses to do so. Moreover, a
user can decide what part of a credential is shown to a verifying party. Thus, a service provider
only learns necessary information and not additional information she does not need to know.
Sometimes, credentials should not be permanently valid. Thus, one may allow the issuer to
revoke credentials at any point in time. Additionally, a trusted third party may be added to
the credential system having the power to punish misuse by revealing the identity behind a
pseudonym.
Furthermore, a credential system can be used to implement a reputation system (RS). If

allowed by a credential, a reputation system grants a user the ability to rate other sellers or
their products. Through the use of credentials, one could allow a user to rate certain products
that he for example paid for. A user should be able to rate products anonymously to not fear
any backlash. Still, there should exist a trusted third party, which is the only one that can link
a rating to its (misbehaving) rater. In such a case, the user should be punishable, e. g. through
revoking the user from the reputation system. Although a rating should not be linkable to a
user, everyone should be able to see if two ratings were published by the same user, so that she
cannot falsify the overall rating of some product. Hence, users can only rate a product once
while remaining anonymous.
A good example for the usage of an anonymous credential system together with a reputation

system is an online shop. In this setup, the store manager can issue buyer permits, seller permits
and maybe some other credentials. Then, a user can buy an item from a seller, and additionally
receives a credential from the seller. This credential can then be used by the buyer to rate
the seller and/or the item she bought, but only once. The buyer can stay anonymous while
only revealing to the seller that she is allowed to purchase the item and some extra information

1

1 Introduction

necessary for the transaction, but not more. If the user does not pay after purchasing, there is
some trusted third party, for example the store manager, that can reveal the identity of the user
to force her to pay.

Related Work One approach to construct an anonymous credential system is the framework
used by Camenisch and Lysyanskaya in [CL04]. In their proposal, a secure signature scheme,
a commitment scheme, efficient protocols for signing a committed value, proving knowledge of
a signature and showing the equality of two committed values suffice to construct a very basic
anonymous credential system. In 2016, Pointcheval and Sanders [PS16] proposed a signature
scheme which allows for a more efficient construction of the framework above. Since the security
requirements and functionalities vary depending on the context, there is no unified model of an
anonymous credential system. Though, there are two major approaches of defining security itself,
i. e. via ideal worlds like Camenisch and Lysyanskaya [CL04] and game-based like Pashalidis and
Mitchell [PM04]. A basic framework like in [CL04] limits users to prove possession of a credential,
whereas in practice services often require more complex access policies than only possessing a
single credential. To overcome this restriction, the technique of proofs of partial knowledge
proposed by Cramer, Damgård, and Schoenmakers [CDS94] is frequently used. An example
can be found in the work of Anada, Arita, and Sakurai [AAS16], which supports monotone
predicates over a single relation. Furthermore, some anonymous credential systems include the
option for a trusted party which can identify users in case of misuse, for example. This identity
escrow can, for example, be realized using public key encryption as noted in [CL04].

In practice, systems with components like policies and identity escrow have been realized. One
notable example is ABC4Trust1. ABC4Trust is an EU project aiming at building a common ar-
chitectural framework and providing unified definitions for attributed-based credential systems.
However, the policies supported by ABC4Trust are limited. In their framework specification,
the policy only consists of a single conjunction or disjunction, respectively. Another example
for attribute-based credential system is Identity Mixer (idemix)2 which is an anonymous creden-
tial system developed at IBM Research. It implements many desirable features of a credential
system, but lacks of a dedicated rating mechanism we want to integrate.
In combination with the credential system we provide features of an anonymous reputation

system which, to the best of our knowledge, has not been done before. However, an anonymous
and publicly linkable reputation system has been defined and constructed by Blömer, Juhnke,
and Kolb [BJK15]. Its key feature is that raters can anonymously rate items as long as they
rate the same item at most once.

Outcome of the Project Group In this work, we present a combination of an attribute-based
anonymous credential and an anonymous reputation system, which we call an attribute-based
anonymous credential and reputation system (ACRS). We formally define the syntax of such a
system and provide a game-based security model for the anonymous credential system. Our
system includes a trusted party which has the capability of identifying users who have shown a
credential or rated an item, for example, in case of misuse. Moreover, we integrate the features of
an anonymous reputation system to rate services and items anonymously. As result we construct
a system offering identification-free access control in combination with a rating mechanism which,
to the best of our knowledge, has neither been done theoretically nor practically before. Our main
contribution is that we let services require almost arbitrary predicates as an access policy. In this
context, we allow services to equip their policies with (in)equalities of attributes and membership
of attributes in a set or a range. These relations can be concatenated via conjunctions and
disjunctions within the policies which are represented by predicates within our formal models.
In addition to the theoretical treatment of the used building blocks and the system itself, we

1https://www.abc4trust.eu/
2https://www.zurich.ibm.com/identity_mixer/

2

https://www.abc4trust.eu/
https://www.zurich.ibm.com/identity_mixer/

provide an implementation in form of a Java library. Here, we provide implementations for all
used building blocks and a compiler that translates a statement into a suitable protocol.

3

Part I

Theory Documentation

5

2 Notation

In this chapter, we introduce notation used throughout this document.

• Assigning a value y to variable x is denoted by x := y.

• For a finite set S, we denote by x← S the operation of choosing an element uniformly at
random from set S and assigning it to variable x.

• If A is a deterministic algorithm, we write x := A(y1, y2, . . .) to denote that algorithm A
on inputs y1, y2, . . . outputs value x.

• If A is a probabilistic algorithm, we write x ← A(y1, y2, . . .) to denote that algorithm A
on inputs y1, y2, . . . outputs value x. Note that the operator “←” is used differently in
this case. Here, it indicates that x is a random variable taking on values according to the
distribution of outputs generated by A on the given inputs.

• By writing A(x; k) we describe starting a probabilistic algorithm A with input x and
random coins k. This means that the algorithm uses the coins k to do all its random
choices for which we use the notation k ← Coins(A). Note that the output of a probabilistic
algorithm becomes deterministic if the random coins are fixed.

• We use the abbreviation ppt to talk about probabilistic algorithms with polynomial run
time. Analogously, if we talk about expected ppt, we mean a probabilistic algorithms with
expected polynomial run time.

• If x ← A(y1, y2, . . .), we denote the set of all possible outputs of algorithm A on inputs
y1, y2, . . . by [A(y1, y2, . . .)] := {z | Pr[x = z] > 0}.

• For two interactive algorithms A and B, we denote the set of all possible outputs by
[A(y1, y2, . . .)]× [B(z1, z2, . . .)].

• Running an algorithm A on inputs y1, y2, . . . and with access to the oracles O1,O2, . . . is
denoted by either A(y1, y2, . . . : O1,O2, . . .) or AO1,O2,...(y1, y2, . . .). We mainly use the
latter notation. Still, sometimes an algorithm is provided with lots of oracles, where the
former notation is more suitable due to readability.

• By xA ← A(y1, y2, . . .) ↔ B(z1, z2, . . .) → xB we denote that A and B interact on the
stated inputs, where eventually A outputs xA, and B outputs xB.

• We use outputA[A(y1, y2, . . .)↔ B(z1, z2, . . .)] to denote the random variable of A’s output
after interacting with B on the particular inputs.

• A variable followed by brackets indicates a vector of elements. For example, upk[·] describes
a vector of user public keys, where the i-th component, write upk[i] denotes the public key
of user i.

7

3 Building Blocks

Contents

3.1 Bilinear Groups . 10
3.2 Computational Assumptions . 10

3.2.1 Discrete Logarithm . 11
3.2.2 Symmetric Discrete Logarithm Assumption . 11
3.2.3 Decisional Diffie-Hellman . 11
3.2.4 Pointcheval-Sanders Assumptions . 12
3.2.5 Modified Strong Diffie-Hellman Assumption . 13

3.3 Hash Functions . 13
3.4 Digital Signatures . 14

3.4.1 Pointcheval-Sanders Signature Scheme . 15
3.4.1.1 Single-Message Signatures . 16
3.4.1.2 Multi-Message Signatures . 18

3.5 Commitment Schemes . 22
3.5.1 Generalized Pedersen Commitment Scheme . 23
3.5.2 Trapdoor Commitment Schemes . 25
3.5.3 Hash-Then-Commit . 26

3.6 Secret-Sharing Schemes . 27
3.6.1 Smooth Secret-Sharing Schemes . 29

3.7 Zero-Knowledge Arguments of Knowledge . 29
3.7.1 Zero-Knowledge Arguments . 31
3.7.2 Arguments of Knowledge . 31
3.7.3 Camenisch-Stadler Notation . 32
3.7.4 Non-interactive Arguments . 32

3.8 Σ-Protocols . 33
3.8.1 Schnorr Protocol . 34
3.8.2 Generalized Schnorr Protocol . 35

3.9 Damgård’s Technique . 37
3.10 Fiat-Shamir Heuristic . 41

3.10.1 Non-Interactive Arguments via the Fiat-Shamir Heuristic 42
3.10.2 Signature Schemes via the Fiat-Shamir Heuristic 42

3.11 Proofs of Partial Knowledge . 42
3.12 Accumulators . 45

3.12.1 Static Accumulators . 45
3.12.2 Dynamic Accumulators . 46
3.12.3 Nguyen Accumulator . 47

9

3 Building Blocks

We start our theoretical treatment of our anonymous credential and reputation system by for-
mally defining all building blocks used in our constructions given in Chapter 4. Apart from
formal definitions of the building blocks, we give rigorous security proofs for most of the schemes
presented.

3.1 Bilinear Groups
The signature scheme and therefore our construction of the anonymous credential and reputation
system will be based on bilinear groups. The next definition is an adaption of the one used
by Pointcheval and Sanders [PS16].

Definition 3.1 (Bilinear Group). A bilinear group is a tuple (p,G1,G2,GT , e) such that

• G1, G2 and GT (written multiplicatively) are cyclic groups with prime order p = |G1| =
|G2| = |GT |. The group operations in these groups are efficiently computable.

• e : G1 ×G2 → GT is an efficiently computable map, called pairing, such that
1. (Bilinearity) For all g1 ∈ G1, g2 ∈ G2 and a, b ∈ Zp, it holds that

e(g1
a, g2

b) = e(g1, g2)ab.

2. (Non-degeneracy) For g1 ∈ G1 \ {1} and g2 ∈ G2 \ {1}, it holds e(g1, g2) 6= 1.

Pairings can be categorized into three types. Following Galbraith, Paterson, and Smart
[GPS08] these types are:

• Type 1 : G1 = G2.

• Type 2 : G1 6= G2 and there is an efficient isomorphism φ : G2 → G1, but no efficient one
in the other direction.

• Type 3 : G1 6= G2 and there is an efficient isomorphism, for neither G1 → G2 nor G2 → G1.

We distinguish corresponding types of bilinear groups. For example, a type 3 bilinear group
is a bilinear group such that the pairing is a type 3 pairing. The signature scheme we use for
most of our constructions is based on type 3 bilinear groups. It is crucial for this construction
that the group is of the mentioned kind; if not, security cannot be guaranteed.
To use these groups in our constructions, we need to be able to construct them. For this we

define a bilinear group generators.

Definition 3.2. We call a ppt algorithm G a bilinear group generator if the following holds: On
input 1n, G outputs a prime p with p ≥ 2n, and the description of group G1, G2 and GT of prime
order p. In addition it outputs a bilinear map e : G1 × G2 → GT such that (p,G1,G2,GT , e)
form a bilinear group.

A group generator is quite important in terms of the security. It ensures that the bilinear
group can be set up in polynomial time in our security parameter and thus is representable in
polynomial space in the security parameter. Moreover, security is always relative to the group
generator.

3.2 Computational Assumptions
The security of most of the building blocks we use are based on the hardness of computational
problems. In this section, we formally define these computational assumptions.

10

3.2 Computational Assumptions

DLogA,G(n)

1 : Run G(1n) to obtain (p,G), where G is a cyclic group of prime order p.
2 : Pick g ∈ G \ {1} and r ∈ Zp uniformly at random.
3 : A is given G, p, g, h := gr, and outputs x ∈ Zp.
4 : The output of the experiment is defined to be 1 if gx = h, and 0 otherwise.

Figure 3.1: Discrete Logarithm Problem

3.2.1 Discrete Logarithm
A basic assumption we need is the discrete logarithm problem. In a cyclic, prime order group G
with generator g, we assume the computation of logg(h) for a uniformly chosen element h ∈ G
to be hard. We define the problem using the experiment given in Figure 3.1. It uses a group
generator, which we define as a generalization of bilinear group generators given in Definition 3.2:

Definition 3.3. We call a ppt algorithm G a group generator if the following holds: On input
1n, G outputs a prime number p with p ≥ 2n and the description of a cyclic group G of prime
order p.

Based on the experiment defined in Figure 3.1, we define the discrete logarithm problem:

Definition 3.4 (Discrete Logarithm Problem). The discrete logarithm problem is hard relative
to the group generator G if for all ppt algorithms A there is a negligible function µ such that

Pr[DLogA,G(n) = 1] ≤ µ(n),

where experiment DLogA,G(n) is defined in Figure 3.1.

3.2.2 Symmetric Discrete Logarithm Assumption
A variant of the discrete logarithm problem for bilinear groups is the symmetric discrete log-
arithm problem. There, the group generator additionally outputs three groups G1,G2,GT , a
pairing e : G1 × G2 → GT and generators for G1 and G2. The adversary then has to compute
the discrete logarithm of some group element gx, while also knowing g̃x and the other public
parameters. Formally, this results in the following definition:

Definition 3.5 (Symmetric Discrete Logarithm Assumption). Let n ∈ N be a security param-
eter. Let G be a type 3 bilinear group generator. The assumption is that for all ppt adversaries
there is a negligible function µ : N→ R+ such that

Pr[(p,G1,G2,GT , e)← G(1n), x← Zp, g ← G1 \ {1}, g̃ ← G2 \ {1},
y ← A(p,G1,G2,GT , e, g, g̃, g

x, g̃y) : gy = gx] ≤ µ(n).

3.2.3 Decisional Diffie-Hellman
Another assumption we need is the external decisional Diffie-Hellman (XDDH) problem. It is a
generalization of the decisional Diffie-Hellman (DDH) problem, as defined by Boneh [Bon98], to
the context of type 2 and 3 pairings. The DDH problem is about the hardness of distinguishing
a tuple (g, gα, gβ, gαβ) from (g, gα, gβ, gαβ+γ) for a cyclic, prime order p group, where α, β, γ are
chosen uniformly at random from Z∗p. For XDDH we demand, that DDH is hard within group
G1 according to a bilinear group generator as given in Definition 3.2. We define the XDDH
problem using the experiment given in Figure 3.2.

11

3 Building Blocks

XDDHA,G(n)

1 : Run G(1n) to obtain (p,G1,G2,GT , e), where the groups are cyclic and of prime order p.
2 : Choose g ∈ G1 \ {1} and g̃ ∈ G2 \ {1} uniformly at random.
3 : Choose α, β, γ ∈ Z∗p and δ ∈ {0, 1} uniformly at random.
4 : A is given p,G1,G2,GT , e, g, gα, gβ , gαβ+γδ, g̃ and outputs δ′ ∈ {0, 1}.
5 : The output of the experiment is defined to be 1 if δ′ = δ, and 0 otherwise.

Figure 3.2: External Decisional Diffie-Hellman Problem

Definition 3.6 (External Decisional Diffie-Hellman Problem). The external decisional Diffie-
Hellman problem is hard relative to the bilinear group generator G if for all ppt algorithms A
there is a negligible function µ such that

Pr[XDDHA,G(n) = 1] ≤ 1
2 + µ(n),

where experiment XDDHA,G(n) is defined in Figure 3.2.

Note, that the XDDH assumption can only hold in contexts of type 2 and 3 bilinear pairings.
In case of a type 1 pairing, an adversary could distinguish, by checking equality of e(gα, gβ) and
e(g, gαβ+γδ). The symmetric external decisional Diffie-Hellman (SXDH) assumption demands,
that DDH is hard in G2 as well, which can only hold for type 3 pairings. The homomorphism
φ from a type 2 pairing, would enable an adversary to compare e(φ(g̃α), g̃β) = e(φ(g̃), g̃αβ) with
e(φ(g̃), g̃αβ+γδ).

3.2.4 Pointcheval-Sanders Assumptions

In Section 3.4.1, we present the signature scheme that we use for our constructions. The security
of this signature scheme, and thus the constructions based on it, rely on assumptions that were
stated by the authors of the scheme in [PS16]. Let us start with the first assumption.

Definition 3.7 (Assumption 1). Let G be a type 3 bilinear group generator and let (p,G1,G2,
GT , e) ← G(1n). Further, let (x, y) ∈ Z2

p. Define the oracle Ox,y(m) that on input m ∈ Zp
outputs the pair (h, hx+ym) for h← G1 \ {1}. The assumption is that for all ppt adversaries A,
there is a negligible function µ : N → R+ such that

Pr
[
(p,G1,G2,GT , e)← G(1n), x← Zp, y ← Zp, g ← G1 \ {1}, g̃ ← G2 \ {1}, Y := gy,

X̃ := g̃x, Ỹ := g̃y, (m, (σ1, σ2))← AOx,y(·)(p,G1,G2,GT , e, g, Y, g̃, X̃, Ỹ) :

m 6∈ Q ∧m ∈ Zp ∧ σ1 ∈ G1 \ {1} ∧ σ2 = σx+ym
1

]
≤ µ(n)

where Q denotes the set of oracle queries of A.

Intuitively this means that no efficient adversary given a description of a type 3 bilinear group,
(g, Y, g̃, X̃, Ỹ), as defined above, and unlimited access to the oracle O is able to generate a pair(
m, (σ1, σ

x+ym
1)

)
for m not asked to the oracle.

The second assumption stated by Pointcheval and Sanders is a weaker variant of Definition 3.7.
Here, the adversary is only given (g̃, X̃, Ỹ) instead of (g, Y, g̃, X̃, Ỹ). Formally, we have the
following assumption:

12

3.3 Hash Functions

Definition 3.8 (Assumption 2). Let G be a type 3 bilinear group generator and let (p,G1,G2,
GT , e)← G(1n). Define the oracle Ox,y(m) that outputs, on input m ∈ Zp, the pair (h, hx+ym)
for h← G1 \{1}. The assumption is that for all ppt adversaries A, there is a negligible function
µ : N → R+ such that

Pr
[
(p,G1,G2,GT , e)← G(1n), x← Zp, y ← Zp, g̃ ← G2 \ {1}, X̃ := g̃x, Ỹ := g̃y,

(m, (σ1, σ2))← AOx,y(·)(p,G1,G2,GT , e, g̃, X̃, Ỹ) : m 6∈ Q ∧m ∈ Zp

∧ σ1 ∈ G1 \ {1} ∧ σ2 = σx+ym
1

]
≤ µ(n)

where Q denotes the set of oracle queries of A.

As stated in [PS16, Theorem 4], both of these assumptions hold in the generic group model.
A proof for this can be found in the full version [PS15, Appendix B].

3.2.5 Modified Strong Diffie-Hellman Assumption

In Section 3.12.3 we introduce a construction of accumulators whose security depends on a
modified version of the q-Strong Diffie Hellman Assumption. The q-SDH problem was first
introduced by D. Boneh and X. Boyen in [BB04]. Intuitively spoken, the assumption says that
there is no ppt algorithm that can compute a tuple (x, g(x+s)−1) with x ∈ Zp, s ∈ Z∗p from a
tuple t = (g, gs, gs2 , . . . gsq). In contrast to the original assumption, we modify it slightly by
adding a tuple (g̃, g̃s) to t, since we use type 3 pairings.

Definition 3.9 (Modified q-Strong Diffie-Hellman (q-SDH) Assumption). Let G be a type 3
bilinear group generator. The assumption is that for all ppt adversaries A, there is a negligible
function µ : N → R+ such that

Pr
[
(p,G1,G2,GT , e)← G(1n), s← Zp, g ← G1\{1}, g̃ ← G2\{1}, t := (g̃, g̃s, g, gs, gs2 , . . . gsq),

(c1, c2)← A(p, e, g, g̃, t) : (c1 ∈ Zp) ∧ (c2 ∈ G1) ∧ (c2 = g(s+c1)−1)
]
≤ µ(n)

3.3 Hash Functions

A helpful primitive in cryptography is the concept of a cryptographic hash function. Like a
normal hash function, a cryptographic hash function maps an input from some big domain into
a smaller range. The difference is that cryptographic hash functions may fulfill some additional
properties that speak about difficulty in finding relations between pre-images and images. From
here on, we only speak about cryptographic hash functions.

Definition 3.10. A cryptographic hash function is a tuple of ppt algorithms (Setup,Genh, h),
where Setup(1n) outputs public parameters pp with |pp| ≥ n and Gen(pp) outputs a key k.
Furthermore, h(k,m) takes as input a key k and a message m ∈ {0, 1}∗ to output a hash value
y ∈M(pp) if k was generated by Genh(pp) with |y| ≤ {0, 1}l(n) for some polynomial l(·).

We write hk(m) for h(k,m). We also say that H hashes into M(pp). If h is only defined for
m ∈ {0, 1}l

′(n) for a polynomial l′(·), call the hash function a fixed-length hash function for l′(·).
One important property of a hash function is the so called collision resistance. This tells us

that it is difficult to find two pre-images that map to the same image. To properly formalize
this, we define a game. Let n ∈ N, let H = (Setup,Genh, h) be a hash function, and let A be a
ppt adversary.

13

3 Building Blocks

HashCollH,A(n)

1 : Generate pp← Setup(1n).
2 : Generate a key k ← Genh(pp).
3 : Run A(pp, k).
4 : A outputs some m1,m2 ∈ {0, 1}∗.
5 : If m1 6= m2 and hk(m1) = hk(m2), output 1. Else, output 0.

If H was a fixed-length hash function for a polynomial l(·), we also require that m1,m2 ∈
{0, 1}l(n). If the output of the experiment is 1, we say that A wins.

Definition 3.11. Let H be a hash function. We call H collision resistant, if for all ppt
adversaries A there exists a negligible function negl(n), such that

Pr[HashCollH,A(n) = 1] ≤ negl(n).

3.4 Digital Signatures
The essential primitive we use to construct our anonymous credential and reputation system
are digital signatures. Concretely, in our system credentials are digital signatures on a set of
attributes and a user secret key. To formally define a digital signature scheme, we slightly adjust
the standard definition of a digital signature scheme given by Goldwasser, Micali, and Rivest
[GMR88]. In addition, we have a fourth algorithm that deals with the common setup of the
signature scheme. This algorithm, for example, generates the group that is used by every entity
working with the signature scheme in a higher level system. Consider the following definition:

Definition 3.12 (Digital Signature Scheme). A (digital) signature scheme Π with message
space M is a tuple of ppt algorithms (Setup,Gen,Sign,Vrfy), where

1. Setup(1n): On input security parameter 1n, it outputs public parameters pp with |pp| ≥ n.

2. Gen(pp): On input public parameters pp, it outputs a key pair (pk, sk) with |pk|, |sk| ≥ n.

3. Sign(pp, sk,m): On input secret key sk and a message m ∈M, it outputs a signature σ.

4. Vrfy(pp, pk,m, σ): On input public key pk, a message m ∈M and a signature σ, it outputs
b ∈ {0, 1}. We interpret 1 as valid and 0 as invalid.

For convenience we often assume that given the secret key sk, the public key pk is (implicitly)
known as well. However, Definition 3.12 does not necessarily yield a meaningful signature
scheme. Therefore, we additionally impose the correctness of a signature scheme.

Correctness of a Signature Scheme For all n ∈ N, all pp ∈ [Setup(1n)], all (pk, sk) ∈ [Gen(pp)]
and all m ∈M, it holds that

Vrfy(pp, pk,m,Sign(pp, sk,m)) = 1.

Having defined digital signatures syntactically, we proceed with the security requirements,
illustrated in the following example. Bob has a key pair (pkB, skB) and publishes his public
key pkB. He wants to send a message to his friend Alice. Therefore he signs the message using
his signing key skB and sends it alongside the signature to Alice. Upon receiving message and
signature, Alice wants to verify whether the message was really sent by Bob and uses his publicly

14

3.4 Digital Signatures

Experiment Sig-forgeA,Π(n):

1. pp← Setup(1n)

2. (pk, sk)← Gen(pp)

3. Adversary A is given pp, pk and oracle access to Sign(pp, sk, ·), and
outputs (m,σ). Let Q be the set of queries made by A to oracle
Sign(pp, sk, ·) during its execution.

4. Output is 1 iff Vrfy(pp, pk,m, σ) = 1, and m 6∈ Q.

Figure 3.3: Existential Unforgeability under a Chosen-Message Attack

known verification key pkB to do so. Assuming the public key pkB was not exchanged by a cor-
rupted one, we need to ensure the infeasibility of generating some message and a corresponding
new valid signature without possession of secret key skB. This should even be infeasible for
Mallory, who successfully can convince Bob to sign messages of her choice.
These considerations are reflected in an experiment, where the adversary, given pk and oracle

access to a signing oracle, is challenged to output some (not necessarily meaningful) message
m and a corresponding valid signature σ under pk, where the oracle has not been queried for a
signature on m. If the adversary outputs such a pair this is called an existential forgery. We call
a digital signature scheme secure if no ppt adversary can generate existential forgeries efficiently.
This notion of security is standard for digital signature schemes and goes back to Goldwasser,
Micali, and Rivest [GMR88]. We formalize it in Definition 3.13 using the experiment given
in Figure 3.3.

Definition 3.13. A signature scheme Π = (Setup,Gen,Sign,Vrfy) is said to be existentially
unforgeable under an adaptive chosen-message attack, or secure, if for every ppt adversary A
there is a negligible function µ : N → R+ such that

Pr[Sig-forgeA,Π(n) = 1] ≤ µ(n),

where the experiment Sig-forgeA,Π(n) is defined in Figure 3.3.

3.4.1 Pointcheval-Sanders Signature Scheme

In 2016, Pointcheval and Sanders [PS16] proposed a new signature scheme. It shares many
features with the widely used Camenisch-Lysyanskaya (CL) signature scheme [CL04]. The latter
is widely used because of its flexibility in many cryptographic protocols. The scheme designed
by Pointcheval and Sanders preserves every desirable feature of the scheme by Camenisch and
Lysyanskaya, but provides more efficient signing and verification.
This signature scheme (Constructions 3.14 and 3.17) is a good choice for our anoynymous

credential system since the features of it together with the algebraic structure of the signatures
result in efficient protocols, for example the issuance and showing of a credential. Pointcheval
and Sanders [PS16] already provide good base protocols for issuing and showing credentials,
which we use as foundation of our anonymous credential system.
The Pointcheval-Sanders (PS) signature scheme offers two variants. On the one hand, there

is a variant for signing a single message. On the other, we have a generalization that is able
to sign blocks of messages. The scheme presented in the following section is a variation of the
signature scheme proposed by Pointcheval and Sanders [PS16], where we adapt the public key
to be consistent with the protocols presented in Sections 4.1 and 4.2.3.

15

3 Building Blocks

3.4.1.1 Single-Message Signatures

Construction 3.14 (Single-Message Pointcheval-Sanders Signature Scheme). Let G be a type
3 bilinear group generator (Definition 3.2). The single-message Pointcheval-Sanders (PS) sig-
nature scheme is defined as ΠS = (Setup,Gen,Sign,Vrfy), where

1. Setup(1n): On input security parameter 1n, Setup obtains (p,G1,G2,GT , e)← G(1n) and
returns pp := (p,G1,G2,GT , e).

2. Gen(pp): On input public parameters pp = (p,G1,G2,GT , e), Gen chooses generators
g ← G1 \ {1} and g̃ ← G2 \ {1}. It then chooses x ← Zp and y ← Zp, and returns the
secret key sk := (x, y) and the public key pk := (g, Y, g̃, X̃, Ỹ) with Y := gy, X̃ := g̃x and
Ỹ := g̃y.

3. Sign(pp, sk,m): On input public parameters pp = (p,G1,G2,GT , e), secret key sk = (x, y)
and message m ∈ Zp, Sign chooses a generator h ← G1 \ {1} and returns the signature
σ := (h, hx+ym).

4. Vrfy(pp, pk,m, σ): On input public parameters pp = (p,G1,G2,GT , e), public key pk =
(g, Y, g̃, X̃, Ỹ), message m ∈ Zp and signature σ = (σ1, σ2), Vrfy checks whether the
equations σ1 6= 1 and e(σ1, X̃ · Ỹ m) = e(σ2, g̃) hold. If both equations hold, it returns 1,
and 0 otherwise.

One might notice that g and Y contained in the public key are not used. The reason for
including these becomes clearer when we consider the protocols in our constructions. For now
we stress that the scheme can be defined without g and Y (as it was originally done). As a
consequence, the security then would rely on Assumption 2 instead of Assumption 1 as in our
case.
Next, we shall check whether scheme ΠS defined above is a correct signature scheme.

Lemma 3.15. The signature scheme ΠS defined in Construction 3.14 is correct.

Proof. Let G be a type 3 bilinear group generator and pp = (p,G1,G2,GT , e) ∈ [Setup(1n)]. Let
(pk, sk) ∈ [Gen(pp)]. Further, let m ∈ Zp and σ ∈ [Sign(pp, sk,m)]. Then, it holds by definition
that sk = (x, y) ∈ Z2

p and σ = (h, hx+ym) with h ∈ G1 \ {1}. Therefore, we only need to check
the verification equation using the pairing e:

e(h, X̃ · Ỹ m) = e(h, g̃x · g̃my) = e(h, g̃x+my) = e(h, g̃)x+my = e(hx+my, g̃).

Therefore, the verification outputs 1 for every honestly generated signature.

Before we go over to the security analysis of Construction 3.14, we point out an interesting
property of the scheme that becomes important later. Namely, signatures of the PS signature
scheme are randomizable:
Remark (Randomizability). Let σ = (σ1, σ2) be a PS signature on some message m. We can
randomize σ by choosing η ← Z∗p and setting σ′ := (ση1 , σ

η
2). Note that σ′ still is a valid signature

on message m. Indeed, it is distributed like a fresh signature on m, which allows to hide the
original signature in a certain way.
Let us proceed with the security analysis of the single-message PS signature scheme Construc-

tion 3.14. Having a look at Assumption 1 (Definition 3.7), one easily sees that the existential
unforgeability of ΠS is given by the hardness of this assumption. However, we show this formally
by proving Theorem 3.16.

Theorem 3.16 (Security of ΠS). Let G be a type 3 bilinear group generator. Under Assump-
tion 1 (Definition 3.7) for G, the signature scheme ΠS is existentially unforgeable under an
adaptive chosen message attack.

16

3.4 Digital Signatures

Proof. Assume that Assumption 1 (Definition 3.7) holds. We need to show that the success
probability of any ppt algorithm that tries to forge signatures of ΠS grows smaller than a
negligible function. Therefore, fix an arbitrary ppt forger F such that the success probability of
F is εF (n) := Pr[Sig-forgeF ,ΠS (n) = 1]. Based on F , construct adversary A that tries to break
Assumption 1. Consider the following construction:

A on input (p,G1,G2,GT , e, g, Y, g̃, X̃, Ỹ) and oracle access to Ox,y(·):

1. Set pk := (g, Y, g̃, X̃, Ỹ) and pp := (p,G1,G2,GT , e)

2. Simulate F on input pp and pk. Whenever, it queries its signing oracle
with message m ∈ Zp:
a) Set (σ1, σ2)← Ox,y(m)
b) Return (σ1, σ2) to F

3. If F outputs a forgery attempt (m∗, σ∗), output (m∗, σ∗).

First of all, note that A is a ppt algorithm. Adversary A only simulates forger F ; if t(n)
upper bounds the running time of F and q(n) upper bounds the number of queries, for some
polynomials t and q, the running time of A is upper bounded by t(n) + q(n) · O(1), which is a
polynomial.
We relate the success probability of A in breaking Assumption 1 and the success probability

of forger F in forging a signature of ΠS . First, we show that the answers of A’s oracle queries
returned by F are distributed identically to the outputs of the signing algorithm. A is an
adversary against Assumption 1. Therefore, it is provided with the oracle Ox,y(·) for x, y ∈ Z
defined in Definition 3.7. By definition, oracle Ox,y(·) outputs, on input m ∈ Zp, the pair σ =
(h, hx+ym) for some uniformly chosen generator h of G1. Having a look at the definition of the
signing algorithm in Construction 3.14, we observe that A’s oracle Ox,y(·) within Assumption 1
and F ’s signing oracle Sign(pp, sk, ·) from experiment Sig-forgeF ,ΠS (n), are perfectly equivalent.
To summarize, adversary A perfectly simulates the Sig-forgeF ,ΠS (n) game. It remains to argue

that adversary A outputs a valid pair to break Assumption 1 if and only if forger F outputs a
valid signature under pk defined in the construction of A. If (m∗, σ∗) = (m∗, (σ∗1, σ∗2)) is valid
under pk, it holds that e(σ∗1, X̃ · Ỹ m∗) = e(σ∗2, g̃) and σ∗1 6= 1. This is only satisfied by the pair
(σ∗1, σ∗1x+ym∗) for x := logg̃(X̃) and y := logg̃(Ỹ), which is a valid pair to break Assumption 1.
Additionally, note that the set of oracle queries is the same for A and F . Concretely, if F
outputs an already queried message and loses, A would have lost in the real experiment as well.
Formally, we have that A succeeds in breaking Assumption 1 with the same probability as F in
forging signatures of ΠS , i. e.

Pr
[
(p,G1,G2,GT , e)← G(1n), x← Zp, y ← Zp, g ← G1 \ {1}, g̃ ← G2 \ {1}, Y := gy,

X̃ := g̃x, Ỹ := g̃y, (m, (σ1, σ2))← AOx,y(·)(p,G1,G2,GT , e, g, Y, g̃, X̃, Ỹ) :

m 6∈ Q ∧m ∈ Zp ∧ σ1 ∈ G1 \ {1} ∧ σ2 = σx+ym
1

]
= Pr[Sig-forgeF ,ΠS (n) = 1]

Since we assume that Assumption 1 holds and adversary A is a ppt algorithm, we have that

Pr[Sig-forgeF ,ΠS (n) = 1] = εA(n)

where εA(n) is negligible. Overall, we have that εA(n) = εF (n), which in turn means that εF (n)
is negligible.

17

3 Building Blocks

3.4.1.2 Multi-Message Signatures

As mentioned above a credential is a signature. To be more precise it is a signature on the user’s
secret and her attributes. Therefore, it does not suffice to only sign single messages. The PS
signature scheme also offers a multi-message variant to sign blocks of messages.

Construction 3.17 (Multi-Message Pointcheval-Sanders Signature Scheme). Let G be a type
3 bilinear group generator (Definition 3.2). Let ` ∈ N. The multi-message Pointcheval-
Sanders (PS) signature scheme is defined as ΠM = (Setup`,Gen`,Sign`,Vrfy`), where

1. Setup`(1n): On input security parameter 1n, Setup` obtains (p,G1,G2,GT , e)← G(1n) and
returns pp := (p,G1,G2,GT , e).

2. Gen`(pp): On input public parameters pp = (p,G1,G2,GT , e), Gen` chooses generators
g ← G1 \ {1} and g̃ ← G2 \ {1}. It then chooses (x, y1, . . . , y`)← Z`+1

p , and returns secret
key sk := (x, y1, . . . , y`) and public key pk := (g, Y1, . . . , Y`, g̃, X̃, Ỹ1, . . . , Ỹ`) with X̃ := g̃x,
Yi := gyi and Ỹi := g̃yi for i = 1, . . . , `.

3. Sign`(pp, sk,m1, . . . ,m`): On input public parameters pp = (p,G1,G2,GT , e), secret key
sk = (x, y1, . . . , y`) and messages (m1, . . . ,m`) ∈ Z`p, Sign` chooses a generator h← G1\{1}
and returns the signature σ := (h, hx+

∑`

i=1 yi·mi).

4. Vrfy`(pp, pk,m1, . . . ,m`, σ): On input public parameters pp = (p,G1,G2,GT , e), public
key pk = (g, Y1, . . . , Y`, g̃, X̃, Ỹ1, . . . , Ỹ`), messages (m1, . . . ,m`) ∈ Z`p and signature σ =
(σ1, σ2), Vrfy` checks whether the equations σ1 6= 1 and e

(
σ1, X̃ ·

∏`
i=1 Ỹ

mi
i

)
= e(σ2, g̃)

hold. If both equations hold, it returns 1, and 0 otherwise.

Lemma 3.18. The signature scheme ΠM defined in Construction 3.17 is correct.

Proof. Let G be a type 3 bilinear group generator, n ∈ N and pp = (p,G1,G2,GT , e) ∈
[Setup`(1n)]. Let (pk, sk) ∈ [Gen(pp)]. Further, let (m1, . . . ,m`) ∈ Z`p and σ ∈ [Sign`(pp, sk,
m1, . . . ,m`)]. Then, it holds by definition that σ = (h, hx+

∑`

i=1 yimi) with h ∈ G1 \ {1} and
sk = (x, y1, . . . , y`) ∈ Z`+1

p . Since σ is an honestly generated signature on m1, . . . ,m`, it holds
by definition that h 6= 1. Therefore, we only need to check the verification equation using the
pairing e:

e(h, X̃ ·
∏`
i=1 Ỹi

mi) = e(h, g̃x ·
∏`
i=1 g̃

yimi) = e(h, g̃x+
∑`

i=1 yimi)

= e(h, g̃)x+
∑`

i=1 yimi = e(hx+
∑`

i=1 yimi , g̃).

Therefore, the verification outputs 1 for every honestly generated signature.

The security of this scheme relies on the security of the Single-Message Pointcheval-Sanders
Signature Scheme shown in the proof of Theorem 3.16. Therefore, it implicitly relies on As-
sumption 1 following Definition 3.7.

Theorem 3.19 (Security of ΠM). Let G be a type 3 bilinear group generator. If ΠS defined
in Construction 3.14 is existentially unforgeable under an adaptive chosen-message attack rela-
tive to G, then ΠM defined in Construction 3.17 is existentially unforgeable under an adaptive
chosen-message attack relative to G.

Proof. Assume that scheme ΠS (Construction 3.14) is secure. Fix an arbitrary ppt forger FM
such that Pr[Sig-forgeFM ,ΠM (n) = 1] = εM (n). Based on FM , construct the following forger FS
for the single-message scheme ΠS :

18

3.4 Digital Signatures

Forger FS on input pp and pk and oracle access to O : Zp → G2
1:

1. Parse pp as (p,G1,G2,GT , e) and pk as (g, Y, g̃, X̃, Ỹ).

2. Pick αi, βi ← Zp for i = 1, . . . , `.

3. Set Ỹi := Ỹ αi · g̃βi and Yi := Y αi · gβi for i = 1, . . . , `.

4. Simulate FM on input pp and pkM := (g, Y1, . . . , Y`, g̃, X̃, Ỹ1, . . . , Ỹ`).
Whenever FM queries its oracle with (m1, . . . ,m`) ∈ Z`p:

a) Query O on message
∑`
i=1 αimi to obtain (σ1, σ2).

b) Return (σ1, σ2 · σ
∑`

i=1 βimi
1).

5. When FM outputs a forgery ((m∗1, . . . ,m∗`), (σ∗1, σ∗2)):

a) Output
(∑`

i=1 αim
∗
i , (σ∗1, σ∗2/σ∗1

∑`

i=1 βimi)
)
.

First, note that FS is a ppt algorithm. It simulates forger FM , which is a ppt algorithm.
Related to this, FS needs to answers at most polynomially many oracle queries of FM . Each of
these makes use of the group operations and exponentiation, which are feasible in polynomial
time in the security parameter n. Same holds for outputting the forgery.

We analyze the success probability of forger FS in winning the game Sig-forgeFS ,ΠS (n). There-
fore we first analyze whether it correctly simulates the game Sig-forgeFM ,ΠM (n). Note, FS needs
to derive a public key pkM for the multi-message scheme based on the public key pk it obtains as
input. Important is that the derived key looks like a key generated by ΠM ’s key generation algo-
rithm Gen`, i. e. the public key pkM derived in steps 2–4 is distributed like a public key of ΠM . As
FS reuses the bilinear group pp, the generators g, g̃ and X̃ from his public key pk, we only need
to check whether Yj and Ỹj for j = 1, . . . , ` are distributed correctly. So, let sk := (x, y) ∈ Z2

p

be the secret key corresponding to pk, and let Y = gy and Ỹ = g̃y. Step 3 of forger FS implic-
itly defines the multiple-message secret key skM := (x, (αi y + βi)i=1,...,`). Since αi and βi are
chosen uniformly and independently from Zp for every i = 1, . . . , `, this means that αi y + βi
is distributed uniformly and independently on Zp. This implies that Ỹi = Ỹ αi · g̃βi = g̃αi y+βi

are distributed uniformly and independently on G2. The same holds for Yi by substituting g̃
by g and group G2 by G1. Therefore, the public key pkM that FM gets as input is distributed
correctly, and the discrete logarithms of Yi and Ỹi to base g and g̃, respectively, are the same.
Besides FM ’s inputs, the answers to its oracle queries need to be distributed correctly as

well. Let sk = (x, y) again denote the secret key corresponding to the public key pk which FS
gets as input. On query

∑`
i=1 αimi, forger FS gets a signature (σ1, σ2) in return that is valid

for the queried message. If (x, y) is the secret key, we have that σ1 is distributed uniformly

on G1 \ {1} and σ2 = σ
x+y·

∑`

i=1 αimi
1 according to the single-message signing algorithm under

secret key (x, y). Recall that step 3 of forger FS implicitly defines the multiple-message secret
key skM = (x, (αi y + βi)i=1,...,`). Therefore, a valid signature on messages (mi)i=1,...,` under
that secret key would look like the following: (σ1, σ2) such that σ1 is distributed uniformly on

G1 \ {1} and σ2 = σ
x+
∑`

i=1(αi y+βi)mi
1 . Now, Forger FS returns (σ1, σ2 · σ

∑`

i=1 βimi
1) as oracle

answer to FM such that (σ1, σ2) were obtained by querying FS ’s oracle on message
∑`
i=1 αimi.

Combining the considerations above, we get that σ1 is distributed uniformly on G1 \ {1} and

σ2 ·σ
∑`

i=1 βimi
1 = σ

x+y·
∑`

i=1 αimi
1 ·σ

∑`

i=1 βimi
1 = σ

x+
∑`

i=1 αi ymi
1 ·σ

∑`

i=1 βimi
1 = σ

x+
∑`

i=1(αi y+βi)mi
1 .

This means that the oracle simulated by FS produces signatures distributed correctly according
to the public key given to FM as input.

19

3 Building Blocks

In turn, this implies that FS perfectly simulates the Sig-forgeFM ,ΠM (n) game. Let us have a
look at the processing of the forgery ((m∗1, . . . ,m∗`), (σ∗1, σ∗2)) output by FM in step 5. We show,
that if the forgery output by FM is a valid signature under the public key FM got as input,
then the forgery output by FS is a valid signature under pk. If (σ∗1, σ∗2) is a valid signature
on (m∗1, . . . ,m∗`), we have that σ∗ 6= 1 and e(σ∗1, X̃ ·

∏`
j=1 Ỹ

m∗j
j) = e(σ∗2, g̃). It remains to

show that for forgery
(∑`

i=1 αim
∗
i , (σ∗1, σ∗2/σ∗1

∑`

i=1 βim
∗
i)
)
it holds that e(σ∗1, X̃ · Ỹ

∑`

i=1 αim
∗
i) =

e(σ∗2/σ∗1
∑`

i=1 βim
∗
i , g̃). Therefore we compute

e(σ∗2/σ∗1
∑`

i=1 βim
∗
i , g̃) = e(σ∗2, g̃) · e(σ∗1

−
∑`

i=1 βim
∗
i , g̃) = e(σ∗1, X̃ ·

∏̀
j=1

Ỹ
m∗j
j) · e(σ∗1

−
∑`

i=1 βim
∗
i , g̃)

= e(σ∗1, X̃ ·
∏̀
j=1

Ỹ
m∗j
j) · (σ∗1, g̃−

∑`

i=1 βim
∗
i)

= e(σ∗1, X̃ ·
∏̀
j=1

(Ỹ αj g̃βj)m
∗
j) · (σ∗1, g̃−

∑`

i=1 βim
∗
i)

= e(σ∗1, X̃ ·
∏̀
j=1

Ỹ αj m
∗
j · g̃

∑`

i=1 βim
∗
i) · (σ∗1, g̃−

∑`

i=1 βim
∗
i)

= e(σ∗1, X̃ · Ỹ
∑`

j=1 αj m
∗
j).

Thus, FS outputs a valid forgery, if FM does. Note that it may happen that
∑`
i=1 αim

∗
i =∑`

i=1 αimi holds for some messages (m1, . . . ,m`) queried by FM during its execution. In this
case, FS would have already queried its oracle with the message

∑`
i=1 αim

∗
i and thus, the

FS would lose the game Sig-forgeFS ,ΠS (n), although the forgery was valid. We analyze the
probability that this event occurs more formally. Therefore, fix an arbitrary type 3 bilinear
group (p,G1,G2,GT , e), arbitrary generators g and g̃ of G1 and G2, respectively, arbitrary
(x, y) ∈ Z2

p, (Y, X̃, Ỹ) := (gy, g̃x, g̃y). Let QM ⊆ Z`p be the set of queries made by FM during
its execution and let q(·) be a polynomial such that |QM | ≤ q(n). Note that the QS , the set of
queries made by FS , is defined dependent on QM . That is, QS := {m̂ ∈ Zp | (m1, . . . ,m`) ∈
Qm ∧ m̂ =

∑`
i=1 αimi} with |QS | ≤ q(n). Further, let m(i) = (m(i)

1 , . . . ,m
(i)
`) ∈ Z`p be arbitrary

numbers for i = 1, . . . , q(n) and let σ(i) = (σ(i)
1 , σ

(i)
2) ∈ G2

1 arbitrary. Then, View denotes the
event such that:

1. αi, βi ← Zp for i = 1, . . . , `.

2. The input of FM is (p,G1,G2,GT , e) and (g, (Y αi gβi)i=1,...,`, g̃, X̃, (Ỹ αi g̃βi)i=1,...,`).

3. QM = {m(1), . . . ,m(q(n))}, QS = {m̂i | 1 ≤ i ≤ q(n) ∧m(i) ∈ QM ∧ m̂i =
∑`
j=1 αjm

(i)
j }.

4. σ(i) is the answer to oracle query m(i) for i = 1, . . . , `.

Let (m∗, (σ∗1, σ∗2)) be the signature output by FM and let (m̂∗, (σ̂∗1, σ̂∗2)) the corresponding sig-
nature output by FS . Let fail denote the event that there exists an i ∈ {1, . . . , q(n)} such that
m̂i ∈ QS and m̂∗ = m̂i. We have the following

Pr[fail] = Pr

q(n)∨
j=1

m̂∗ = m̂j

.
Let us analyze the probability Pr[m∗ = m̂j] = Pr[

∑`
i=1 αim

∗
i =

∑`
i=1 αim

(j)
i] for some j ∈

{1, . . . , q(n)}. We claim that the view of forger FM is independent of the choices of αi and thus

20

3.4 Digital Signatures

reveals no information about them. Therefore, let aj ∈ Zp be arbitrary but fixed for j = 1, . . . , `.
We show that for every j = 1, . . . , `, it holds that Pr[αj = aj | View] = Pr[αj = aj]. Obviously,
Pr[αj = aj] = 1

p for all j. Let us now have a look at Pr[αj = aj |View]. Recall that Ỹj = Ỹ αj g̃βj

and Ỹ = g̃y. For every value that aj could take, we can find a β′j such that we get Ỹj . We set
β′j := βj + y (αj − aj), and get

Ỹ aj g̃β
′
j = g̃y aj g̃βj g̃y αj g̃−y aj = g̃βj g̃y αj = Ỹj .

This implies that the value of Ỹj is independent of αj for all j = 1, . . . , `, i. e.

Pr[αj = aj | View] = Pr[αj = aj] = 1
p
.

Assume that forger FM did not query its oracle on m∗ before. Otherwise, it would loose
immediately. As its view is independent from the αj ’s, the choice of m∗ is independent as well.
First, we have for every j ∈ 1, . . . , q(n):

Pr[m̂∗ = m̂j] = Pr
[∑̀
i=1

αim
∗
i =

∑̀
i=1

αim
(j)
i

]
= Pr

[∑̀
i=1

αi(m∗i −m
(j)
i) = 0

]
.

By the assumption that m∗ was not queried, we get that for all j ∈ {1, . . . , q(n)} there exists
a k ∈ {1, . . . , `} such that m∗k 6= m

(j)
k . The choice of the corresponding αk determines whether

the event
∑`
i=1 αi(m∗i −m

(j)
i) = 0 occurs or not. Intuitively, suppose that all αi apart from αk

are already fixed. Then, there is exactly one value for αk in Zp such that αk(m∗k −m
(j)
k) is the

additive inverse of the rest of the sum that is already fixed. If m∗ and m(j) were equal at this
position, this would not be the case. Formally, we have for all j ∈ {1, . . . , q(n)} there exists a
k ∈ {1, . . . , `} such that

Pr
[∑̀
i=1

αi(m∗i −m
(j)
i) = 0

]
= Pr

[∑
i 6=k

αi(m∗i −m
(j)
i) + αk (m∗k −m

(j)
k)︸ ︷︷ ︸

6=0

= 0
]

= 1
p
.

This implies that for all j ∈ {1, . . . , q(n)}, it holds Pr[m̂∗ = m̂j] = 1
p . By the union bound, we

get

Pr[fail] = Pr

q(n)∨
j=1

m̂∗ = m̂j

 ≤ q(n)∑
j=1

Pr[m̂∗ = m̂j] = q(n)
p
.

To conclude, we take all the considerations together. Since Forger FS is a ppt algorithm
and we assume ΠS to be secure, we have that Pr[Sig-forgeFS ,ΠS (n) = 1] = εS(n), where εS(n)
is a negligible function. Moreover, forger FS outputs a valid signature, if FM outputs a valid
signature, since FS simulates the game Sig-forgeFM ,ΠM (n) perfectly. However, if the event fail
occurs FS will lose the game, because it outputs a signature of a message that it already queried
its oracle with. Thus, we have

Pr[Sig-forgeFS ,ΠS (n) = 1] = Pr[Sig-forgeFS ,ΠS (n) = 1 ∧ fail] + Pr[Sig-forgeFS ,ΠS (n) = 1 ∧ ¬fail]
= Pr[Sig-forgeFS ,ΠS (n) = 1¬fail] · Pr[¬fail]

+ Pr[Sig-forgeFS ,ΠS (n) = 1 | fail]︸ ︷︷ ︸
=0

·Pr[fail]

= Pr[Sig-forgeFS ,ΠS (n) = 1 | ¬fail] · Pr[¬fail]

≥ εM (n) ·
(

1− q(n)
p

)
= εM (n)− εM (n) · q(n)

p

21

3 Building Blocks

BindingC,A(n)

1 : Run Setup(1n) to obtain public parameter pp
2 : A is given pp and has to output a tuple (c,m1, d1,m2, d2)
3 : Output of the experiment is 1 if Open(pp, c, d1) = m1,

Open(pp, c, d2) = m2,m1 6= m2 and m1,m2 6=⊥ .
Otherwise, the output is 0.

Figure 3.4: Computational Binding Experiment

≥ εM (n)− q(n)
p
.

Hence, εS(n) ≥ εM (n) − q(n)
p ⇐⇒ εS(n) + q(n)

p ≥ εM (n) holds. By definition of group
generator G (Definition 3.2) the value of p is lower-bounded by 2n, which implies that 1

p is
negligible. Therefore, q(n)

p is negligible as the product of a polynomial and a negligible function.
Using that εS and q(n)

p are negligible, we get that εS(n)+ q(n)
p is negligible as well. Hence, εM (n)

is upper-bounded by a negligible function and thus negligible.

3.5 Commitment Schemes
In this section, we define non-interactive commitment schemes and their possible security prop-
erties. Commitment schemes will be used to form pseudonyms in our anonymous credential
system (cf. Construction 4.25). By doing that, the user can hide her secret key with the com-
mitment while also allowing the user to create multiple different pseudonyms with different
random choices for the commitment.

Definition 3.20. A non-interactive commitment scheme C is a triple of ppt algorithms
(Setup,Com,Open), where

1. Setup(1n): On input security parameter 1n, it outputs the public parameter pp with
|pp| ≥ n. It also defines a message space M.

2. Com(pp,m): On input public parameter pp and a message m ∈M, it outputs a pair (c, d)
of commitment c and open value d.

3. Open(pp, c, d): On input public parameter pp, a commitment c and an open value d it
deterministically outputs m or failure symbol ⊥.

We will call a commitment scheme correct if for every sufficiently large security parameter n
and for all pp ∈ [Setup(1n)], it holds that for all messages m ∈M

Pr[Open(pp,Com(pp,m)) = m] = 1

where the probability is taken over the coin tosses of Com and the inputs’ distribution.

Now that we defined non-interactive commitment schemes, we want to look at their security
properties.

Definition 3.21 (Computational Binding). Let C = (Setup,Com,Open) be a commitment
scheme. We say the commitment scheme C is computationally binding if for all probabilistic
polynomial-time algorithms A there exists a negligible function negl such that

Pr[BindingC,A(n) = 1] ≤ negl(n),

22

3.5 Commitment Schemes

where experiment BindingC,A(n) is defined in Figure 3.4.

In other words this property states, a commitment cannot efficiently be opened to two dif-
ferent values. One speaks of perfectly binding, if even unrestricted adversaries cannot open
commitments to two different values.

Definition 3.22 (Perfect Hiding). Let C = (Setup,Com,Open) be a commitment scheme.
Assume that Setup(1n) generated public parameters pp for some n ∈ N. For messages m1,m2 ∈
M, we define the random variables C(m1) and C(m2) describing the output of Com(pp,m1) and
Com(pp,m2), respectively, where only the first output is considered. Then, C is perfectly hiding
if for all pp ∈ [Setup(1n)] and all m1,m2 ∈ M and for all c ∈ [Com(pp,m1)] ∪ [Com(pp,m2)] it
holds

Pr[C(m1) = c] = Pr[C(m2) = c].

By the means of this definition, perfectly hiding commitment schemes do not allow the receiver
to get any information about the message through the commitment. Even the knowledge of one
bit could be harmful, since the receiver might be able to then gain even more information
about the message through the setting or earlier commitments. A commitment scheme which
is perfectly hiding allows a user to publish commitments without any concerns about their
contents. The binding property ensures that no action after publishing a commitment affects
its contents.

3.5.1 Generalized Pedersen Commitment Scheme

In this section, we define a commitment scheme, generalizing the prominent Pedersen Commit-
ments [Ped92]. This generalization will enable us to commit to a fixed number of k messages.
If we do not specify it any further, we implicitly assume the special case of k = 1. This creates
the original scheme, which is often sufficient within our anonymous credential system. Since we
want to use this scheme, we also prove its security properties.

Construction 3.23. Let k ∈ N be fixed and G be a group generator (Definition 3.3). The
generalized Pedersen commitment scheme for k messages is then defined as a triple of ppt
algorithms (Setupk,Comk,Openk), such that:

1. Setupk(1n): On input security parameter 1n, Setupk runs the group generator G(1n) and
obtains (p,G). Then, a generator g is chosen uniformly at random from G \ {1} and k
elements h1, . . . , hk are chosen uniformly at random from G. The public parameters pp
are then set to (g, h1, . . . , hk, p,G). This implicitly sets the message space M to Zkp and
Setupk outputs pp.

2. Comk(pp,M): On input public parameters pp = (g, h1, . . . , hk, p,G) and message M =
(m1, . . . ,mk) ∈ Zkp, Comk chooses r uniformly at random from Zp and computes the
commitment c := gr

∏k
i=1 h

mi
i . It sets the decommit message d := (M, r) and outputs

(c, d).

3. Openk(pp, c, d): On input public parameters pp = (g, h1, . . . , hk, p,G), commitment c and
decommit message d = (M, r), Openk computes gr

∏k
i=1 h

mi
i . If this equals c, it outputs

M . Else it outputs ⊥.

Theorem 3.24. If the discrete logarithm problem (Figure 3.1) is hard relative to the group
generation algorithm G and k ∈ N is fixed, the following properties hold for the generalized
Pedersen Commitment Scheme:

1. Correctness as in Definition 3.20

23

3 Building Blocks

2. Perfect hiding as in Definition 3.22

3. Computational binding as in Definition 3.21

Theorem 3.24 follows from the three lemmas (Lemma 3.25, Lemma 3.26, Lemma 3.27) stated
and proven below.

Lemma 3.25. Let k ∈ N be fixed. The Pedersen commitment scheme (Construction 3.23) is
a correct commitment scheme (Definition 3.20).

Proof. We want to show that for all security parameters n ∈ N, for all k ∈ N, for all public
parameters pp ∈ [Setupk(1n)] it holds that

∀M = (m1, . . . ,mk) ∈M : Pr[Openk(pp,Com(pp,M)) = M] = 1.

Let (c, d) ∈ [Com(pp,M)] with c = gr
∏k
i=1 h

mi
i , d = (M, r). Openk then checks if c = gr

∏k
i=1 h

mi
i ,

which leads to the output being M .

Lemma 3.26. Let k ∈ N be fixed. The Pedersen commitment scheme (Construction 3.23) is
perfectly hiding (Definition 3.22).

Proof. We prove that the scheme is perfectly hiding by showing that for all security parameters
n ∈ N, all k ∈ N and for all public parameters pp ∈ [Setupk(1n)], for all messages M,M ′ ∈ M
with corresponding random variables C(M) and C(M ′) as defined in Definition 3.22 and for all
commitments c ∈ [Comk(pp,M)] ∪ [Comk(pp,M ′)] it holds that

Pr[C(M) = c] = Pr[C(M ′) = c].

We achieve this by proving that for all messages M ∈ M, C(M) is distributed identically to
the uniform distribution on G. If this is the case, the distribution is identical for every message
M = (m1, . . . ,mk) and hence the property holds.
Let c ∈ G, then

Pr[C(M) = c] = Pr[r ← Zp : c = gr
k∏
i=1

hmii] = Pr[r ← Zp : gr = c ·
k∏
i=1

h−mii] = 1
|G|

since g is a generator in G and hence there is exactly one rmod |G| such that gr = c ·
∏k
i=1 h

−mi
i .

Lemma 3.27. If the discrete logarithm problem (Figure 3.1) is hard relative to the group gener-
ation algorithm G and k ∈ N is fixed, then the Pedersen commitment scheme (Construction 3.23)
is computational binding (Definition 3.21).

Proof. Let k ∈ N be fixed andA be an arbitrary ppt adversary. Define ε as ε(n) := Pr[BindingC,A(n) =
1]. Using A we construct an adversary B with Pr[DLogB,G(n) = 1] ≥ 1

k · ε(n). In the following
[k] denotes the set {1, . . . , k}. Define B such that:

1. B receives (G, p, g, h) from the challenger

2. B chooses i∗ ← [k] and sets I := [k] \ {i∗}

3. B chooses for all i ∈ I an ri ← Zp and sets hi := gri , as well as hi∗ := h

4. B runs A on input pp = (g, h1, . . . , hk, p,G)

5. Eventually, A outputs (c,M, d,M ′, d′) with M = (m1, . . . ,mk) 6= (m′1, . . . ,m′k) = M ′. If
A outputs mi∗ = m′i∗ mod p, B outputs ⊥

24

3.5 Commitment Schemes

6. B parses d = (M, r), d′ = (M ′, r′) and outputs (m′i∗−mi∗)−1 ·(r−r′+
∑
i∈I ri(mi−m′i)) = x

mod |G|.
Analysis of B:
If B does not output ⊥ and A succeeds in BindingC,A(n), then x is the discrete logarithm such
that gx = h since

gr
k∏
i=1

hmii = gr
′
k∏
i=1

h
m′i
i

⇔ grh
mi∗
i∗

∏
i∈I

grimi = gr
′
h
m′
i∗

i∗

∏
i∈I

grim
′
i

⇔ grh
mi∗
i∗ g

∑
i∈I rimi = gr

′
h
m′
i∗

i∗ g
∑

i∈I rim
′
i

⇔ gr−r
′
g
∑

i∈I ri(mi−m
′
i) = hm

′
i∗−mi∗

⇔ g(m′
i∗−mi∗)−1(r−r′+

∑
i∈I ri(mi−m

′
i)) = h

⇔ (m′i∗ −mi∗)−1(r − r′ +
∑
i∈I

ri(mi −m′i)) = logg(h) = x mod |G|.

Note, if B does not output ⊥ then (m′i∗ − mi∗)−1 exists, since then m′i∗ 6= mi∗ holds (step
5) and m′i∗ −mi∗ 6= 0 mod p is invertible in Zp. Furthermore, for any security parameter n,
the public parameters pp of B are distributed identical to Setupk(1n) by the DLog setup (i. e.
(p,G)← G(1n), g ← G \ {1} and hi∗ := h← G by h = gr with r ← Zp) and step 3 (i. e. hi ← G
by hi := gri with ri ← Zp for all i ∈ I).
By the previous calculations B succeeds in the DLog game, if A wins Binding with the two

different messages M = (m1, . . . ,mk),M ′ = (m′1, . . . ,m′k), for which additionally mi∗ 6= m′i∗
holds. Note, that under the condition BindingC,A(n) = 1, we know mi 6= m′i holds for some
i ∈ [k]. With µ defined as µ(n) := Pr[DLogB,G(n) = 1], we can compute

µ(n) = Pr[DLogB,G(n) = 1]
= Pr[i∗ ← [k] : BindingC,A(n) = 1 ∧mi∗ 6= m′i∗]
= Pr[i∗ ← [k] : mi∗ 6= m′i∗ |BindingC,A(n) = 1] Pr[BindingC,A(n) = 1]

≥1
k
· Pr[BindingC,A(n) = 1]

=1
k
· ε(n).

The inequality holds since the view of A is distributed independently of the uniform choice of i∗.
Hence, if A wins, the message vectors differ at least on one of the k positions, independent of i∗.
By the uniform choice of i∗ the probability they differ at position i∗ is at least 1/k. Equivalently
ε(n) ≤ k · µ(n) with k polynomial in n holds, since k is fixed. Assuming the discrete logarithm
problem is hard relative to the group generator G, k ·µ is a negligible upper bound of ε. Hence, as
A was an arbitrary ppt, no ppt algorithm A wins Binding with more than negligible probability.
Under this assumption the generalized Pedersen commitment scheme (Construction 3.23) is
computationally binding.

3.5.2 Trapdoor Commitment Schemes
There exists an extension of commitment schemes, where one can forgo the binding prop-
erty (Definition 3.21), if she knows a special secret. This secret is called a trapdoor. With
the trapdoor, one is able to output some commitment and open it to any message she wants.
Without the trapdoor, the original binding property still holds. We need to introduce the notion
of a trapdoor commitment scheme to be able to use Damgård’s Technique (Section 3.9).

25

3 Building Blocks

Definition 3.28 (Trapdoor Commitment Scheme). A trapdoor commitment scheme (TCS) C
is a triple of ppt algorithms (Setup,Com,Open), where

1. Setup(1n): On input security parameter 1n, it outputs the public parameter pp with
|pp| ≥ n and a trapdoor t. It also defines a message space M.

2. Com(pp,m): On input public parameter pp, and a message m ∈M it outputs a pair (c, d)
of commitment c and open value d.

3. Open(pp, c, d): On input public parameter pp, a commitment c and an open value d it
outputs m or failure symbol ⊥.

Furthermore, the TCS must be correct, which is defined as in a standard commitment scheme (Def-
inition 3.20), and it must have the trapdoor property:

There exists a tuple of ppt algorithms (T1, T2), such that for all m, all (pp, t) ∈ [Setup(1n)],
all (c, st) ∈ [T1(pp, t)] and d ∈ [T2(m, st)] we have that Open(pp, c, d) = m and the commitments
of Com(pp, ·) and T1(pp, ·) are distributed the same.

In other words, we can output a commitment with T1 that is distributed as a normal com-
mitment, but with the trapdoor and the state st we can open the commitment to any message
we want.

3.5.3 Hash-Then-Commit
Until now, commitment schemes all had only a predefined message space, which may depend on
the public parameters. But in some cases it may be beneficial to be able to commit to any bit
string. Thus, we want to create a scheme that is able to do exactly that.

Construction 3.29. Let C = (Setup,Com,Open) be a commitment scheme with message
space M(·). Let H = (Setup,Genh, h) be a hash function that maps to M(·) (Theorem 3.10).
Construct a tuple of ppt algorithms C′C,H = (Setup′,Com′,Open′) as follows:

• Setup′(1n): Choose pp← Setup(1n) and k ← Genh(pp). Output pp′ = (pp, k).

• Com′(pp′,m): Parse (pp, k) = pp′. Compute (com, d)← Com(pp, hk(m)). Output (com, (m, d)).

• Open′(pp′, com, d′): Parse (pp, k) = pp′ and (m, d) = d′. Compute y ← Open(pp, com, d).
If hk(m) = y, output m.

Theorem 3.30. Let C = (Setup,Com,Open) be a commitment scheme with message space
M(·). Let H = (Setup,Genh, h) be a hash function that maps to M(·) (Theorem 3.10). If C
is computationally binding and perfectly hiding and H is collision-resistant, then the construc-
tion C′C,H from Construction 3.29 is a computationally binding (Definition 3.21) and perfectly
hiding (Definition 3.22) commitment scheme with message space {0, 1}∗.

Proof. We prove correctness, computational binding and perfect hiding separately.

Correctness Let n ∈ N, pp′ = (pp, k) ∈ [Setup′(1n)]. Then, for anm ∈ {0, 1}∗, Com′(pp′,m) out-
puts (com, (m, d)). Since, (com, d) was generated by Com(pp, hk(m)), pp was generated by
Setup(1n), and the underlying commitment scheme C is correct, we have Open(pp, com, d) =
hk(m). Thus, Open′(pp′, com, (m, d)) opens to m, therefore the commitment scheme C′C,H
is correct.

Computational Binding Let A′ be an adversary against the computationally binding property
of C′C,H . Construct an adversary A against the computational binding property of C that
works as follows:

26

3.6 Secret-Sharing Schemes

Adversary A(pp)

1 : Generate k ← Genh(pp).
2 : Simulate A′(pp, k).
3 : Receive (c,m1, (y1, d1),m2, (y2, d2)) from A′.
4 : If hk(m1) 6= hk(m2), return (c, hk(m1), d1, hk(m2), d2), else abort.

Furthermore, construct an adversary Acoll against the collision-resistance of H as follows:

Adversary Acoll(pp, k)

1 : Simulate A′(pp, k).
2 : Receive (c,m1, d1,m2, d2) from A′.
3 : If hk(m1) = hk(m2), return (m1,m2), else abort.

Call EQ the event that hk(m1) = hk(m2). Then, we have

Pr[BindingC′C,H ,A′(n) = 1] = Pr[BindingC′C,H ,A′(n) = 1 ∧ EQ]
+ Pr[BindingC′C,H ,A′(n) = 1 ∧ ¬EQ]
≤ Pr[HashCollAcoll,H(n) = 1] + Pr[BindingC,A(n) = 1 | ¬EQ]
≤ negl1(n) + negl2(n)

for some negligible functions negl1, negl2, since A and Acoll perfectly simulate the view of
A′, C is computationally binding, and H is collision-resistant.

Perfect Hiding Since C is perfectly hiding, we have that for n ∈ N, pp ∈ [Setup(1n)], m1,m2 ∈
M(pp) the following equation holds:

Pr[Com(pp,m1) = (com, ·)] = Pr[Com(pp,m2) = (com, ·)]

Since this does not depend on the distribution of the input and C′ only changes the input,
it follows that

Pr[Com(pp, hk(y1)) = (com, ·)] = Pr[Com(pp, hk(y2)) = (com, ·)]

for y1, y2 ∈ {0, 1}∗ and k ∈ Genh(1n), since images of hk are in M(pp). Thus, C′ is also
perfectly hiding.

3.6 Secret-Sharing Schemes
We proceed with the definition of secret-sharing schemes. They are used to distribute secrets
among participating parties, such that only qualified groups of them can (efficiently) reconstruct
the secret with their shares. Therefore, such a scheme is always defined with respect to a
context-dependent access structure, listing these qualified sets of participants. A secret-sharing
schemes is helpful to achieve proofs of partial knowledge [CDS94]. In the following we stick to
the definitions from [CK93; BC93; CDS94]. We start defining access structures and their dual
counterparts with respect to a given set of parties.

Definition 3.31 ((Dual) Access Structure). Let M = {p1, . . . , pn} be a set of parties. A
collection Γ ⊆ P(M) is monotone if A ∈ Γ and A ⊆ B ⊆M imply B ∈ Γ. An access structure is
a monotone collection Γ ⊆ P(M) of non-empty subsets of M . Sets in Γ are called qualified, sets
not in Γ are called non-qualified. The dual access structure of Γ is defined as Γ∗ := {A ⊆ M |
M \A 6∈ Γ}.

27

3 Building Blocks

Note, that in many cases it is reasonable and no restriction to assume monotonicity of an
access structure, as a qualified set extended by other parties usually remains qualified. Access
structures and especially their duals will become relevant in the context of proofs of partial
knowledge. Such structures may be given implicitly, rather than enumerating all qualified sets.
The next lemma states a useful property of monotone access structure that we later will use to

prove the properties of the proof of partial knowledge construction given in Construction 3.59.

Lemma 3.32. Let Γ be a monotone access structure. A set A is qualified in Γ if and only if
for all B ∈ Γ∗ it holds A ∩B 6= ∅.

Proof. We show the two directions separately by contradiction. In the following, let M :=
{p1, . . . , pn} denote the set of parties of the access structure Γ.
Suppose A ∈ Γ and there exists a B ∈ Γ∗ such that A∩B = ∅. Therefore, it holds B ⊆ (M\A).

Now, we have B ∈ Γ∗ and B ⊆ (M \ A) ⊆ M giving us by monoticity that M \ A ∈ Γ∗. By
definition of Γ∗, we in turn have (M \ A) ∈ Γ∗ ⇐⇒ M \ (M \ A) = A 6∈ Γ. Contradicting the
assumption that A ∈ Γ.
Suppose A 6∈ Γ and for every B ∈ Γ∗ it holds A ∩B 6= ∅. Since A 6∈ Γ, we have by definition

(M \ A) ∈ Γ∗. This contradicts the assumption that every qualified set in Γ∗ has a non-empty
intersection with A.

Access structures can be given implicitly rather than listing all qualified sets explicitly. One
method to do so are monotone predicates, which we define in the following.

Definition 3.33 (Monotone Predicate). A predicate φ(X1, . . . , Xn) on n variables Xi ∈ {0, 1}
is called monotone, if and only if for a set of parties {p1, . . . , pn}

Γφ := {A ⊆ {p1, . . . , pn} | ∀i = 1, . . . , n : Xi = [pi
?
∈ A] ∧ φ(X1, . . . , Xn) = 1},

is a (monotone) access structure.

This means any monotone predicate can identify a (monotone) access structure and vice
versa. Monotone predicates could be considered as boolean formulas without negated variables.
However, the representation via a boolean formula can become exponential in the number of
parties. This can happen for example in d-out-of-n access structures, where any set with d
and more parties is qualified. Here, an efficiently computable predicate would check whether∑n
i=1Xi ≥ d or not, rather than using a boolean formula. With respect to access structures we

define secret-sharing schemes.

Definition 3.34 (Secret-Sharing Scheme). Let Γ be an access structure with n parties and
K be a finite set of secrets, where |K| ≥ 2. A (perfect) secret-sharing scheme with domain of
secrets K realizing an access structure Γ is a tuple (Share,Recon), where

1. The ppt algorithm Share on input secret s ∈ K outputs shares (si)ni=1 ∈ K1 × . . . ×Kn,
where, for j = 1, . . . , n, Kj is called the domain of shares of party pj .

2. Correctness: The secret s ∈ K can be reconstructed by any qualified set. The deterministic
algorithm Recon outputs, on input set A = {pi1 , . . . , pi|A|} ∈ Γ and shares (si1 , . . . , si|A|) ∈
Ki1 × · · · ×Ki|A| , a secret s ∈ K. We demand that for every s ∈ K,

Pr[Recon(A, Share(s)A) = s] = 1,

where the probability is taken over the coin tosses of Share and Share(s)A denotes the
restriction of the output to its A-entries.

28

3.7 Zero-Knowledge Arguments of Knowledge

3. Perfect Privacy: Every non-qualified set cannot learn anything about the secret from their
shares. Formally, for any set A 6∈ Γ, for every two secrets s, s′ ∈ K and every possible
vector of shares (sj)pj∈A

Pr[Share(s)A = (sj)pj∈A] = Pr[Share(s′)A = (sj)pj∈A].

To share a secret s among the parties Share is run and each share sj is privately communicated
to party pj . The trivial case |K| = 1 is excluded, since the only secret would be “reconstructable”
by any party. Given |K| ≥ 2, the requirements ensure, that a secret can be reconstructed if and
only if shares corresponding to a qualified set are known. By perfect privacy we see that, for
any non-qualified set A, the Share(s)A (treated as random variable) is distributed independently
of s, and we can write simply ShareA.

3.6.1 Smooth Secret-Sharing Schemes

In case of proofs of partial knowledge, we demand more properties from secret-sharing schemes
[CDS94].

Definition 3.35. Let Γ be an access structure with n parties, K be a finite set of secrets,
|K| ≥ 2, and Ki be the domain of shares of party pi, i = 1, . . . , n. A t-smooth secret-sharing
scheme is a tuple (Share,Recon,CheckConsistency,Complete), where

1. (Share,Recon) forms a secret-sharing scheme such that Share and Recon run in time at
most t.

2. The deterministic algorithm CheckConsistency outputs, on input secret s and a full set of
n shares, a bit b ∈ {0, 1}. Here, we interpret b = 1 as the given secret s being consistent
with the full set, which means that all qualified sets of shares determine s as the secret.
The running time of CheckConsistency is at most t.

3. The probabilistic algorithm Complete outputs, on input any secret s and a set of shares
corresponding to an unqualified set A, a full set of n shares completing A that is consistent
with s. This algorithms runs in time at most t. If the set of shares is distributed according
to ShareA, then the full set output by Complete is distributed according to Share(s).

4. For any non-qualified set A, the probability distribution ShareA is such that shares for the
participants in A are independent and uniformly distributed.

Moreover, a t-semi-smooth secret-sharing scheme is a tuple (Share,Recon,CheckConsistency,
Complete) fulfilling properties 1–3.

As Cramer, Damgård, and Schoenmakers [CDS94] note, the scheme of Shamir [Sha79] is
smooth and can realize threshold structures. Further, the recursive construction of Benaloh and
Leichter [BL90] yields a semi-smooth secret-sharing scheme for any access structure given by a
monotone boolean formula [CDS94].

3.7 Zero-Knowledge Arguments of Knowledge
In an anonymous credential system, one is often asked to prove to know something. Since we
focus on anonymity, we want to achieve that the user is able to convince another party of her
knowledge without revealing the exact knowledge to the other parties. To illustrate, consider
the following example: The user wants to use a service that requires her to be over 18 years old,
but the user does not want to reveal her exact age. This can be achieved by the technique of

29

3 Building Blocks

zero-knowledge proofs of knowledge or zero-knowledge arguments of knowledge. In this section,
we formally define this notion. Let us first give some preliminaries.
In the following, we often refer to interactive protocols. An interactive protocol is a compu-

tation between two interactive algorithms, i. e. the algorithms can exchange messages. We call
these two algorithms the prover P and the verifier V. The prover P somehow proves to the
verifier that she has a solution to a public problem. The problem and solution are formalized
by (formal) languages and binary relations.

Definition 3.36. Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation where for all (v, w) ∈ R we
have |w| ≤ p(|v|) for some polynomial p(·). We call this polynomially bounded. Furthermore, we
want R to be polynomially verifiable, meaning one can compute R(·, ·) in polynomial time. If
R is both polynomially bounded and polynomially verifiable, we call R an NP-Relation. For a
v ∈ {0, 1}∗ call W (v) = {w ∈ {0, 1}∗ : (v, w) ∈ R} the witness set of v and w ∈ W (v) a witness
for v. Define LR = {v ∈ {0, 1}∗ : W (v) 6= ∅}.

In other words, v ∈ LR denotes our problem known to both P and V, and w denotes the
secret witness solving our problem. The common input of P and V is always v. Apart from
the common input we allow another secret or auxiliary input for each algorithms that are only
known to them. For P, the secret input is the witness w ∈ W (v) corresponding to instance
v, while the secret input y for a verifier may give her some additional a-priori information.
When a prover P on input (v, w) interacts with a verifier V on input v, y, we denote this by
P (v, w) ↔ V (v, y). Moreover, we refer to the messages exchanged by P and V as transcripts.
Denote by T (P(v, w)↔ V (v, y)) the random variable of the possible transcripts of the interaction
of P (v, w) and V (v, y). Then, we can define what an interactive argument (cf. [Gol01, p.193])
is:

Definition 3.37. A protocol (P,V) is called an interactive argument for a language L, if P
and V are ppt and

• at the end of their interaction, V outputs a 1 or 0 indicating she accepted the proof or not,
which we denote by (P(v, w)↔ V(v))→ b,

• for every v ∈ L there exists a w ∈ {0, 1}p(|v|) such that

Pr[(P(v, w)↔ V(v))→ b : b = 1] ≥ 2
3 ,

• for every v /∈ L sufficiently long, every ppt interactive algorithm P∗ and every w ∈
{0, 1}p(|v|), we have

Pr[(P∗(v, w)↔ V(v))→ b : b = 1] ≤ 1
3 ,

where p(·) is some polynomial.

Note that in this definition V does not get any additional information y. For such an interactive
argument, call a transcript accepting, if the verifier accepted at the end of the interaction
described by the transcript.
As a remark, there exists a definition similar to the definition of an interactive argument for an

interactive proof. While such a proof does not give the prover a witness, it lifts the polynomial
time restriction for the prover, meaning she can compute the witness before engaging with a
verifier. We want to restrict ourself to only arguments, since we require our provers to have
polynomial time. Therefore, all our security definitions only speak about arguments and not
proofs.

30

3.7 Zero-Knowledge Arguments of Knowledge

3.7.1 Zero-Knowledge Arguments
One of the goals of our protocols is to not leak knowledge about the prover’s secret during the
protocol execution. This means that transcripts of the protocol generally do not help the verifier
to learn something secret. For the formal definition, we draw inspiration from [Gol01, p.207].

Definition 3.38 (Honest Verifier Zero-Knowledge). An interactive argument (P,V) for a lan-
guage LR is called honest verifier zero-knowledge (HVZK) for an NP-relation R, if there exists
a ppt algorithm S, which for all v ∈ LR generates transcripts that are identically distributed as
transcripts of real protocol runs. Formally defined, this means that for all (v, w) ∈ R we have

Pr[T (P(v, w)↔ V (v)) = τ] = Pr[S(v) = τ].

This means, we are not only able to generate accepting transcripts without any interaction
with a prover, but we can do it even with the same probability distribution. Thus there cannot be
any gain of knowledge by running the protocol with an honest verifier. Note that this definition
only covers honest verifiers. The simulator might not have the same guarantees if the verifier is
dishonest.
There also exists a definition for (general) zero-knowledgeness, which includes dishonest ver-

ifiers. Here, we require similarly to Definition 3.38 that we are able to generate accepting
transcripts, only this time we want to do this for every (possibly cheating) verifier. Further-
more, a cheating verifier may have some additional information that she could try to use to learn
the prover’s witness. We model this by giving the (possibly cheating) verifier an additional input
representing her extra information (cf. [Gol01, p.213]).

Definition 3.39 (Zero-Knowledge). An interactive argument (P,V) for a language LR is called
zero-knowledge (ZK) for an NP-relation R, if for every interactive algorithm V∗ there exists a
ppt algorithm SV∗ , such that for all (v, w) ∈ R, all y ∈ {0, 1}p(|v|), we have

• SV ∗ may output an error symbol ⊥ with Pr[SV ∗(v, y) =⊥] ≤ 1
2

• Pr[T (P(v, w)↔ V ∗(v, y)) = τ] = Pr[SV ∗(v, y) = τ | SV ∗(v,y) 6=⊥],

where p(·) is some polynomial.

In other words, for every interactive algorithm V ∗ (i.e. possibly cheating verifier) there exists a
simulator SV ∗ that generates accepting transcripts with the same distribution V ∗ would expect.

If there exists a single simulator for all interactive algorithms V∗ with oracle access to V∗ that
fulfills the requirements above, we speak of black-box zero-knowledge.
When using one of the zero-knowledge definitions, one has to be careful of concurrent verifiers

that are able to run multiple instances of a protocol in parallel, as they are more powerful
in general. For a special subset of protocols there is a way to transform them into general
concurrent zero-knowledge protocols with cheating verifiers (cf. Section 3.9).

3.7.2 Arguments of Knowledge
Since we want to use our protocols to prove knowledge of something, we want to make sure that
only algorithms with knowledge of a secret can convince a verifier. Thus, we need to define what
it means for a machine to have knowledge of something. This is caught by the idea, that if there
actually is some knowledge in a machine, one should be able to extract this (cf. [Gol01, p.264]).

Definition 3.40 (Argument of Knowledge). An interactive argument (P,V) for a language
LR is called argument of knowledge (AoK) for an NP-relation R with knowledge error κ(·), if

• for all (v, w) ∈ R we have Pr[(P(v, w)↔ V(v, y))→ b : b = 1] = 1.

31

3 Building Blocks

• there exists a ppt algorithm E with black-box access to a prover P∗ that on input v ∈ LR
outputs a witness w such that (v, w) ∈ R.
Furthermore, for any ppt interactive algorithm P∗ and any long enough v, if ε(v) > κ(v),
the extractor must run in expected time

p(|v|)
ε(v)− κ(v) ,

where p(·) is some polynomial and ε(v) is the probability that P∗ convinces the verifier on
input v.

Here, black-box access means that the extractor has oracle access to a prover, i.e. an inter-
active algorithm following the protocol in the role of a prover, and may get outputs from it on
any input she chooses, including choosing the randomness. Note that since the prover is an
interactive algorithm, the extractor sometimes needs to give messages to the oracle to receive
answers of a specific step.

3.7.3 Camenisch-Stadler Notation

There is a useful notation introduced by Camenisch and Stadler Camenisch and Stadler [CS97],
which describes proofs of knowledge in a very compact manner. For example,

PK
{

(α, β) : y = gα ∧ z = gβhα
}

denotes an interactive proof of knowledge of the discrete logarithm for y to the base g and
a representation for z to the bases g and h, where additionally h is raised with the discrete
logarithm of y to base g. In other words, we prove knowing the discrete logarithm α of y and
additionally β such that z = gβhα.

3.7.4 Non-interactive Arguments

In some cases, someone wants to prove knowledge of a secret, but circumstances prohibit the
usage of an interactive protocol. For example, a user wants to add to a rating that she is over 18
years old. Since the rating should be verifiable without talking to the rating user, we need a non-
interactive way of proving knowledge. Thus, we want to introduce non-interactive arguments,
where a prover outputs some form of proof and a verifier either accepts or rejects the proof by
outputting 1 or 0. We adapt the definition of Goldreich [Gol01, p.299] to the random oracle
model (cf. [BR93]).

Definition 3.41. A tuple of ppt algorithms (P,V) is called a non-interactive argument for a
language L, if

• for every v ∈ L there exists a w ∈ {0, 1}p(|v|) such that

Pr[b← V(v,P(v, w)) : b = 1] ≥ 2
3 ,

where p(·) is some polynomial.

• for every v /∈ L and every ppt algorithm B we have

Pr[b← V(v,B(v), y) : b = 1] ≤ 1
3 .

Both P and V can make queries to a random oracle.

32

3.8 Σ-Protocols

Similarly to an interactive argument, we want to make sure that a verifier does not learn any-
thing about the secret witness. Since we are in a non-interactive setting, the verifier cannot influ-
ence the generation of the proof, thus she does not need to be considered for zero-knowledgeness.
As before, we require that there exists a simulator, such that an adversary cannot distinguish
between the output of the simulator and an honestly generated proof. For a formal definition,
look into Bernhard, Pereira, and Warinschi [BPW12].
Furthermore, we need some notion regarding soundness to ensure that only provers with

some knowledge about a witness can convince a verifier with significant probability. Since the
definition of an interactive argument of knowledge does not apply, we look into the notion
of simulation sound extractability of Bernhard, Pereira, and Warinschi [BPW12]. There, a
malicious prover may see simulated proofs and outputs several proofs together with the oracle
queries he queried. Then, an extractor tries to extract witnesses from these proofs. During
this, the extractor may rewind the prover, but only with the same randomness. If an extractor
exists, that for any prover is able to extract witnesses with non-negligible probability, we have
simulation sound extractability. For a formal definition, see Bernhard, Pereira, and Warinschi
[BPW12].

3.8 Σ-Protocols
Whenever a user wants to convince another party that she knows something, we need to have
a protocol which both parties follow to exchange their messages. There exists a pattern that is
generally usable for proving knowledge of something, called Σ-protocol [Dam10]. This pattern
is useful as a building block, since we can base many different constructions on it. Since a
Σ-protocol is an interactive argument (Definition 3.37), we prove knowledge of a witness corre-
sponding to a problem of a NP-Relation.
First, we describe the form of a Σ-protocol.

Construction 3.42. Let R be a NP-Relation. Let α, γ be ppt algorithms. Let C be a finite set.
Let φ be a predicate that is computable in polynomial time. Then, let (P,V) be a three-round
interactive argument for LR (Definition 3.37) of the following form:

P(v, w) V(v)

z ← α(v, w; k) z

c← C

c

r ← γ(v, w, k, c) r

φ(v, z, c, r)

Here, three-round means that transcripts consist of three messages. We call z the announce-
ment, c the challenge and r the response.

Definition 3.43. Call S = (P,V) of form as in Construction 3.42 a Σ-protocol for a NP-
Relation R, if it has the following properties:

Correctness: If (v, w) ∈ R, and P and V follow the protocol, V accepts with probability 1.

33

3 Building Blocks

Special Soundness There exists a ppt algorithm E, called extractor, that given v ∈ LR and any
two accepting transcripts (z, c, r), (z, c′, r′) with c 6= c′ outputs a witness w with (v, w) ∈ R.

Special Honest-Verifier Zero-Knowledge There exists a ppt algorithm S, called simulator, that
when given v ∈ LR and any challenge c ∈ C outputs an accepting transcript with the same
distribution as in the real protocol, i.e. for all (v, w) ∈ R and all c ∈ C we have

Pr[T (P(v, w)↔ V(v)) = (z, c, r)] = Pr[S(v, c) = (z, c, r)].

Note that correctness together with special soundness reminds of Definition 3.40, since we
fix the probability that the verifier accepts on correct input to 1 and there exists an extractor
outputting a witness. This is due to the fact that for Σ-protocols, correctness and special
soundness imply that the argument is a proof of knowledge.

3.8.1 Schnorr Protocol

A basic example of a Σ-protocol is the Schnorr protocol [Sch91]. The simplicity and flexibility of
it is useful for our anonymous credential system, because we need slightly different Σ-protocols
at different points of the system (cf. Section 4.1.3). We need the discrete logarithm problem
(Definition 3.4) as a computational assumption, which we use to prove the knowledge of an
exponent in the following way:

Construction 3.44. Let G be a cyclic group of prime order p and let g be a generator in G.
Then, let ga = x for x ∈ G and a ∈ Zp. The following protocol can be executed between a
prover P with input (g, x, a) and a verifier V with input (g, x).

P(g, x, a) V(g, x)
Choose k ← Zp,
Calculate z := gk

z

c← {1, ..., 2l}

c

Calculate r := k + a · c

r

Accept iff gr != z · xc

Lemma 3.45. Construction 3.44 is a Σ-protocol for the relation

RG = {(g, x, a) | ga = x}

with g ∈ G \ {1}.

Proof. We show the three properties stated in Definition 3.43 hold for Construction 3.44. These
are correctness, special soundness and special honest verifier zero-knowledgeness.
In the following, let g be a generator of G. Further, let a ∈ Zp and x = ga ∈ G.

34

3.8 Σ-Protocols

Correctness We have to show that if both parties follow the protocol, the verifier always
accepts. If prover and verifier act honestly, we have z = gk for some k ∈ Zp, and r = k + a · c
and challenge c ∈ {1, . . . , 2l}. Thus, we have

gr = gk+a·c = gk · (ga)c = z · xc.

Hence, the honest verifier will accept.

Special Soundness Let (z, c, r) and (z, c′, r′) be two accepting transcripts with c 6= c′. For
special soundness, we have to construct a ppt extractor E which on input (g, x, (z, c, r), (z, c′, r′))
outputs a witness ã such that gã = x.
Since both transcripts are accepting, we have

gr = z · xc ∧ gr′ = z · xc′ ⇐⇒ z = gr x−c ∧ z = gr
′
x−c

′ ⇐⇒ gr−r
′ = xc−c

′ ⇐⇒ ã = r − r′

c− c′
.

Hence, E outputs ã = r − r′

c− c′
.

Special Honest Verifier Zero-Knowledge Fix some challenge c ∈ Zp. Special honest verifier
zero-knowledge is satisfied if a ppt simulator S on input (g, x, c) outputs an accepting transcript
with the same distribution as in the real protocol. Observe that in the real protocol, a transcript
(z, c, r) is fixed by fixing r and c. In the real protocol, k is chosen uniformly at random from
Zp. Since challenge c and witness a are fixed, r is distributed uniformly on Zp as well. Taking
this together with the observation that r and c fix the transcript, we get that every transcript
appears with probability 1

|Zp| = 1
p .

Now, we construct the simulator S in the following way:

1. Choose r ← Zp uniformly at random

2. Set z := gr · x−c

3. Output (z, c, r)

First, note that the transcripts output by S are always accepting. Moreover, for every transcript
output by S, we have that r is distributed uniformly on Zp and z is fixed by fixing r. Thus,
every transcript again appears with probability 1

|Zp| = 1
p . This results in identical distributions,

hence special honest verifier zero-knowledgeness is satisfied.

3.8.2 Generalized Schnorr Protocol
The Schnorr protocol allows the user to prove knowledge of a single exponent. Of course it
would be useful to extend this to multiple exponents or even arbitrary group elements. This
extension is given by the generalized Schnorr protocol.

Construction 3.46. We consider groups (G1, ...,Gm) := G, where all groups are of prime
order p. The prover then proves knowledge of some (x1, ..., xn) ∈ Znp . For that, we consider m
equations Aj =

∏n
i=1 g

xi
j,i for j ∈ {1, ...,m} with Aj , gj,i ∈ Gj for all i ∈ {1, ..., n}, j ∈ {1, ...,m}.

For shorter notation, we write (A1, ..., Am) =: A and ((gj,i)ni=1)mj=1 =: g. As common input, the
prover P and verifier V get (G, A, g). The generalized Schnorr protocol is defined in Figure 3.5.

Lemma 3.47. The generalized Schnorr-Protocol as in Construction 3.46 is a Σ-protocol for
the relation RG where

((A1, ..., Am, g, (x1, ..., xn)) ∈ RG ⇐⇒ ∀i ∈ {1, ..., n}∀j ∈ {1, ...,m} : Aj :=
n∏
i=1

gxij,i.

35

3 Building Blocks

P(A, g, x1, ..., xn) V(A, g)

Choose (t1, ..., tn)← Znp
For each j ∈ {1, ...,m},

Calculate Tj :=
n∏
i=1

gtij,i

T1, ..., Tm

c← Zp
c

For each i ∈ {1, ..., n},
Calculate si := xi · c+ ti

s1, ..., sn

Accept iff

∀j :
∏
i

gsi
j,i

!= AcjTj

Figure 3.5: Generalized Schnorr Protocol

Proof. To prove that the generalized Schnorr protocol is a Σ-protocol, we have to show three
properties (see Definition 3.43). These are completeness, special soundness and special honest
verifier zero-knowledgeness.

Completeness Completeness holds if the verifier always accepts while both parties follow the
protocol. For every j ∈ {1, ...,m}, we get∏

i

gsij,i =
∏
i

gxi·c+tij,i =
∏
i

(
gxij,i

)c
·
∏
i

gtij,i = Acj · Tj

and hence, the verifier accepts.

Special Soundness We define an extractor E that on input (A1, ..., Am, ((gj,i)ni=1)mj=1) and tran-
scripts ((T1, ..., Tm), c, (s1, ..., sn)), ((T1, ..., Tm), c′, (s′1, ..., s′n)) outputs a witness w̃ = (x̃1, ..., x̃n).
Given that input, the extractor can just compute x̃i = si−s′i

c−c′ for each i ∈ {1, ..., n}. The result
(x̃1, ..., x̃n) is a valid witness because∏

i

gsij,i = Acj · Tj ∧
∏
i

g
s′i
j,i = Ac

′
j Tj

for all j ∈ {1, ...,m} and therefore

∏
i

g
si−s′i
j,i = Ac−c

′

j ⇐⇒
∏
i

g

si−s
′
i

c−c′
j,i = Aj

since c− c′ 6= 0.

Special Honest Verifier Zero-Knowledgeness Fix some challenge c ∈ Zp. For special honest-
verifier zero-knowledgeness we have to simulate interactions between V and P. On input
(A1, ..., Am, ((gj,i)ni=1)mj=1, c), the simulator S does the following:

36

3.9 Damgård’s Technique

1. Choose (s1, ..., sn)← Znp uniformly at random

2. Set Tj =
∏
i
g
si
j,i

Acj
for all j ∈ {1, ...,m}

3. Output ((T1, ..., Tm), c, (s1, ..., sn))

In the protocol, the si’s are calculated using the uniformly and independently distributed ti’s, and
hence the si’s are also distributed uniformly and independently at random in Zp. By choosing
them directly uniformly at random, the simulator therefore fixes the transcript. In the protocol,
the Tj ’s are calculated using the uniformly and independently distributed ti’s This means that
the Tj ’s are also uniformly and independently distributed. The simulator S uses the random si’s
to calculate the Tj ’s, also resulting in a uniform and independent distribution. Altogether, this
means that the transcript produced by the simulator S has the same distribution as transcripts
of the protocol for a fixed challenge c where every transcript appears with probability (1

p)n since
we choose n si’s uniformly and independently at random out of Zp.

As mentioned before, this protocol allows the prover to prove knowledge of an arbitrary
number of elements in Zp. This can also be extended to group elements by blinding the group
element with elements chosen uniformly from Zp and then later derandomizing it. Hence we
can prove knowledge of any elements using this protocol while preserving the useful properties
of Σ-protocols, resulting in a very flexible protocol.

3.9 Damgård’s Technique

Through Σ-Protocols we are able to prove knowledge of a secret without revealing the secret,
although only against a honest verifier that chooses a challenge with the correct distribution.
Since in the real world attackers against the anonymous credential system will not necessarily
stay honest, we want to have protocols that have the zero-knowledge property even against
dishonest verifiers. Furthermore, we want security against concurrent adversaries. Concurrent
here means that an adversary is able to run multiple protocols in parallel against the same prover
while trying to learn something about the secret of the prover. Note that the concurrency implies
that the adversary may interleave messages of multiple protocols and make them dependent of
each other.
To improve the Σ-Protocol, we want the prover and the verifier to have some additional

information that they can use for some additional computation steps. We do this by giving
them an additional common input called the auxiliary string. Such an addition requires that we
define a new model and security in this model.

Definition 3.48. A triple (G,P,V) is called an interactive argument in the auxiliary string
model (IAASM) for a language L, if

• G is a ppt algorithm and G(1n) outputs an auxiliary string pp,

• P,V are ppt interactive algorithms,

• P gets (pp, v, w) as input, while V gets only (pp, v) as input,

• At the end of their interaction, V either accepts or rejects,

• For all v ∈ L, there exists a w ∈ {0, 1}p(|v|), such that V(pp, v) accepts when interacting
with P(pp, v, w),

37

3 Building Blocks

• For every v /∈ L, every w ∈ {0, 1}p(|v|) and every ppt interactive algorithm P∗, we have
that

Pr[pp← G(1n) : (P∗(pp, v, w)↔ V(pp, v))→ b : b = 1]

is negligible in n,

where p(·) is some polynomial.

Based on this model, we can define when an argument in the new model is secure, i.e. argument
of knowledge and zero-knowledge. The latter follows the common approach that there exists a
simulator producing accepting transcripts, where the difference is that the simulator gets the
auxiliary string and a corresponding trapdoor as additional input.

Definition 3.49. An interactive argument in the auxiliary string model (G,P,V) for a NP-
relation R is called zero-knowledge if there exists a ppt algorithm TrapdoorGen(1n) outputting
a tuple (pp, t) such that pp is distributed as in G(1n). We call t trapdoor.
Furthermore, for any interactive algorithm V∗ there exists a simulator MV∗ , such that for all

(v, w) ∈ R, all y ∈ {0, 1}p(|v|) and all (pp, t) ∈ [TrapdoorGen(1n)] it holds that MV∗ has expected
polynomial runtime in its input length and

Pr[T (P(pp, v, w)↔ V∗(pp, v, y)) = τ] = Pr[MV∗(1n, v, pp, y, t) = τ],

where p(·) is some polynomial.

Definition 3.50. An interactive argument in the auxiliary string model (G,P,V) for a relation
R is an argument of knowledge for R in the auxiliary string model with knowledge error κ(·), if
there exists an extractor E with black-box access to a prover that on input v ∈ LR outputs a
witness w such that (v, w) ∈ R.
Furthermore, for a security parameter n, any ppt prover P∗ and any sufficiently long v, if

ε(n, v) > κ(n), the extractor must run in expected time

p(|v|)
ε(n, v)− κ(n) ,

where p(·) is some polynomial and ε(n, v) = Pr[pp ← G(1n) : (P∗(pp, v) ↔ V(pp, v)) → b : b =
1].

With the definitions in place, we can construct a new protocol in the auxiliary string model.

Construction 3.51. Let S = (PΣ,VΣ) be a Σ-Protocol (Construction 3.42) for a relation
R with challenge space C, where α and γ are used to compute the first and third message
respectively and φ is the predicate VΣ checks at the end. Let C = (Setup,Com,Open) be
a trapdoor commitment scheme (Definition 3.28). Let Gen be the algorithm that computes
(pp, t) ← Setup and outputs pp. Then, construct a IAASM ConcZKS,C = (Gen,P,V) for a
relation R as seen below:

38

3.9 Damgård’s Technique

Protocol ConcZKS,C = (Gen,P,V)

P(pp,v,w) V(pp,v)

z← α(v, w; k)

(com, d)← Com(pp, z) com

c← C

c

r← γ(v, w, k, c) r, z, d

Check Open(com, d) != z

and φ(v, z, c, r)

The new protocol simply sends the commitment of the announcement of the original Σ-
Protocol instead of the announcement. Then, the last message also contains the original an-
nouncement and the open-value of the commitment, so that the verifier can check the validity
of the commitment as well as the original check from the Σ-Protocol.
We then have the following results.

Lemma 3.52. For a security parameter n, Σ-Protocol S for a relation R and a computation-
ally binding trapdoor commitment scheme C, the IAASM ConcZKS,C from Construction 3.51 is
an argument of knowledge for R with knowledge error κ(n) ≤ µ(n) + 1

|C| in the auxiliary string
model, assuming ε(n, v) > 4

|C| , where µ(·) is a negligible function, C is the challenge space of S
and ε(n, v) = Pr[pp← G(1n) : (P∗(pp, v)↔ V(pp, v))→ b : b = 1].

Proof. Let n be a security parameter, v ∈ LR and κ(n) ≤ µ(n) + 1
|C| . Let P∗ be a prover with

ε(n, v) > κ(n). Furthermore, let H be a matrix with one row for each possible set of random
choices of the prover and one column for every possible challenge in C. Write 1 in the matrix if
the verifier accepts with this random choice and challenge, 0 otherwise. We call a row heavy if
it contains a fraction of more than ε(n,v)

2 1’s.
We construct an algorithm E′ that can generate entries of H by using black-box access to P∗:

Algorithm E′(1n, v)

1 : Probe random entries in H until a 1 is found.
2 : Run procedures A and B in parallel. Stop when at least one of them stops.

3 : A: Probe random entries in the row where the first 1 was found. Repeat until finding
another 1.

4 : B: With probability ε(n,v)
b stop, else repeat, with b being a constant.

5 : If A finished first, output the positions of the two 1-entries found.

Call HeavyRow the event that E′ finds a heavy row in step 1. Then, we have

Pr[A finds a second 1 in one try|HeavyRow] ≥
ε(n,v)

2 · |C| − 1
|C|

,

since a row has |C| entries, thus there are at least ε(n,v)
2 · |C| 1’s in a heavy row (minus one since

we need to find a new one). Let T be the expected number of probes A does until it finds a
second 1. Thus, we have

39

3 Building Blocks

T ≤ |C|
ε(n,v)

2 · |C| − 1

=
4 · 1

4 · |C|
ε(n,v)

2 · |C| − 1

= 4
(ε(n,v)

2 · |C| − 1) · 4
|C|

= 4
2 · ε(n, v)− 4

|C|
= 4
ε(n, v) + ε(n, v)− 4

|C|︸ ︷︷ ︸
>0 by assumption

<
4

ε(n, v) .

Therefore, the expected runtime of procedure A is in O(1
ε(v)), if a heavy row was found in the

first step. B, and subsequently E′, obviously have expected runtime O(1
ε(n,v)) in either case. We

now want to ensure that if a heavy row was found in the first step, A outputs a second 1 before
B stops. Call the random variable NumA the number of repetitions of A in an execution of E′,
NumB equivalently. By Markov’s inequality, we know that

Pr[NumA < 2 · T |HeavyRow] ≥ T

2 · T = 1
2 .

By choosing b large enough we can ensure that

Pr[NumB ≥ 2 · T] ≥ 1
g

for some constant g.
Since we hit a heavy row with probability greater than 1

2 in step one, we have

Pr[A finishes before B] ≥Pr[HeavyRow] · Pr[NumA < 2 · T |HeavyRow] · Pr[NumB ≥ 2 · T]

≥1
2 ·

1
2 ·

1
g

= 1
4 · g .

Thus, when running E′ we find the positions of two 1’s with probability 1
4·g in expected time

O(1
ε(n,v)).
Now, build an extractor E that repeatedly runs E′ until E′ returns the positions of two 1’s.

Then, E calculates the transcripts (com, c, (r, z, d)) and (com, c′, (r′, z′, d′)) corresponding to the
1’s. Note that the commitments are the same, since both 1’s are from the same row, thus the
prover uses the same randomness. Then, if z = z′, the extractor can use the special soundness
extractor from the underlying Σ-Protocol to compute a witness and output it. If z 6= z′, the
extractor simply repeats the whole process until z = z′.
To find the positions of two 1’s, the extractor takes expected time 4 · g · O(1

ε(n,v)) = O(1
ε(n,v)).

By the computationally binding property of the trapdoor commitment scheme we know that
the case z 6= z′ happens at most with negligible probability µ(n). Thus, E has to repeat the
whole process an expected number of 1

1−µ(n) times, therefore E has an expected runtime of
1

1−µ(n) · O(1
ε(n,v)) < p(|v|)

ε(n,v)−κ(n) .

Lemma 3.53. For a Σ-Protocol S for a relation R and a computationally hiding trapdoor
commitment scheme C, the IAASM ConcZKS,C from Construction 3.51 is a zero-knowledge
protocol in the auxiliary string model.

40

3.10 Fiat-Shamir Heuristic

Proof. Let R be a NP-relation. Let S be a Σ-Protocol for R and C = (Setup,Com,Open)
be a trapdoor commitment scheme. Assume that C can commit to the announcement of S.
Define the TrapdoorGen for the zero-knowledge property to be the Setup from C. Let (T1, T2)
be algorithms that fulfill the trapdoor property of C. Let V∗ be any (adversarial concurrent)
verifier. Let v ∈ LR, (pp, t) ∈ TrapdoorGen(1n) and y ∈ {0, 1}p(|v|) for some polynomial p(·).
Construct a simulator MV∗ that on input (1n, v, pp, y, t) works the following way:

MV∗(1n, v, pp, y, t)

1 : Start simulating V ∗ with input (pp, v, y).
2 : Give com with (com, St)← T1(pp, t) to V∗.
3 : Receive c.
4 : Run the honest verifier simulator of the Σ-Protocol on input v, c to get z, r.
5 : Compute d← T2(z, St).
6 : Send r, z, d to V∗

Then, V ∗ sees com, r, z and d and expects distributions as in a normal protocol for these
values. By definition of T1, the value com is correctly distributed. The same holds for z and r,
since they are generated by the honest verifier simulator of the underlying Σ-Protocol. Because
d is generated by T2(z, St), Open(pp, com, d) opens to z, therefore d is correct as well.

Theorem 3.54. If one-way functions exist, then there exists a concurrent black-box zero-
knowledge three-round argument of knowledge with negligible knowledge error in the auxiliary
string model for any relation for which there exists a Σ-Protocol.

This follows directly from Lemmas 3.52 and 3.53 and the result of [FS90b], which is that
a computationally binding and computationally hiding trapdoor commitment schemes exists if
one-way functions exist.

3.10 Fiat-Shamir Heuristic

In this section, we present the Fiat-Shamir heuristic proposed by Fiat and Shamir [FS87].
The Fiat-Shamir heuristic can be used to transform a Σ-protocol (Definition 3.43) into a non-
interactive zero-knowledge argument of knowledge (Section 3.7.4) or a signature scheme (Defini-
tion 3.12) (called signatures of knowledge—for a formal treatment, see [CL06]). Its main idea is
instead of having a challenge chosen by a verifier, to let the prover compute the challenge herself
by applying a function to the announcement, or in the case of signatures, to the announcement
and the message to be signed. The non-interactive proof and the signature, respectively, are a
transcript of the protocols which result from the self-computed challenge. The function used in
this scheme is formally modeled as a random oracle to emulate the random sampling that would
be done by an honest verifier. However, in practice the theoretical construct of a random oracle
is replaced by a good cryptographic hash function. For more information about random oracles
and their practical use, see Bellare and Rogaway [BR93].
We use the Fiat-Shamir heuristic in several ways. Our main application is our reputation

system. In particular, a rating is signed using a signature scheme that is obtained by applying
the Fiat-Shamir heuristic. For example, this is used to form a proof that a rater bought some
item or purchased a service. Therefore, everyone can publicly check whether the product rated
was really bought by the rater.
Next, we present the Fiat-Shamir heuristic for both obtaining a non-interactive argument of

knowledge and a signature scheme. We consider the variant that is called strong Fiat-Shamir
transformation in [BPW12].

41

3 Building Blocks

3.10.1 Non-Interactive Arguments via the Fiat-Shamir Heuristic
As described above, one application for the Fiat-Shamir heuristic is to transform a Σ-protocol,
or any kind of three-round interactive argument, into a non-interactive one (Section 3.7.4):

Construction 3.55. Let R be an NP-relation. Let Σ be a three-round interactive argument
for relation R with ppts α, γ, φ, announcement space A and challenge space C. Further, let
H : A → C be a function. We define the following algorithms P and V:

1. P(x,w): On input (x,w) ∈ R, it outputs the tuple π := (a, c, r), where a← α(x,w; s) for
s← Coins(α), c := H(x, a) and r ← γ(x,w, s, c).

2. V(x, π): On input x and π = (a, c, r), it outputs b = 1 if and only if φ(x, a, c, r) = 1 and
c = H(x, a), where b = 1 is interpreted as V accepting π, and b = 0 otherwise.

Theorem 3.56. If Σ is a Σ-Protocol and H is modeled as a random oracle, then Construc-
tion 3.55 is a non-interactive zero-knowledge argument of knowledge.

The proof of this theorem is omitted in this work.

3.10.2 Signature Schemes via the Fiat-Shamir Heuristic
In the previous section we have seen how to turn a three round interactive argument into a
non-interactive one. By slightly adapting Construction 3.55, we are also able to instantiate a
signature scheme based on the interactive argument.

Construction 3.57. Let R be a NP-relation. Let Σ be a three round interactive argument
for relation R with ppts α, γ, φ, announcement space A and challenge space C. Further, let
H : A× {0, 1}∗ → C be a function. Then, we define the following algorithms Sign and Vrfy:

1. Sign(x,w,m): On input (x,w) ∈ R and m ∈ {0, 1}∗, it outputs the tuple σ := (a, c, r),
where a← α(x,w; s) for s← Coins(α), c := H(x, a,m) and r ← γ(x,w, s, c).

2. Vrfy(x,m, σ): On input x and σ = (a, c, r), it output b = 1 if and only if φ(x, a, c, r) = 1
and c = H(x, a,m), where b = 1 is interpreted as V accepting σ and b = 0 otherwise.

Note that Construction 3.57 does not yield a syntactically correct signature scheme as given
in Definition 3.12. To be precise, the Setup and Gen algorithms are missing. In practice, the
setup of the signature scheme looks exactly like the protocol’s setup. For the key generation one
would implement an instance generator that outputs a pair (x,w) ∈ R, where x is the public
key and w the secret key. We decided to keep the construction simple and omit these details.

Theorem 3.58. If Σ is a Σ-Protocol and H is modeled as a random oracle, then Construc-
tion 3.57 is existentially unforgeable under an adaptive chosen-message attack.

The proof of this theorem is omitted. A proof for a concrete Σ-protocol can, for example, be
found in [PS96].

3.11 Proofs of Partial Knowledge
In the construction of our anonymous credential system we integrate predicates which, for ex-
ample, are satisfied if a credential from issuer i contains an attribute a equal to value v1 or v2.
Concretely, these predicates consist of AND-gates, OR-gates and even threshold gates and use
a set of predefined relations like equality and inequality (cf. Section 4.1.3). Using the technique
of proofs of partial knowledge [CDS94] users can prove their credentials satisfy the predicate,

42

3.11 Proofs of Partial Knowledge

but do not reveal the concrete satisfying configuration. In particular the technique enables us
to combine different Σ-protocols into a single one according to a given access structure (Def-
inition 3.31) and a corresponding t-semi-smooth secret-sharing scheme (Definition 3.35). The
verifier of such a Σ-protocol is eventually convinced, that the prover’s witness corresponds to
some qualified set of the given access structure.
We adapt the construction by Cramer, Damgård, and Schoenmakers [CDS94] to distinct

relations and show that the construction yields a Σ-protocol instead of a witness indistinguishable
proof of knowledge.

Construction 3.59. Let n ∈ N and let t be a polynomial. Let φ(X1, . . . , Xn) be a polynomial-
time computable, monotone predicate on variables Xi ∈ {0, 1} with the corresponding (mono-
tone) access structure Γφ (Definition 3.33). Let (Pi,Vi), for i = 1, . . . , n, be a Σ-protocol for
some NP-Relation Ri. We denote the components of protocol (Pi,Vi) by (αi, Ci, γi, ψi,Si), where
αi is a ppt computing the announcement, Ci is the finite challenge space, γi is a ppt computing
the responses, ψi is a polynomial-time verifiable predicate and Si is the special honest-verifier
zero-knowledge simulator. Further, let (Share,Recon,CheckConsistency,Complete) be a t(n)-
semi-smooth secret-sharing scheme (Definition 3.35) for access structure Γ∗φ with n parties, the
set of secrets K and the domain of shares Kj = Cj of party pj for j = 1, . . . , n. We define the
relation

Rφ := {((x1, . . . , xn), (w1, . . . , wn)) | ∀i = 1, . . . , n : Xi = Ri(xi, wi) ∧ φ(X1, . . . , Xn) = 1}.

Consider the following construction of a protocol (P,V) with challenge space C = K:

1. The prover starts by identifying the relations that can be satisfied by its witnesses. We
denote the set of all indices i such that (xi, wi) ∈ Ri by A.
Remark. Assuming P can satisfy the predicate, A is a qualified set for Γφ, i. e. A ∈ Γφ. By
definition of access structures (Definition 3.31), we have that its complement in {1, . . . , n},
Ā, is unqualified in Γ∗φ.

2. Based on set A, the prover computes the announcement:
a) Choose an arbitrary (not necessarily random) secret s′ and share it using Share, i. e.

obtain (s′1, . . . , s′n)← Share(s′).
b) For all j ∈ Ā, set cj := s′j , and then discard (s′1, . . . , s′n).
c) Now, compute the actual announcement:

i. For all i ∈ A, compute ai := αi(xi, wi; ki) with ki ← Coins(αi).
ii. For all j ∈ Ā, compute (aj , cj , rj)← Sj(xj , cj).
iii. Send (a1, . . . , an) to the verifier.

3. The verifier chooses a challenge c← C and sends it to the prover.

4. Upon receiving c, the prover does the following:
a) Obtain a full set of shares: (c1, . . . , cn)← Complete(c, {cj | j ∈ Ā}).
b) For all j ∈ Ā, we already have computed responses rj in step 2c).
c) For all i ∈ A, compute ri := γi(xi, wi, ki, ci).
d) Send (r1, c1), . . . , (rn, cn) as response to the verifier.

5. Upon receiving (r1, c1), . . . , (rn, cn), the verifier accepts if and only if
a) The shares (c1, . . . , cn) are all consistent with c, i. e. CheckConsistency(c, (c1, . . . , cn)) =

1.

43

3 Building Blocks

b) ∀i = 1, . . . , n : ψi(xi, ai, ci, ri) = 1.

Theorem 3.60. Let φ be a polynomial-time computable, monotone predicate on n variables
Xi ∈ {0, 1}. Let Rφ be as defined in Construction 3.59. Then, Construction 3.59 is a Σ-protocol
for relation Rφ.

Theorem 3.60 follows from the three lemmas stated and proven next.

Lemma 3.61. Construction 3.59 is complete.

Proof. We need to show that verifier V accepts with probability 1, if prover P and V follow the
protocol. Let ((x1, . . . , xn), (w1, . . . , wn)) ∈ Rφ. We show that the checks 5a) and b) always
accept. Let us start with check b). Consider an arbitrary i ∈ {1, . . . , n}. Distinguish the two
cases i) i ∈ A and ii) i ∈ Ā. In both cases the verifier will accept, i. e. ψi(xi, ai, ci, ri) = 1:

i) By completeness of Σi, the check will accept for the chosen challenge ci.

ii) By the honest-verifier zero-knowledge property of Σi, the transcripts output by Si are
accepting for the given challenge ci implying that this check also accepts.

It remains to show that the check 5a) will accept, i. e. the challenges (c1, . . . , cn) computed are
consistent with the secret c. By definition of Ā, it is unqualified for the secret-sharing’s access
structure Γ∗φ. Property 4 of semi-smooth secret-sharing (Definition 3.35) yields that Complete,
given a secret and an unqualified set of shares, outputs a full set of shares that is consistent with
the given secret n step 4a). Hence, check 5a) will accept.

Lemma 3.62. Construction 3.59 is special sound.

Proof. Fix an instance (x1, . . . , xn) of Rφ. We show, that given two arbitrary accepting tran-
scripts for instance (x1, . . . , xn), ((ai)ni=1, c, (ri, ci)ni=1) and ((ai)ni=1, c

′, (r′i, c′i)ni=1) with c 6= c′, one
can efficiently extract a witness for (x1, . . . , xn). Since the transcripts are accepting, we have
that (c1, . . . , cn) is consistent with c and (c′1, . . . , c′n) is consistent with c′, respectively.
We define the extractor E for protocol (P,V) as follows: On input (x1, . . . , xn), ((ai)ni=1, c,

(ri, ci)ni=1) and ((ai)ni=1, c
′, (r′i, c′i)ni=1), output (w1, . . . , wn), where wi ← Ei(xi, ai, ci, c′i, ri, r′i) and

Ei is the special soundness extractor of (Pi,Vi). It remains to show that Q := {i | ci 6= c′i} has a
non-trivial intersection with all qualified sets contained in Γ∗, and thus by Lemma 3.32 it holds
Q ∈ Γ. To show this we consider an arbitrary qualified set B ∈ Γ∗. We have c 6= c′, which implies
that there needs to be an i ∈ B such that ci 6= c′i; otherwise, this would contradict the secret-
sharing scheme’s correctness or c 6= c′. This, in turn, gives us two accepting transcripts (ai, ci, ri)
and (ai, c′i, r′i) with ci 6= c′i of protocol (Pi,Vi) for instance xi, meaning that Ei will extract a
valid witness wi for xi. As stated above, it holds |{i ∈ B | ci 6= c′i}| ≥ 1 for all B ∈ Γ∗. Thus,
it holds

⋃
B∈Γ∗{i ∈ B | ci 6= c′i}

⋂
B′ 6= ∅ for all B′ ∈ Γ∗. Since

⋃
B∈Γ∗{i ∈ B | ci 6= c′i} ⊆ Q, we

also have Q∩B′ 6= ∅ for all B′ ∈ Γ∗.
Consequently, the extractor Ei will output a valid witness wi for xi for all i ∈ Q = {i | ci 6= c′i},
Q is qualified in Γ. Note that for i 6∈ Q it is not necessarily the case that extractor Ei obtains a
valid input and therefore might output an error symbol. However, this suffices since the relation
Rφ only considers the witnesses corresponding to a qualified set in Γ.

Lemma 3.63. Construction 3.59 is special honest-verifier zero-knowledge.

Proof. We construct a simulator S that outputs transcripts distributed as in the real protocol
given an instance x1, . . . , xn and challenge c. Let Si be the simulator given by the special
honest-verifier zero-knowledge property of protocol (Pi,Vi). The simulator S outputs, on input
(x1, . . . , xn) and c, the transcript ((ai)ni=1, c, (ri, ci)ni=1) such that (c1, . . . , cn) ← Share(c) and
(ai, ci, ri)← Si(xi, ci).

44

3.12 Accumulators

Let us argue that the distribution of transcripts output by S and the real protocol are identical.
The sub-challenges (c1, . . . , cn) output by S are generated by running Share on secret c. In the
real protocol, (c1, . . . , cn) are obtained by running Complete on input c and an unqualified set
of shares {cj | j ∈ Ā} (step 2c) i). The shares cj in turn are obtained in steps 2a) and b)
by running Share on an arbitrary secret and discarding every share corresponding to a party
in the qualified set A. By perfect privacy of secret-sharing schemes (Definition 3.34), we have
that the shares {cj | j ∈ Ā} are distributed independently of the secret, meaning that the
distributions Share(c)Ā and Share(s′)Ā, for some arbitrary secret s′, are identically. As this
distribution is independent of s′ we write ShareĀ. By Property 3 of semi-smooth secret-sharing
schemes (Definition 3.35) we have that algorithm Complete, on input secret c and unqualified
{cj | j ∈ Ā} distributed according to ShareĀ, outputs shares (c1, . . . , cn) consistent with challenge
c and distributed according to Share(c).

It remains to argue that (ai, ri) are distributed correctly. In the real protocol, we simulate for
all j ∈ Ā before obtaining the challenge and react on the challenge for all i ∈ A. Given that cj
is distributed as in the real protocol (see above), it is easy to see that the simulated (aj , rj) are
distributed identically. For (ai, ri), we run the algorithms αi and γi corresponding to (Pi,Vi).
The algorithms are used just as in a run of (Pi,Vi) except that the challenge ci was obtained by
secret-sharing instead of given by a verifier. Since a special honest-verifier simulator is given a
challenge, simulator Si outputs (ai, ri) distributed identical to algorithms αi and γi of (Pi,Vi).

3.12 Accumulators

An accumulator can be used to prove that a value x belongs to a set X. The advantage of
accumulators is that this set membership can be proven efficiently by using an accumulator
value which does not depend on the size of the set. Proving set membership is done by using a
witness wx for x to show that this x was used to create the accumulator value V . Witnesses and
accumulator values will only be one group element each in our construction, which is important
for the efficiency of this accumulator. On the other side, it is computationally not feasible to
prove that a value x′ /∈ X is part of the accumulator value.
We start to define static accumulators where X is fixed at the beginning and state when such

an accumulator is correct and secure. Afterwards, we generalize these definitions to dynamic
accumulators where values can be inserted or deleted to X.

3.12.1 Static Accumulators

We first define the syntax of a static accumulator. Note that there are various existing definitions
for accumulators. However, we will concentrate on the accumulators where no secret key is
needed to generate accumulator value V and witnesses wi for accumulated values i. This means
that everyone can create an accumulator value and witnesses. Moreover, we only talk about
deterministic accumulators here, which means that the creation of an accumulator value is done
deterministically.

Definition 3.64 (Static Accumulator Scheme). A static accumulator scheme Πacc is a tuple
of (ppt) algorithms (Gen, AccCreate, WitCreate, Vrfy), where

1. Setup(1λ, 1q): On inputs 1n, 1q it, (probabilistically) outputs the accumulator public pa-
rameters pp. These public parameters contain a set of values U . λ ∈ N denotes the security
parameter and q ∈ N the upper bound for the number of accumulated values.

2. AccCreate(pp,X): On inputs public parameters pp and set X ⊆ U , it (deterministically)
outputs an accumulator value V .

45

3 Building Blocks

3. WitCreate(pp,X, i): On inputs public parameters pp, set X ⊆ U and value i ∈ U , it
(deterministically) outputs a witness wi or a failure symbol ⊥.

4. Vrfy(pp, V, i, wi): On inputs public parameters pp, accumulator value V , value i ∈ U and
witness wi, it deterministically outputs 0 or 1. We interpret 1 as valid and 0 as invalid.

We consider an accumulator scheme correct if for all λ, q ∈ N, all pp ∈ [Setup(1λ, 1q)], X ⊆
U, |X| ≤ q, i ∈ X:

Vrfy(pp,AccCreate(pp, X), i,WitCreate(pp, X, i) = 1.

The definition of (static) accumulators does not include any security yet, which we want to add
in the next definition. It should be computationally infeasible to compute a witness wi for an
i /∈ X.

Definition 3.65 (Security of an Accumulator Scheme). An accumulator scheme Πacc is secure
if for all ppt algorithms A there exists a negligible function µ such that for all λ ∈ N

Pr[Expwitforge
A,Πacc (λ) = 1] ≤ µ(λ)

where Expwitforge
A,Πacc (λ) is defined as follows:

1. A chooses a value q ∈ N and receives public parameters pp ← Setup(1λ, 1q)

2. Eventually, A outputs (X,V, i, wi)

3. The experiment returns 1 if V = AccCreate(pp, X), Vrfy(pp, V, i, wi) = 1, and i 6∈ X ⊆ U
with |X| ≤ q. Otherwise it returns 0.

The definition for static accumulators does not allow for changes to the set of accumulated
values X. This would mean that inserting or deleting a single element to X requires a completely
new accumulator. Therefore, one would again need time linear in the set of X for such a small
change. To overcome this drawback, we define dynamic accumulators in the next section.

3.12.2 Dynamic Accumulators

In contrast to static accumulators, we now want to be able to insert and delete values to X. This
means that we need two additional algorithms, namely one to insert values and one to delete
values. Moreover, existing witnesses have to be updated after a change to the set X. After
inserting/deleting a value to X the accumulator value V changes and an old witness wi would
not be valid anymore even if i is still accumulated. This means we need additional algorithms
which can be used to update existing witnesses after inserting or deleting a value. Note that we
have to ensure the set X is still of a valid size smaller or equal to q after inserting a new value.

Definition 3.66 (Dynamic Accumulator Scheme). A dynamic accumulator scheme Πacc is a
static accumulator scheme with following additional deterministic, polynomial-time algorithms:

1. AccInsert(pp, V, i,X): On input public parameters pp, accumulator value V , value i ∈ U
and set X ⊆ U , it outputs the accumulator value V ′ or a failure symbol ⊥.

2. AccDelete(pp, V, i,X): On input public parameters pp, accumulator value V , value i ∈ U
and set X ⊆ U , it outputs the accumulator value V ′ or a failure symbol ⊥.

3. WitUpdateInsert(pp, X,X ′, V, i, i′, wi): On input public parameters pp, sets X,X ′ ⊆ U ,
accumulator value V , values i, i′ and witness wi, it outputs witness w′i.

46

3.12 Accumulators

4. WitUpdateDelete(pp, X,X ′, V ′, i, i′, wi): On input public parameters pp, sets X,X ′ ⊆ U ,
accumulator value V , values i, i′ and witness wi, it outputs witness w′i.

Additionally to the correctness of a static accumulator, we require that the insertion and
deletion of values as well as updating a witness work correctly. More formally, this means:

• For all i ∈ U, i 6∈ X: AccInsert(pp,AccCreate(pp, X), i,X) = AccCreate(pp, X ∪ {i})

• For all i ∈ U, i ∈ X: AccDelete(pp,AccCreate(pp, X), i,X) = AccCreate(pp, X \ {i})

• For an inserted value i ∈ U, i′ ∈ X ′ \ X where X ⊂ X ′ and X ′ \ X = {i′}, and for all
i ∈ X:

WitUpdateInsert(pp, X,X ′, V, i, i′,WitCreate(pp, X, i)) = WitCreate(pp, X ′, i)

• For a deleted value i′ ∈ X \X ′ where X ′ ⊂ X and X \X ′ = {i′}, and for all i ∈ X:

WitUpdateDelete(pp, X,X ′, V ′, i, i′,WitCreate(pp, X, i)) = WitCreate(pp, X ′, i)

Because we can just express these new functions by algorithms that already existed for static
accumulators, we do not need to change the security definition here. An adversary A could just
use several different sets during the experiment where one element is inserted/deleted before
creating its output.

3.12.3 Nguyen Accumulator
This section introduces a concrete instantiation of a dynamic accumulator, namely the one
described by Nguyen in [Ngu05]. We will start with an instantiation of the algorithms introduced
in the previous two sections and show that these algorithms work correctly. Afterwards, we prove
the security of the Nguyen accumulator if the modified q-SDH assumption holds (Definition 3.9).
Note that our construction differs in the type of the pairing. Nguyen uses a type 1 pairing, while
we stick to a type 3 pairing to achieve more consistency with our other constructions.

Construction 3.67 (Nguyen Accumulator). Let G be a type 3 bilinear group generator (Def-
inition 3.2). A Nguyen accumulator is a tuple of (ppt) algorithms (Setup, AccCreate, WitCreate,
AccInsert, AccDelete, WitUpdate, Vrfy) such that:

• Setup (1λ, 1q) uses the generator G to get (p,G1,G2,GT , e)← G(1λ). It outputs the public
parameters pp in form of (p, e, g, g̃, g̃s, t) with t = (gs, gs2 , . . . , gsq). Here, g ← G1 \ {1},
g̃ ← G2 \ {1} are generators of the groups G1 and G2, respectively. The upper bound on
the number of accumulated values is q and s ← Z∗p. While Zp \ {−s} is the domain of
values that can be accumulated, i.e. U = Zp \ {−s}.

• AccCreate (pp, X) Takes the set X ⊂ Zp with |X| ≤ q and outputs the accumulator value
V for this set with V = g

∏
x∈X(x+s). This value can be computed without the knowledge

of s using the tuple t. To do so, one can compute the coefficients ai of the polynomial∑|X|
i=0 ais

i =
∏
x∈X(x+ s). Using this, we get:

V = g
∏
x∈X(x+s) = g

∑|X|
i=0 ais

i =
|X|∏
i=0

(gsi)ai

The coefficients ai can be computed from the set X while the gsi are contained in t.

• WitCreate(pp, X, i) calculates and outputs the witness wi = g
∏
x∈X\{xi}

(x+s). This can be
done using a polynomial like described above.

47

3 Building Blocks

• Vrfy(pp, V, xi, wi) checks if e(wi, g̃xi · g̃s) = e(V, g̃). If the equation holds, Vrfy outputs 1,
otherwise 0.

• AccInsert(pp, V,X, i): If the number of accumulated values |X| = q or the value xi, which
is to be inserted, is not in the right domain (xi 6∈ Zp \ {−s}) output the failure symbol ⊥.
The new accumulator value V ′ can be computed using AccCreate (pp, X ∪ {xi}).

• AccDelete(pp, V,X, i): If the value xi, which is to be deleted, is not in the accumulated so
far (xi 6∈ X) output the failure symbol ⊥. The new accumulator value V ′ can be computed
using AccCreate (pp, X \ {xi}).

• WitUpdateInsert(pp, X,X ′, V, i, x′, wi): Computes the updated witness w′i = V · wx
′−xi
i for

the new accumulator value V ′ after the insertion of x′.

• WitUpdateDelete(pp, X,X ′, V ′, i, x′, wi): Computes the updated witness w′i = (wiV ′)
(x′−xi)−1

for the new accumulator value V ′ that changed due to the deletion of x′.

Note that because the accumulator value is computed using a product, V is invariant over the
order in which elements are accumulated. Nevertheless, the order of executing WitUpdateDelete
and WitUpdateInsert is important when WitUpdate is called after multiple values were insert-
ed/deleted to the set X. One could keep track of an archive for that which keeps track of the
inserted/deleted values. This archive can then be used when updating a witness. Additionally,
it can keep track of the updated accumulator values, such that a user does not have to calculate
the different V s herself. If s is known to a trusted party which computes the accumulator values
V , insertion and deletion can be done more efficiently:

• Insertion: The new accumulator value V ′ over the set X∪{xi} is computed as V ′ = V xi+s.

• Deletion: The new accumulator value V ′ over the set X \ {xi} is computed as V ′ =
V (xi+s)−1 .

It remains to show that this construction works correctly and is secure. We start by showing
the correctness by proving the correctness of the accumulator’s algorithms:

Lemma 3.68. The accumulator presented in Construction 3.67 is correct.

Proof. 1. Vrfy(pp,AccCreate(pp, X), i,WitCreate(pp, X, i) = 1

Let V = AccCreate(pp, X) and wi = WitCreate(pp, X, i), then
Vrfy(pp, V, i, wi) = 1⇔ e(wi, g̃xi · g̃s) = e(V, g̃).
With V = g

∏
x∈X(x+s) and wi = g

∏
x∈X\{xi}

(x+s), we get:

e(wi, g̃xi · g̃s) = e(g
∏
x∈X\{xi}

(x+s)
, g̃xi+s)

= e(g, g̃)(
∏
x∈X\{xi}

(x+s))·(xi+s)

= e(g, g̃)
∏
x∈X(x+s)

= e(g
∏
x∈X(x+s), g̃)

= e(V, g̃)

2. For all i ∈ U, i 6∈ X : AccInsert (pp, AccCreate (pp, X), i,X) = AccCreate (pp, X ∪ {i})

This is true by definition, thus we only show that the more efficient way with knowledge
of s is correct:

48

3.12 Accumulators

With AccCreate(pp, X) = g
∏
x∈X(x+s), we get:

AccInsert(pp,AccCreate(pp, X), i,X) = (g
∏
x∈X(x+s))(i+s)

= g
∏
x∈X∪{i}(x+s)

= AccCreate(pp, X ∪ {i})

3. For all i ∈ U, i ∈ X : AccDelete (pp, AccCreate (pp, X), i,X) = AccCreate (pp, X \ {i})

This is true by definition, thus we only show that the more efficient way with knowledge
of s is correct:
With AccCreate(pp, X) = g

∏
x∈X(x+s), we get:

AccDelete(pp,AccCreate(pp, X), i,X) = (g
∏
x∈X(x+s))(i+s)−1

= g
∏
x∈X\{i}(x+s)

= AccCreate(pp, X \ {i})

4. For an inserted value x′ ∈ X ′ \X and for all xi ∈ X ∩X ′:
WitUpdateInsert (pp, X,X ′, V, xi, x′,WitCreate(pp, X)) = WitCreate(pp, X ′, xi)

With V = g
∏
x∈X(x+s) and wi = g

∏
x∈X\{xi}

(x+s), we get:

V · wx
′−xi
i = g

∏
x∈X(x+s) · g(x′−xi)

∏
x∈X\{xi}

(x+s)

= g
(
∏
x∈X\{xi}

(x+s))((xi+s)+(x′−xi))

= g
(
∏
x∈X\{xi}

(x+s))(x′+s)

= g
∏
x∈(X\{xi})∪{x′}

(x+s)

= WitCreate(pp, X ′, xi)

5. For a deleted value x′ ∈ X \X ′ and for all xi ∈ X ∩X ′:
WitUpdateDelete (pp, X,X ′, V ′, xi, x′,WitCreate(pp, X)) = WitCreate(pp, X ′, xi)

With V ′ = g
∏
x∈X\{x′}(x+s) and wi = g

∏
x∈X\{xi}

(x+s), we get:

(wi · V ′−1)(x′−xi)−1 = (g
∏
x∈X\{xi}

(x+s)

g
∏
x∈X\{x′}(x+s)

)(x′−xi)−1

= g
(
∏
x∈X\{xi,x′}

(x+s))((x′+s)−(xi+s))(1
x′−xi

)

= g
(
∏
x∈X\{xi,x′}

(x+s))(x
′−xi
x′−xi

)

= g
∏
x∈X\{xi,x′}

(x+s)

= WitCreate(pp, X ′, xi)

The last remaining step is showing that this construction fulfills the security requirement de-
fined in Definition 3.65. We will show that breaking the security of the Nguyen Accumulator
would also break the (modified) q-SDH assumption. As described in Section 3.12.2, the algo-
rithms for deletion, insertion and updating a witness do not help an adversary performing in
the security experiment.

49

3 Building Blocks

Theorem 3.69 (Security of the Nguyen accumulator). The Nguyen accumulator Πacc intro-
duced in Construction 3.67 is secure with respect to Definition 3.65 if the modified q-SDH as-
sumption holds (Definition 3.9). Here, q denotes the upper bound of the number of accumulated
values.

Proof. Assume that there is a ppt adversary A that is able to break the security of Πacc. This
means A wins the game Expwitforge

A,Πacc (λ) with non-negligible probability (Definition 3.65). Using
A, we construct an adversary B that can break the modified q-SDH assumption. Let G be a
type 3 bilinear generator and let (p,G1,G2,GT , e) ← G(1n) with g, g̃ as generators of G1,G2.
The additional input B gets from the q-SDH challenge is the tuple t = (g̃, g̃s, g, gs, gs2 , . . . , gsq)
with s← Z∗p. To use the adversary A we include those inputs into the public parameters pp of
Πacc. We further denote the output of A with (X,V, c,W) with X = {x1, . . . , xk} ⊆ Zp \ {−s}
for a k ≤ q, c ∈ Zp \ ({−s} ∪X) and V,W ∈ G1.

Because A wins the game with non-negligible probability, we know V = AccCreate(pp, X) =
g
∏
x∈X(x+s), which can be computed from t and X without knowledge of s using AccCreate as

stated in the construction. For the same reason, it holds with non-negligible probability that
Vrfy(pp, V, c,W) = 1 where c and W is the rest of A’s output.

We now have X, c and W breaking the security of Πacc where the groups, the pairing and the
public parameter correspond to the input for the q-SDH challenge. However, B does yet have
to compute the tuple (c, g(c+s)−1) breaking this challenge.
Because the verification of Πacc succeeds and g and g̃ are generators, we have

e(W, g̃c · g̃s) = e(V, g̃)
⇔ e(W, g̃)(c+s) = e(V, g̃)
⇔ e(W c+s, g̃) = e(V, g̃)

⇒W c+s = V.

B can combine V and W to compute g(c+s)−1 with c being part of the output of A. This can
be done by first applying polynomial division and using this result to compute the tuple which
breaks the q-SDH assumption. We describe the necessary steps in more detail now. As stated
above, we know that V = g

∏
x∈X(x+s) = gP (s) with P (s) =

∏
x∈X(x + s) being a polynomial

with s as the variable. Using polynomial division, we can rewrite P (s):

P (s) = (c+ s) · P ′(s) + r

Since for c,X output by A it holds c 6∈ X, the remainder has to be unequal to zero, i.e. r 6= 0.
Additionally, the degree of r has to be smaller than the degree of (c+s) which has a degree
of one. Combining these two facts, we know that r ∈ Zp \ {0} which B can compute using
polynomial division. This yields

W c+s = V = g
∏
x∈X(x+s) = gP (s) = g(c+s)·P ′(s)+r.

Taking a look at the following equations, one can see that B now has every necessary information
to compute g(c+s)−1 .

W c+s = g(c+s)·P ′(s)+r

⇔W = gP
′(s) · g

r
c+s

⇔ W

gP ′(s)
= g

r
c+s

⇔ (W

gP ′(s)
)r−1 = g(c+s)−1

50

3.12 Accumulators

Therefore, B can compute (W
gP
′(s))r−1 to get g(c+s)−1 . Thus, the adversary B can output the

tuple (c, g(c+s)−1) using the output created by the adversary A against Πacc and hereby break
the q-SDH assumption.

51

4 Anonymous Credential and Reputation
System

Contents

4.1 Preliminaries . 54
4.1.1 Signing Partially Committed Values . 54

4.1.1.1 Construction of a Scheme for Signing Partially Committed Values 56
4.1.2 Proving Knowledge of a Signature . 59

4.1.2.1 Construction of a Scheme for Proving Knowledge of a Signature 59
4.1.3 Predicates . 60

4.1.3.1 Equality Proofs for Attributes . 61
4.1.3.2 Inequality Proofs for Attributes . 62
4.1.3.3 Membership Proofs for Attributes . 64

4.2 Basic Anonymous Credential System . 68
4.2.1 Definition . 68
4.2.2 Security Notions . 70

4.2.2.1 Anonymity . 71
4.2.2.2 Soundness . 72

4.2.3 Construction of an ACS . 74
4.2.4 Security Proofs . 76

4.2.4.1 Anonymity . 77
4.2.4.2 Soundness . 79

4.3 Extended Anonymous Credential System . 83
4.3.1 Definition . 83
4.3.2 Security Notions . 85

4.3.2.1 Anonymity . 85
4.3.2.2 Soundness . 87

4.3.3 Construction . 90
4.3.4 Security Proofs . 93

4.3.4.1 Anonymity . 93
4.3.4.2 Soundness . 97

4.4 Attribute-Based Anonymous Credential and Reputation System 100
4.4.1 Definition . 100
4.4.2 Construction . 103

4.5 Further Extensions . 107
4.5.1 Revocation . 107

4.5.1.1 Revocation of Users . 107
4.5.1.2 Revocation of Credentials . 108
4.5.1.3 Expiration of Credentials . 108

4.5.2 Non-Frameability of Users via Judge Algorithm 108
4.5.3 Removing the Random Oracle . 108

53

4 Anonymous Credential and Reputation System

4.5.4 Credentials for k-time Use . 109
4.5.5 Disable Rating Own Products . 109
4.5.6 Invalidation of Ratings . 110
4.5.7 Editability of Ratings . 110

In this chapter, we develop the construction of our attribute-based anonymous credential and
reputation system. We start with important basics for our constructions. These are special
protocols for signing partially committed values used in the credential issuance, for proving
knowledge of a signature used when showing a credential and for allowing certain predicates
as an access policy. Subsequently, we present three stages of our system. Firstly, we give a
construction for a basic anonymous credential system including our own security model and
a corresponding security proof. Secondly, we extend the basic anonymous credential system
by the feature of traceability of users. This extension includes extending our security model
and our construction given before. For this construction, we also give a security proof. Lastly,
we further extend the system by including features of an anonymous reputation system in our
system. Here, we only give extentions to our construction other than extending the security
model and security proof. Instead, we outline the modifications and additionally describe future
adjustments to the final stage of our system. These adjustments are for example revocation of
users and credentials.

4.1 Preliminaries
According to Camenisch and Lysyanskaya [CL03; CL04], for the construction of an anonymous
credential system it suffices to use a hiding and binding commitment scheme (Definitions 3.20
to 3.22) and a signature scheme (Definition 3.12) with corresponding efficient zero-knowledge
protocols for (1) receiving a signature on partially committed values (without revealing the val-
ues) and (2) proving knowledge of a signature on a message (without revealing either). In this
section, we provide general definitions and concrete constructions for these protocols using gen-
eralized Pedersen commitments (Construction 3.23) and Pointcheval-Sanders signatures (Con-
struction 3.17), where the latter is used as it allows for efficient protocols [PS16].

4.1.1 Signing Partially Committed Values

A scheme for signing committed values allows users to obtain signatures on values hidden in
a commitment from some signing instance. If some values are publicly known, we speak of a
scheme for signing partially committed values. First, we define the syntax of such a scheme. In
this definition, we assume that the public parameters as well as the public/secret key pair of the
signature scheme and the commitment scheme are already generated and given to the parties
involved.

Definition 4.1. Let ` ∈ N. Let C = {Ck = (Setupk,Comk,Openk)}1≤k≤` be a family of
commitment schemes with message space Mk and let Π` = (Setup`,Gen`, Sign`,Vrfy`) be a
signature scheme with message space M`. A scheme for signing partially committed values
using Π` and C is defined by the following algorithms:

• BlindInit(pp, pk, S): On input public parameters pp, public key pk and a set S ⊆ {0, . . . , `−
1}, it fixes the commitment scheme C|S| and outputs commitment parameters ppC.

•
(
BlindRcv(pp, pk, C, S, (mi)`−1

i=0 , d),BlindIssue(pp, pk, C, S, (mi)i∈S̄ , sk)
)
is an interactive pro-

tocol, where the user runs BlindRcv and the signer runs BlindIssue. The common inputs are
public parameters pp, the signer’s public key pk, a commitment C, a set S ⊆ {0, . . . , `−1}

54

4.1 Preliminaries

and messages (mi)i∈S̄ with S̄ := {0, . . . , `− 1} \ S. The user’s private inputs are messages
(mi)i∈S and an opening value d, and the signer’s private input is her secret key sk. After
the interaction, BlindRcv outputs a signature σ.

Correctness of a Scheme for Signing Partially Committed Values We say that a scheme
for signing partially committed values is correct if for all n, ` ∈ N, all pp ∈ [Π`.Setup`(1n)], all
(pk, sk) ∈ [Π`.Gen`(pp)], all (mi)`−1

i=0 ∈M` and all S ⊆ {0, . . . , `− 1}, we have

Pr
[
ppC ← BlindInit(pp, pk, S), (C, d)← Com(ppC, (mi)i∈S),

σ ←
(
BlindRcv(pp, pk, C, S, (mi)`−1

i=0 , d),BlindIssue(pp, pk, C, S, (mi)i∈S̄ , sk)
)

:

Vrfy` (pk, ((m0, . . . ,m`−1), σ)) = 1
]

= 1.

Intuitively, a scheme for signing partially committed values is correct if the user has a valid
signature of (m0, . . . ,m`−1) under the signer’s public key after interaction with the signer.
We assume the following usage of the scheme: The public parameters of the system are

generated and known to every party using the scheme. The signer has generated her signing key
pair and published it in the existing public key infrastructure. A user having messages (mi)i∈S
for some set S ⊆ {0, . . . , ` − 1}, that she possibly does not want to reveal to the signer, then
generates commitment parameters using BlindInit(pp, pk, S) and computes a commitment on the
messages (mi)i∈S . The commitment along with set S is sent to the signer. The signer then
blindly signs the messages hidden in the commitment and (possibly) adds messages (mi)i∈S̄ .
This blinded signature is sent to the user, who unblinds it and outputs the resulting signature.
The main goal of such a scheme is obtaining a signature on messages that are only partially

known to the signer. Both, the user and the signer, have separate security requirements when
executing the protocol. On the one hand, the user wants to protect her secret messages (mi)i∈S ,
and thus the signing protocol must not reveal any information about it. The signer, on the other
hand, wants to make sure that a user cannot output a valid signature under the signer’s public
key, unless it was derived by executing the protocol in interaction with her. This essentially
pours down to the signer wanting to protect her secret key.
Formally, we split these requirements into two definitions. Definition 4.2 formalizes the secu-

rity for the user, whereas Definition 4.3 formalizes the security for the signer.

Definition 4.2. A scheme for signing partially committed values using signature scheme
Π` and a family of commitment schemes C is secure for the user if for all n ∈ N, all pp ∈
[Π`.Setup`(1n)], all (pk, sk) ∈ [Π`.Gen`(pp)], all S ⊆ {0, . . . , `−1}, all ppC ∈ [BlindInit(pp, pk, S)],
all messages (m0, . . . ,m`−1), (m′0, . . . ,m′`−1) ∈M` with (mi)i∈S̄ = (m′i)i∈S̄ , and all (unrestricted)
adversaries A, the following distributions are identical:

• outputA[(C, d)← Com(ppC, (mi)i∈S) : A(C, S, (mi)i∈S̄ , sk)
↔ BlindRcv(pp, pk, C, S, (mi)`i=1, d)]

• outputA[(C ′, d′)← Com(ppC, (m′i)i∈S) : A(C ′, S, (mi)i∈S̄ , sk)
↔ BlindRcv(pp, pk, C ′, S, (m′i)`i=1, d

′)]

In this formalization, the adversary takes the role of the signer. If our scheme fulfills the
requirement of Definition 4.2 the adversary cannot distinguish whether the user was started
with message (m0, . . . ,m`−1) or (m′0, . . . ,m′`−1), which gives us that the secret is protected.
Note that this definition can only be fulfilled if the commitment scheme C is perfectly hiding.
Otherwise, the distributions are not necessarily identical.
Let us continue with security for the signer.

55

4 Anonymous Credential and Reputation System

Definition 4.3. A scheme for signing partially committed values using signature scheme Π`

and a family of commitment schemes C is secure for the signer, if there exists a ppt simulator
S, such that for all n ∈ N, all pp ∈ [Π`.Setup`(1n)], all (pk, sk) ∈ [Π`.Gen`(pp)], all mes-
sages (mi)`−1

i=0 ∈ M`, all sets S ⊆ {0, . . . , ` − 1}, all ppC ∈ [BlindInit(pp, pk, S)], all (C, d) with
Open|S|(ppC, C, d) = (mi)i∈S and all (unrestricted) adversaries A the two distributions

• outputA[A ↔ BlindIssue(pp, pk, C, S, (mi)i∈S̄ , sk)]

• outputA[A ↔ S1Sign(sk,·)(pp, pk, C, S, (mi)`−1
i=0 , d)]

are identical. Here 1Sign(sk, ·) denotes a one-time signing oracle that on input (mi)`−1
i=0 ∈ M`

outputs a signature σ such that σ ← Sign`(pp, sk, (mi)`−1
i=0).

Informally this means, executing BlindIssue reveals as much of the secret key as outputting a
single signature on a chosen message does. This is due to the fact, that the simulator needs no
information on sk beyond a single oracle query to perfectly imitate the signer. Here, the simulator
is provided a valid pair of open value and message(s) for the commitment C, corresponding to
the commitment scheme with message space M|S| instantiated by BlindInit. If such values are
known to an interacting party, she could perfectly simulate the interaction with BlindIssue,
despite a single signature query. This naturally leads to another notion for the signer, where
we demand these values to be extractable from an interacting party after successfully receiving
a blinded signature in a significant number of cases. A zero-knowledge argument of knowledge
over opening the commitment would be a way to provide such a property. However, this is left
to the scope of the credential system, since an argument of knowledge over more statements
than just opening the commitment can be used there.

4.1.1.1 Construction of a Scheme for Signing Partially Committed Values

We provide a construction for signing partially committed values. The idea is to first commit
to the private messages using a generalized Pedersen environment created via BlindInit from the
given public Pointcheval-Sanders key pk. Given this commitment, the signer returns a “blinded”
(invalid) signature. Afterwards, using the commitment’s open value, the user can compute a
valid signature.

Construction 4.4. Let n, ` ∈ N, let C = {Ck = (C.Setupk,Comk,Openk)}1≤k≤` be a family
of generalized Pedersen commitment schemes (Construction 3.23) with message space Mk and
let Π` = (Π`.Setup`,Gen`,Sign`,Vrfy`) be the Pointcheval-Sanders signature scheme (Construc-
tion 3.17) with message space M`.

• BlindInit(pp, pk, S) on input public parameters pp = (p,G1,G2,GT , e), pk = (g, Y0, . . . , Y`−1,
g̃, X̃, Ỹ0, , . . . , Ỹ`−1) and set S ⊆ {0, . . . , `− 1} it outputs ppC = (g, (Yi)i∈S , p,G1).

•
(
BlindRcv(pp, pk, C, S, (mi)`−1

i=0 , d),BlindIssue(pp, pk, C, S, (mi)i∈S̄ , sk)
)
is an interactive pro-

tocol on common inputs pp = (p,G1,G2,GT , e), pk = (g, Y0, . . . , Y`−1, g̃, X̃, Ỹ0, . . . , Ỹ`−1)
and set S ⊆ {0, . . . , ` − 1}. The user’s private input are messages (mi)i∈S and d =
((mi)i∈S , r), while the issuer gets messages (mi)i∈S̄ and secret key sk = (x, y0, . . . , yk). The
issuer chooses u← Z∗p and computes (σ′1, σ′2) := (gu, (gx ·C ·

∏
i∈S̄ Y

mi
i)u) and sends (σ′1, σ′2)

to the user. Finally, the user unblinds the signature by computing σ = (σ′1, σ′2 · (σ′1)−r)
and outputs it.

Since the protocol for signing partially committed value is the foundation for the credential
issuance protocol of our construction given in Section 4.2.3, we now show that Construction 4.4
is correct and secure for both the user (Definition 4.2) and the signer (Definition 4.3). In favor
of readability, we split up these three properties into three lemmas.

56

4.1 Preliminaries

Lemma 4.5 (Correctness). Let n, ` ∈ N, let C = {Ck = (C.Setupk,Comk,Openk)}1≤k≤` be a
family of generalized Pedersen commitment schemes (Construction 3.23) with message space Mk

and let Π` = (Π`.Setup`,Gen`,Sign`,Vrfy`) be the Pointcheval-Sanders signature scheme (Con-
struction 3.17) with message space M`. Construction 4.4 is a correct scheme for signing partially
committed values.

To prove that Construction 4.4 is correct, we need to show that the execution of (BlindRcv,
BlindIssue) always yields a valid Pointcheval-Sanders signature under the public key of the issuer.

Proof. Fix pp ∈ [Π`.Setup`(1n)], (pk, sk) ∈ [Π`.Gen`(pp)], (mi)`−1
i=0 ∈ M`, S ⊆ {0, . . . , `− 1} and

S̄ := {0, . . . , ` − 1} \ S. Further let ppC ← BlindInit(pp, pk, S), (C, d) ← Com(ppC, (mi)i∈S) and
σ ← (BlindRcv(pp, pk, C, S, (mi)`−1

i=0 , d),BlindIssue(pp, pk, C, S, (mi)i∈S̄ , sk)).
By definition of BlindRcv, it holds that σ = (σ′1, σ′2 · (σ′1)−r) for opening value d = ((mi)i∈S , r)

and (σ′1, σ′2) obtained from BlindIssue. The signer obtains (σ′1, σ′2) := (gu, (gx · C ·
∏
i∈S̄ Y

mi
i)u)

for u ← Z∗p. By the correctness of the Pedersen commitment (Lemma 3.25), we have C =
gr
∏
i∈S Y

mi
i for commitment parameters ppC obtained by running BlindInit. Therefore, we have

σ = (σ′1, σ′2 · (σ′1)−r) =

gu,
gx · C ·∏

i∈S̄

Y mi
i

u · (gu)−r

=

gu,
gx · gr∏

i∈S
Y mi
i ·

∏
i∈S̄

Y mi
i

u · (gu)−r
 =

gu,
gx · gr∏

i∈S
Y mi
i ·

∏
i∈S̄

Y mi
i · g−r

u
=

gu,(gx `−1∏
i=0

Y mi
i

)u =

gu,(gx `−1∏
i=0

gmiyi

)u =
(
gu, (gu)x

`−1∏
i=0

(gu)miyi
)

=
(
gu, (gu)x+

∑`−1
i=0 miyi

)
.

By definition and correctness of the Pointcheval-Sanders signature scheme (Lemma 3.18), σ is a
valid signature on the messages (mi)`−1

i=0 under a public key pk = (g, Y0, . . . , Y`−1, g̃, X̃, Ỹ0, . . . , Ỹ`−1)
and the corresponding secret key sk = (x, y0, . . . , y`−1).

As described above we consider security for the user (Definition 4.2) and signer (Definition 4.3)
separately. We start with the security for the user followed by the security of the signer.

Lemma 4.6 (Security for the User). Let n, ` ∈ N, let C = {Ck = (C.Setupk,Comk,Openk)}1≤k≤`
be a family of generalized Pedersen commitment schemes (Construction 3.23) with message space
Mk and let Π` = (Π`.Setup`,Gen`, Sign`,Vrfy`) be the Pointcheval-Sanders signature scheme (Con-
struction 3.17) with message space M`. Then, Construction 4.4 is a secure scheme for signing
partially committed values for the user according to Definition 4.2.

Recall the intuition we have given about the user’s security requirement. It said that an
adversary should not be able to distinguish whether the user has secret message (mi)i∈S , for
some set S, or secret message (m′i)i∈S . This is the essence of what we need to show. More
formally, the distribution on the outputs of an adversary interacting with a user having secret
(mi)i∈S and with a user having secret (m′i)i∈S need to be identical.

Proof. Fix any public parameters pp ∈ [Π`.Setup`(1n)], key pair (pk, sk) ∈ [Gen`(pp)], a set of
indices of private message S ⊆ {0, . . . , ` − 1}, messages (mi)`−1

i=0 , ppC := BlindInit(pp, pk, S) and
an adversary A interacting with BlindRcv. Let (C, d)← Com(ppC, (mi)i∈S).

First of all, we show that ppC output by BlindInit are valid parameters for the Pedersen
commitment. These consist of a description of a cyclic group of prime order p, a generator of
this group and a group element for every message to commit to. The signature public parameters

57

4 Anonymous Credential and Reputation System

pp only contain a description of a bilinear group. By definition of a bilinear group, the group
G1 is cyclic and of prime order p. Moreover, by definition of the signature scheme’s public key,
g is a generator of G1 and (Yi)i∈S are elements of G1. Taking this together, we conclude that
BlindInit generates valid parameters for the Pedersen commitment.
Now, consider the two distributions given in Definition 4.2. Every input of the adversary
A and the user are identical except for the commitment given to them. Therefore, A can
only attack the commitment given to her. We have seen above that BlindInit generates valid
commitment parameters for the Pedersen commitment. Since the Pedersen commitment scheme
we use fulfills the property of perfect hiding (Lemma 3.26), it holds that the commitment is
distributed independently of the committed messages and thus reveals no information about
them. Hence, the two distributions in Definition 4.2 are identical.

Having shown that Construction 4.4 is secure for the user, it remains to show that it also is
secure for the signer. Consider the next lemma.

Lemma 4.7 (Security for the Signer). Let n, ` ∈ N, let C = {Ck = (C.Setupk,Comk,Openk)}1≤k≤`
be a family of generalized Pedersen commitment schemes (Construction 3.23) with message space
Mk and let Π` = (Π`.Setup`,Gen`, Sign`,Vrfy`) be the Pointcheval-Sanders multi-message signa-
ture scheme (Construction 3.17) with message space M`. Then, Construction 4.4 is a secure
scheme for signing partially committed values for the signer according to Definition 4.3.

Remember that security for the signer demands existence of a ppt simulator outputting mes-
sages distributed exactly as messages from BlindIssue. Besides valid open value and messages
corresponding to the commitment for the scheme instantiated by BlindInit using pk, the simula-
tor obtains access to a one-time signing oracle on sk. The only message sent in the construction
is by BlindIssue, which needs to be simulated. It suffices to show the outputted message by
simulator and BlindIssue on any allowed input is distributed identically.

Proof. Fix any public parameters pp ∈ [Π`.Setup`(1n)], key pair (sk, pk) ∈ [Gen`(pp)], set of
indices of private messages S ⊆ {0, . . . , `−1}, messages (mi)`−1

i=0 ∈M`, ppC := BlindInit(pp, pk, S),
tuple (C, d) with Open|S|(ppC, C, d) = (mi)i∈S and adversary A.
On inputs set S and Pointcheval-Sanders public key and parameters, BlindInit outputs an

environment for generalized Pedersen commitments on |S| messages with group G1 of order
p and the elements (g, (Yi)i∈S). By Open|S|(ppC, C, d) = (mi)i∈S , we know that d is of form
(r, (mi)i∈S) and C = gr

∏
i∈S Y

mi
i holds.

Now the simulator queries (σ1, σ2) ← 1Sign(sk, (mi)`−1
i=0). The received signature (σ1, σ2) has

form (h, hx+
∑`−1

i=0 yimi) for a randomly chosen h← G1 \ {1}. The simulator outputs (σ1, σ2 ·σr1).
Note, that for any generators h and g there exists a unique u ∈ Z∗p with h = gu. By substituting
h with gu we get

(σ1, σ2 · σr1) = (h, hx+
∑`−1

i=0 yimi · hr) = (h, hx+
∑

i∈S̄ yimi · h
∑

i∈S yimi · hr)

=
(
gu,

(
gx+

∑
i∈S̄ yimi · g

∑
i∈S yimi · gr

)u)
=
(
gu,

(
gx+

∑
i∈S̄ yimi · C

)u)
= (gu, (gx · C ·

∏
i∈S̄

Y mi
i)u),

where the latter has exactly the form of BlindIssue’s output. Since its only random choice is
u ← Z∗p, and gu is distributed the same as choosing h ← G1 \ {1} the outputs of the simulator
and BlindIssue are distributed the same, independent of any (interacting) adversary.

58

4.1 Preliminaries

4.1.2 Proving Knowledge of a Signature
Now we need a protocol for proving knowledge of a valid signature on a certain message with
respect to public key pk. This is necessary in the ACS (see Section 4.2), since verifiers need
to be sure a user really possesses a valid credential from some issuer, i. e. a signature over her
user secret and certain attributes. Assuming unforgeability, such a proof assures a signature
was issued by the party corresponding to pk. A simple proof would be to send signature σ and
message m to the verifier, who could check validity. However, in the ACS the signed message
contains private data, and a user would become linkable by always using the same signature.
Hence, the user should only reveal she knows that some valid signature σ on some message m
under pk. Formally, for given pp ∈ [Setup(·)] of a signature scheme (Definition 3.12), we demand
a zero-knowledge proof of knowledge (Definitions 3.39 and 3.40) for the relation (Definition 3.36)

Rpp = {((σ,m), pk) | (sk, pk) ∈ [Gen(pp)],Vrfy(pk, σ,m) = 1}.

In short, we write PK{(σ,m) : Vrfy(pk, σ,m) = 1}.

4.1.2.1 Construction of a Scheme for Proving Knowledge of a Signature

Now we provide a protocol for proving knowledge of a valid Pointcheval-Sanders multi-message
signature (Construction 3.17) on ` + 1 messages. The idea is to randomize the existing sig-
nature (see remark on p. 16), such that σ′ = (σ′1, σ′2) is a valid signature on (m0, . . . ,m`, r)
for r ← Zp, where the public key is extended with (Y`+1 = g, Ỹ`+1 = g̃). This statement can
then simply be proven via the generalized Schnorr approach (Construction 3.44). Of course, the
randomization needs to ensure σ′ itself does not reveal any knowledge on the original message or
signature. This protocol was already given by Pointcheval and Sanders [PS16], with the missing
but necessary σ′1 6= 1 check.

Construction 4.8. Let Π`+1 be the Pointcheval-Sanders multi-message signature scheme (Con-
struction 3.17) for (`+1) messages on given public parameters pp ∈ [Setup(·)]. Let pk = (g, Y0, . . .
Y`, g̃, X̃, Ỹ0, . . . , Ỹ`) ∈ [Gen`+1(pp)] be a valid public key for the scheme. Let σ = (σ1, σ2) and
messages (m0, . . . ,m`) be the user’s private input, such that Vrfy`+1(pk, σ, (mi)`i=0) = 1 holds.
First, the user chooses (u, r) ← Z∗p × Zp, sets σ′ := (σ′1, σ′2) := (σu1 , (σ2 · σr1)u) and sends σ′ to
the verifier. Next, the user initiates and runs a proof of knowledge of the form

PK
{

(m0, . . . ,m`, r) : e(σ′1, g̃)r
∏̀
i=0

e(σ′1, Ỹi)mi = e(σ′2, g̃)
e(σ′1, X̃)

}

with the verifier. This proof can be instantiated as Σ-protocol (Definition 3.43), for example via
the generalized Schnorr protocol (Construction 3.44). The verifier accepts, if and only if σ′1 6= 1
and it accepts within the proof.

Note, that we can simply send σ′ alongside the first message of the proof of knowledge. With
this consideration, we can prove Construction 4.8 is a Σ-protocol (Definition 3.43) for the desired
relation, which implies it is an interactive zero-knowledge proof of knowledge.

Theorem 4.9. Let ` ∈ N0. Construction 4.8 is a Σ-protocol (Definition 3.43) for the rela-
tion Rpp = {((σ,m), pk) | (sk, pk) ∈ [Gen`+1(pp)],Vrfy`+1(pk, σ,m) = 1} corresponding to the
Pointcheval-Sanders multi-message signature scheme Π`+1 = (Setup,Gen`+1,Sign`+1,Vrfy`+1)
(Construction 3.17) and public parameters pp ∈ [Setup(·)].

Proof. For correctness note, that any valid PS-signature σ = (σ1, σ2) fulfills σ1 6= 1. Thus σu1 6= 1
holds for u ∈ Z∗p. By this fact and correctness of the generalized Schnorr protocol (Lemma 3.45),
the verifier accepts after an honest execution with ((σ, (m0, . . . ,m`)), pk) ∈ Rpp.

59

4 Anonymous Credential and Reputation System

For special soundness we extract a witness, i. e. some valid signature on some message
(m0, . . . ,m`), from two accepting transcripts. Using the generalized Schnorr protocol’s extractor
(cf. Lemma 3.45), we can get (m0, . . . ,m`, r), such that

e(σ′1, g̃)r
∏̀
i=0

e(σ′1, Ỹi)mi = e(σ′2, g̃)
e(σ′1, X̃)

⇐⇒ e(σ′1, g̃)re(σ′1, X̃)
∏̀
i=0

e(σ′1, Ỹi)mi = e(σ′2, g̃)

⇐⇒ e(σ′1, g̃)re(σ′1, X̃
∏̀
i=0

Ỹ mi
i) = e(σ′2, g̃)

⇐⇒ e(σ′1, X̃
∏̀
i=0

Ỹ mi
i) = e(σ′2, g̃)e(σ′1, g̃)−r

⇐⇒ e(σ′1, X̃
∏̀
i=0

Ỹ mi
i) = e(σ′2 · σ′−r1 , g̃).

The last equality simply states Vrfy(pk, (σ′1, σ′2·σ′−r1), (m0, . . . ,m`)) = 1, because for an accept-
ing transcript σ′1 6= 1 holds. The extractor outputs the valid witness ((σ′1, σ′2·σ′−r1), (m0, . . . ,m`)).
It remains to show it is a special honest verifier zero-knowledge protocol by constructing a

simulator S. Given any challenge c, the simulator S picks σ′1 ← G1 \ {1} and σ2 ← G1. In
an honest protocol execution σ′1 := σu1 is distributed uniformly in G1 \ {1} by σ1 6= 1 and
u ← Z∗p. Independent of that, σ′2 := σu2 · (σu1)r is distributed uniformly in G1 by the choice of
r ← Zp. Since (σ′1, σ′2) is distributed as in the real protocol, S now can run the simulator of
the generalized Schnorr protocol (Lemma 3.45) with the correctly distributed GT elements (e. g.
e(σ′1, g̃), e(σ′2, g̃)) and challenge c. By that it obtains the remaining transcript elements with the
same distribution as in a real protocol execution.

4.1.3 Predicates

As mentioned before, our system should provide the possibility of proving statements over issued
attribute values. In particular users can prove in a zero-knowledge-fashion (Definition 3.39),
that their credentials fulfill a published predicate. These predicates are evaluated by using
threshold operators where (X1, X2, . . . , Xn, d) expresses d of the n boolean variables need to
be fulfilled. Formulas with these operators can replace boolean formulas by exchanging ∧ with
(2, 2)-thresholds and ∨ with (1, 2)-ones. For example, ((X11, X12, 2), (X21, X22, 2), 1) is equiv-
alent to (X11 ∧ X12) ∨ (X21 ∧ X22). Such predicates define monotone access structures (cf.
Section 3.6).
We want to give zero-knowledge arguments/proofs for the following cases:

• Equality, respectively inequality, of an attribute ai to

1. an (unknown) discrete logarithm of public value y, expressed by ai = logg(y), respec-
tively ai 6= logg(y).

2. a public value s, expressed by ai = s, respectively ai 6= s.

3. another attribute aj expressed by ai = aj , respectively ai 6= aj .

• Membership of an attribute ai in a public

1. set Ω = {ω1, . . . , ωm} denoted by ai ∈ Ω.

2. range of integers [A,B] := {A,A+ 1, . . . , B} expressed by ai ∈ [A,B].

60

4.1 Preliminaries

Set and range membership proofs could be achieved by OR-concatenations of equality-proofs,
which becomes inefficient for large sets or ranges. As an example, for two attributes a1 = ’USA’
and a2 = 20, a predicate could be described by

φ(a1, a2) = 1 :⇐⇒ (a1 = ’Germany’ ∧ a2 ∈ [18, 150]) ∨ (a1 = ’USA’ ∧ a2 ∈ [21, 150]).

This would be evaluated to 0, as the expressions are evaluated to (0 ∧ 1) ∨ (1 ∧ 0).
To prove such formulas in zero-knowledge, we use the technique of proofs of partial knowledge

from Construction 3.59. In order to apply the technique, we define zero-knowledge arguments
corresponding to each of the previously stated expressions. In the following, we assume publicly
known Pedersen commitments (Construction 3.23) on the involved attributes, where only the
prover knows how to open them. A proof like “the credential consists of attributes (a1, . . . , a`)
and Ci is a Pedersen commitment to ai for all i = 1, . . . , ` ” will ensure, that the commitments
are bound to the issued attributes. We assume that all involved groups are cyclic, multiplicative
and of prime order p.

4.1.3.1 Equality Proofs for Attributes

First of all, we provide protocols for proving equality of attributes in different scenarios. We
focus on equality of an attribute to a discrete logarithm, to a public value and another attribute.
Providing the open value(s) for the involved commitment(s) allows a verifier to check equality
herself. In case of selective disclosure, where an attribute value should be revealed, this can be
meaningful. But, if several equality proofs are OR-concatenated, we want to reveal that one
but not which of the equalities holds, e. g. an attribute either equals “Germany” or “USA”.
Therefore, we employ zero-knowledge arguments of knowledge in the following.

Equality to (Unknown) Discrete Logarithm

We want to provide a Σ-protocol (Definition 3.43) to prove α, committed to in C = gr1h
α, is equal

to the discrete logarithm of a (publicly known) value y to base g2. More formally, we provide
a proof of form PK

{
(α, r) : C = Com(α; r) ∧ α = logg2(y)

}
. This is valuable, for example, if

public keys of form y = gx2 are known and a user wants to disclose her identity without leaking
the secret exponent unknown to the verifier. Based on such a protocol, she could show her
public key is contained in a set via OR-concatenations. This proof is simply achieved using the
generalized Schnorr protocol.

Construction 4.10. Let g1, h, C ∈ G1, g2, y ∈ G2 be commonly known, where g1, g2 are
generators. The prover’s private input is r and α, such that C = gr1h

α. Prover and verifier run
the generalized Schnorr proof (Construction 3.44)

PK{(r, α) : C = gr1h
α ∧ y = gα2 }.

The verifier accepts, if and only if she accepts within this proof.

Equality to Public Value

Next, we want a Σ-protocol, that proves equality of an attribute to a public value s. More
formally, this is a proof of form PK{(α, r) : C = Com(α; r) ∧ α = s}. Doing this in a Σ-protocol
only makes sense if several such proofs are OR-combined. This comes by the fact, that revealing
the commitment’s open value would have the same effect, but is more efficient. For example, an
attribute value could be proven to be Boolean, i. e. either equal to 1 or 0.

61

4 Anonymous Credential and Reputation System

Construction 4.11. Let g, h, C ∈ G and s ∈ Zp be commonly known, where g is a generator.
The prover’s private input is r, such that C = grhα. Prover and verifier run the generalized
Schnorr proof (Construction 3.44) of form

PK
{
(r) : Ch−s = gr

}
.

The verifier accepts, if and only if she accepts within this proof.

The extractor of this Schnorr protocol can extract a representation C = grhs, i. e. an open
value for C to value s.

Equality of Two Attributes

Finally, we want a protocol, showing two committed values are equal. More formally, this is a
proof of form PK{(α1, α2, r1, r2) : C1 = Com(α1; r1) ∧ C2 = Com(α2; r2) ∧ α1 = α2}. It is hard
to figure out meaningful examples for such a proof for attribute values within a single credential.
But it could be reasonable to prove, whether two attributes in different credentials are equal,
for example, contain the same age. Furthermore, as pseudonyms in our ACS are commitments
to the user secret, such a protocol allows proving two pseudonyms belong to the same user.
A simple Schnorr proof PK{(α, r1, r2) : C1 = gr1hα ∧ C2 = gr2hα} could achieve such a pro-

tocol. However, in the ACS we generically perform proofs of form PK{(αi, ri) : Ci = grihαi}.
Therefore it is slightly more efficient to use Construction 4.11 alongside these proofs for opening
C1 and C2. To instantiate Construction 4.11, prover and verifier compute a “new” commitment
C := C1 · C−1

2 and use s = 0. The prover’s private input then is r1 − r2. The reasoning is that
the prover can open the new commitment to 0, only if both committed values are equal, i. e.
C = gr1−r2hα1−α2 = gr1−r2 . Else, she would again be able to compute logg(h).

4.1.3.2 Inequality Proofs for Attributes

We proceed with proofs showing inequality of an attribute to a discrete logarithm, a public value
and another attribute. Such proofs constitute, that the committed attribute value could be any
(committable) value but the one inequality has been shown to. Indeed this is equivalent to an
OR-concatenation of equality proofs, which would be less efficient than the following protocols
or even be infeasible.

Inequality to (Unknown) Discrete Logarithm

First we want to provide a protocol assuring a value α, committed to in C, is not equal
to a discrete logarithm s of y := gs for some generator g. This is an argument of form
PK
{

(α, r) : C = Com(α; r) ∧ α 6= logg(y)
}
. Such a proof becomes necessary, if for example a

user with secret key α has to deny to be the party with public key of form y = gs. In a repu-
tation system, for example, a proof of the above form could disable vendors to rate their own
products.
For the construction we adapt the protocol from Camenisch and Shoup [CS03, Section 6].

There, the common input is a value gα instead of the hiding commitment C on α. This input
contradicts the anonymity demands of an ACS, as it allows for linking several protocol runs, if
the value α was uniquely chosen within the system.

Construction 4.12. Let g1, h, C ∈ G1, g2, y ∈ G2 be commonly known, such that g1, g2 are
generators. The prover’s private input is r and α, such that C = gr1h

α.
The prover chooses z ← Z∗p and computesW := (gα2 ·y−1)z. Only ifW 6= 1 (i. e. the exponents

are not equal), she continues and sets x1 := rz, x2 := αz, x3 := z, sends W to the verifier and
runs the generalized Schnorr proof (Construction 3.44)

PK
{

(x1, x2, x3) : 1 = gx1
1 hx2(C−1)x3 ∧W = (y−1)x3gx2

2

}
.

62

4.1 Preliminaries

The verifier accepts if and only if W 6= 1 and she accepts in the proof.

Construction 4.12 relies on the fact, that for s = logg2(y), in case of inequality, α − s 6= 0
holds. Therefore the value α−s can be distributed uniformly at random in Z∗p by multiplication
with an element z ← Z∗p. Hence (gαz2 · y−z) is distributed uniformly in G2 \ {1}, and can be sent
as an auxiliary, hiding commitment. Then, essentially, knowledge of z and αz is proven as well
as (implicitly) knowledge of opening the original commitment on α.

Theorem 4.13. Let C = (Setup,Com,Open) be the Pedersen commitment scheme for a sin-
gle value (Construction 3.23) and (g1, h, p,G1) ← Setup(·). If the discrete logarithm problem
(Definition 3.4) is hard relative to the group generation algorithm G (used in Setup), Con-
struction 4.12 is a special honest-verifier zero-knowledge argument of knowledge for the relation
R := {((C, g1, g2, h, y), (r, α) | C = gr1h

α ∧ α 6= logg2(y)∧ g1 6= 1 6= g2}, with negligible knowledge
error.

Proof. Completeness follows by inspection of the protocol and the fact that (α − s) · z 6= 0 for
(α− s) 6= 0 6= z, and therefore W 6= 1.
To handle the computational soundness of the protocol, we provide a relaxed special soundness

extractor. This extractor obtains two accepting transcripts with the same announcement but
different challenges and is allowed to fail with a negligible probability. The input transcripts are
distributed as obtained from the standard rewinding experiment. For such transcripts we can
use the special soundness extractor of the Schnorr proof to obtain (x1, x2, x3) fulfilling

1 = gx1
1 hx2(C−1)x3 and W = (y−1)x3gx2

2 .

We make a case distinction over x3 being zero or non-zero:

Case x3 = 0: Due to 1 6= W = g0 · gx2
2 = gx2

2 and g2 being a generator this implies x2 6= 0. But
then we can compute logg1(h) = x1

−x2
due to 1 = gx1

1 hx2 · 1 ⇐⇒ h−x2 = gx1
1 . In this case,

we break the binding property of the Pedersen commitment scheme (and therefore the
discrete logarithm problem). For a ppt prover, this happens with negligible probability
(as the Setup algorithm was run honestly by assumption) and the extractor outputs a
failure symbol.

Case x3 6= 0: In this case we always obtain a valid witness. We set r := x1
x3
, α := x2

x3
and see

1 = gx1
1 hx2(C−1)x3 ⇐⇒ Cx3 = gx1

1 hx2 ⇐⇒ C = gr1h
α.

We only need to show gα2 6= y = gs2 or equivalently (α− s) 6= 0, which holds since

1 6= W = (y−1)x3gx2
2 = g−sx3

2 gx2
2 = g−sx3

2 gαx3
2 = g

(α−s)x3
2

x3 6=0
g2 6=1⇐⇒ (α− s) 6= 0.

Finally, the special honest-verifier simulator chooses W uniformly from G2 \ {1}, which dis-
tributes the auxiliary commitment as in the protocol (since gα2 · y−1 6= 1 and the exponent z
is chosen from Z∗p). The remaining part of the protocol is simulated with the simulator corre-
sponding to the particular Schnorr instantiation (using W).

Inequality to Public Value

The previous protocol can be employed to show a value α, committed to in C, is not equal to a
public value s ∈ Zp (instead of s hidden in y), i. e. PK{(α, r) : C = Com(α; r) ∧ s 6= α}. Such a
feature can be useful, if parties with certain attributes are excluded from using a service. For
example citizens from certain states might be forbidden to access a service due to licensing.
Such a proof can be instantiated based on the inequality proof from Construction 4.12. To

instantiate the construction both parties compute y := gs and then execute the protocol.

63

4 Anonymous Credential and Reputation System

Inequality of Two Attributes

We provide a protocol on two publicly known Pedersen commitments Ci = grihαi for i ∈ {1, 2},
where α1 6= α2 is proven additionally to the knowledge of exponents. That is, an argument of
knowledge of the form PK{(α1, α2, r1, r2) : C1 = Com(α1; r1) ∧ C2 = Com(α2; r2) ∧ α1 6= α2}.
Again such a proof can be achieved by using Construction 4.12, AND-composed with proofs

for opening C1 and C2. To instantiate it, C := C1 · C−1
2 is computed at verifier and prover

site. The prover can open this new commitment with the private values r1 − r2 and α1 − α2.
If α1 6= α2, the committed value is not equal to 0. Therefore we need to prove inequality to 0,
hence run Construction 4.12 with y = g0

2 = 1 and C.

4.1.3.3 Membership Proofs for Attributes

We focus on proofs showing an attribute value lies within a given set, or, as a special case, in a
given range. This could be achieved by OR-concatenations of equality proofs, which is inefficient
or even infeasible for too large sets and ranges. Here we will rely on the work of Camenisch,
Chaabouni, and shelat [CCs08].

Set Membership of Attribute

First we focus on the problem where we want to prove an attribute α, committed to in C, is
contained in a public set Ω := {ω1, . . . , ωm}. More formally, PK{(α, r) : C = Com(α; r) ∧ α ∈ Ω}
denotes such a set membership proof. An OR-concatenation of m equality proofs would result
in a proof of size O(m). One could argue, the communication complexity always needs to be
Ω(m), as the set has to be announced somehow. However, publishing the set can be performed
once, and afterwards more efficient, i. e. constant-time, set membership proofs could amortize
this communication cost.
Camenisch, Chaabouni, and shelat [CCs08] mainly focus on the idea to provide signatures

on the elements in Ω with a signature scheme allowing for zero-knowledge proofs of a signa-
ture. They name cryptographic accumulators (cf. Section 3.12) as an alternative, on which we
concentrate. In the following construction we use the accumulator of Nguyen [Ngu05] following
Construction 3.67 in Section 3.12.3.

Construction 4.14. Let Πacc be the Nguyen accumulator from Construction 3.67, pp =
(p, e, g1, g̃1, g̃

s
1, t) ∈ [Setup(·, 1q)] with t = (gs1, gs

2
1 , . . . , g

sq
1), Ω = {ω1, . . . , ωm} ∈ Zmp with m ≤ q,

C = gr2h
α, where g2, h, C ∈ G′, pp,Ω are common, and α, r ∈ Zp the prover’s private input, such

that α ∈ Ω.
In a first step, the prover and verifier (locally) compute V := AccCreate(pp,Ω). For α = ωi

the prover computes Wα := WitCreate(pp,Ω, i). Next, she chooses z ← Z∗p, computes W := W z
α,

sends W to the verifier and runs the Schnorr proof (Construction 3.44)

PK
{

(r, α, z) : C = gr2h
α ∧ e(W, g̃1)α · e(V, g̃−1

1)z = e(W, g̃s1)−1
}
.

The verifier accepts, if and only if W 6= 1 and she accepts in this proof of knowledge.

Here prover and verifier can (locally) accumulate all elements from Ω to the same value V .
The prover then computes a witness for her element α lying in V , which is only feasible if
α ∈ Ω. What follows is a zero-knowledge argument of knowing a witness, such that the element
committed to in C lies in V as well. Therefore, the protocol’s soundness relies on the security
of the accumulator.

Theorem 4.15. Let Πacc be the Nguyen accumulator from Construction 3.67, and pp =
(p, e, g1, g̃1, g̃

s
1, t)← [Setup(·, 1q)] with t = (gs1, gs

2
1 , . . . , g

sq
1). Then Construction 4.14 is a special

honest-verifier zero-knowledge argument of knowledge for the relation R := {((Ω, C, g2, h), (r, α)) |
C = gr2h

α ∧ α ∈ Ω} with negligible knowledge error.

64

4.1 Preliminaries

Proof. The completeness of Construction 4.14 follows by the properties of the Nguyen accumu-
lator: For V := AccCreate(pp,Ω), and Wα := WitCreate(pp,Ω, i) (assuming α = ωi) we know

V = g

∏|Ω|
i=1(ωi+s)

1 and Wα = V
1

(α+s) , respectively. Therefore, we see

e(W, g̃1)α · e(V, g̃−1
1)z = e(W, g̃s1)−1 ⇐⇒ e(Wα, g̃

α
1 g̃

s
1)z = e(V, g̃1)z ⇐⇒ e(V, g̃1)z = e(V, g̃1)z.

The rest follows from correctness of the generalized Schnorr proof.
We proceed to the relaxed special soundness property as in the proof of Theorem 4.13. Again,

for two accepting transcripts, the special soundness extractor of the Schnorr proof outputs a
witness (r, α, z), fulfilling

C = gr2h
α and e(W, g̃1)α · e(V, g̃−1

1)z = e(W, g̃s1)−1.

Whereas the first yields a valid witness for opening C to α, the second yields a witness for α
being accumulated in V . To show this, we make a case distinction over z being zero or not.

Case z = 0: In this case, we can deduce that e(W, g̃1)α = e(W, g̃1)−s. ByW 6= 1 6= g1 it follows,
that e(W, g̃1) 6= 1 and therefore α = −s holds. This information would enable us, to
break the security of the accumulator scheme, according to Definition 3.65. Hence this
case happens with negligible probability and the extractor fails.

Case z 6= 0: In this case we know z−1 exists and we can compute

e(W, g̃1)α · e(V, g̃−1
1)z = e(W, g̃s1)−1 ⇐⇒ e(W, g̃α1 g̃s1) = e(V, g̃1)z

⇐⇒ e(W z−1
, g̃α1 g̃

s
1) = e(V, g̃1).

The latter states that W z−1 is a valid witness for V within the Nguyen accumulator.
Formally this means, Vrfy(pp,AccCreate(pp,Ω), α,W z−1) = 1 holds. If α 6∈ Ω we broke the
accumulator’s security, and fail (again with negligible probability). Else we can output
the valid witness (r, α) for the relation.

Therefore, the relaxed special soundness extractor succeeds in all, but a negligible fraction of
cases.
The special honest-verifier simulator on input challenge c simply choosesW ← G\{1} (group

of g1), which is distributed as in the real protocol, assuming Wα is a generator. This is the case,
as only values unequal to −s are accumulated by the Nguyen accumulator (else the secret would
have been found). Then the simulator for the Schnorr proof (instantiated with W) is run.

The advantage of using the accumulator instead of signatures is, that additional public pa-
rameters need to be published only once, allowing set membership proofs for all sets with q or
less elements (q depends on the parameters). The signature-based variant would need a distinct
signing key pair and corresponding signatures for each set Ω. The drawback to be bound to q ele-
ments can be overcome by splitting bigger sets up, and then performing several OR-concatenated
set membership proofs. Another small drawback is the time complexity O(n logn) for computing
accumulator value and witness without auxiliary information [Zho+16].

Range Proof for Attribute in Range [0, u`)

The problem to prove that a secret attribute α lies within a range of integers [A,B] := {A,A+
1, . . . , B} is a special case of a set membership proof. Here, we first focus on ranges of form
[0, u`), i. e. an argument for PK

{
(α, r) : C = Com(α; r) ∧ α ∈ [0, u`)

}
. One could simply employ

the protocol from Construction 4.14. If the range includes several thousands of elements, we
would either need an accumulator for many elements meaning big public parameters or several
OR-concatenated set membership proofs. If the range spans over millions of integers, then this

65

4 Anonymous Credential and Reputation System

approach becomes impractical. However, the special case of a range gives allows more efficient
protocols.
Camenisch, Chaabouni, and shelat [CCs08] provide a method, which makes use of the set

membership proof as above, resulting in a communication complexity of O(logL
log logL), where L

denotes the size of the range [CLs10]. We first consider a range of form [0, ul) for u, ` ∈ N with
u` < p. This will be generalized to an arbitrary interval [A,B] in Section 4.1.3.3.

Construction 4.16. Let Πacc be the Nguyen accumulator from Construction 3.67, pp =
(p, e, g1, g̃1, g̃

s
1, t) ∈ [Setup(·, 1q)] with t = (gs1, gs

2
1 , . . . , g

sq
1), u, ` ∈ N with u` − 1 < p and u ≤ q,

Ω = {0, . . . , u− 1}, C = gr2h
α. Here C, pp,Ω, u, ` are common, and α ∈ [0, u`) and r the prover’s

private input.
In a first step, the prover and verifier (locally) compute V := AccCreate(pp,Ω). Then, the

prover computes a representation for α to base u, such that α =
∑`−1
j=0 αj ·uj . For j = 0, . . . , `−1

she computes a witness Wj := WitCreate(pp,Ω, αj), chooses zj ← Z∗p and computes Ŵj := W
zj
j .

Then, she sends the (Ŵj)`−1
j=0 to the verifier and runs the Schnorr proof (Construction 3.44)

PK

(r, (αj , zj)`−1
j=0

)
: C = gr2

`−1∏
j=0

(huj)αj ∧
`−1∧
j=0

e(Ŵj , g̃1)αj · e(V, g̃−1
1)zj = e(Ŵj , g̃

s
1)−1

.
The verifier accepts if and only if Ŵj 6= 1 for all j = 0, . . . , `− 1 and she accepts in this proof of
knowledge.

This protocol relies on the fact, that any α ∈ [0, u`) can (uniquely) be rewritten in u-ary
notation as the sum α =

∑`−1
j=0 αj · uj with αj ∈ Ω := {0, . . . , u − 1}. The main idea is

to prove the latter, by executing `-many set membership proofs for αj ∈ Ω, while ensuring
correspondence of the αj to α. To prove this correspondence, it suffices to prove knowledge
of C = gr

∏`−1
j=0(huj)αj , which implies knowledge of opening C to α. The protocol’s soundness

again relies on the security of the accumulator scheme.

Theorem 4.17. Let Πacc be the Nguyen accumulator from Construction 3.67, and pp =
(p, e, g1, g̃1, g̃

s
1, t) ← [Setup(·, 1q)] with t = (gs1, gs

2
1 , . . . , g

sq
1) and u ≤ q. Then Construction 4.16

is a special honest-verifier zero-knowledge argument of knowledge for the relation

R :=
{

((Ω, C, g2, h, u, `), (r, α))
∣∣∣ C = gr2h

α ∧ α ∈ [0, u`)]
}

with negligible knowledge error.

Proof. Completeness of the protocol follows from completeness of Construction 4.14 and the
computable representation α =

∑`−1
j=0 αju

j for α ∈ [0, u`) and αj ∈ {0, 1, . . . , u− 1}.
Regarding soundness and extraction, we first consider the `-many proofs for knowing a witness

for the accumulated value. Assuming ` is related polynomially to the security parameter, the
chance at least one of them breaks the accumulator’s security, and making the extractor fail,
is again negligible. Therefore we can assume αj to lie in {0, 1, . . . , u − 1}. By defining α :=∑`−1
j=0 αju

j , we know α ∈ [0, u`). Further,

C = gr2h
α = gr2h

∑`−1
j=0 αju

j

= gr2

`−1∏
j=0

(huj)αj ,

implies (r, α) is a valid witness for the relation.
The special honest-verifier simulator chooses Wj ← G \ {1} for i = 0, . . . , ` − 1, instantiates

and runs the Schnorr protocol’s simulator with these values.

66

4.1 Preliminaries

0 p 2p
α α+ pA B u` B + p

A+ u`

B + p− u` + 1B − u` + 1

Figure 4.1: Illustration of intersection problem without limiting the difference B −A

Range Proof for Attribute in Arbitrary Range [A,B]

Now, we construct a range proof for (nearly) arbitrary integer ranges [A,B], with 0 ≤ A < B < p,
based on the previous proof for a [0, u`) range. Here, we will employ a method presented by
Schoenmakers [Sch05; Sch01]. The idea is to represent the [A,B]-interval by the intersection of
two intervals of size u`. Then shift each interval, such that it starts in 0, and shift the committed
attribute value by the same amount. What follows is an AND-composition of two “standard”
range proofs.
In particular, for integers α and u` > B −A, we can rewrite an interval [A,B] by

α ∈ [A,B]
⇐⇒ α ∈ [A,A+ u`) ∩ [B − u` + 1, B + 1)
⇐⇒ α−A ∈ [0, u`) ∧ α−B + u` − 1 ∈ [0, u`).

This observation then leads to following Construction 4.18.

Construction 4.18. Let Πacc be the Nguyen accumulator from Construction 3.67 and pp←
Setup(·, 1q). The common input is pp, A,B, u, ` ∈ N, Ω = {0, . . . , u − 1} and C = gr2h

α, such
that 0 < B − A < min{ p+1

2u−1 , u
` − 1}, u ≤ q and u` − 1 < p. The prover’s private input is

α ∈ [A,B] and r.
First prover and verifier (locally) compute CA = Ch−A and CB = Ch−B+u`−1. The prover’s

private open value for CA is (r, α−A) and (r, α−B+u`−1) for CB. Next, Construction 4.16 is
instantiated twice, once with CA and once with CB and the corresponding private open values.
The verifier accepts, if and only if she accepts in both proofs.

Note, that a ppt prover can only open CA to α−A and CB to α−B+u`−1, if she has proven
knowledge of opening C to α. Therefore this protocol matches the observation above perfectly
for integers. However, there is an additional constraint, such that B −A < p+1

2u−1 needs to hold.
This is necessary, as the committed value α represents a Zp value, this shifting technique can
cause overflows, such that α 6∈ [A,B] would be accepted. This problem is depicted in Figure 4.1.
For the chosen parameters A < B and u` < p any Zp element between the dashed lines would

be accepted in a range proof. These values, like α in the sketch, are clearly not contained in
[A,B]. We need to ensure there is no such intersection as between the dashed lines. We achieve
this by the restriction of the maximal range size in dependence of the base u.

We first observe that the problematic intersection is empty, if

A+ u` < p+B − u` + 1 ⇐⇒ A−B + 2u` < p+ 1.

We assume u`−1 < B − A < u` (i. e. ` is minimal to represent the interval size to base u). We
demand the range size B−A to be less than p+1

2u−1 . This ensures the intersection is empty, since
we can compute

A−B+2u` = A−B+2uu`−1 < A−B+2u(B−A) = (B−A)(2u−1) < p+ 1
2u− 1(2u−1) = p+1.

67

4 Anonymous Credential and Reputation System

The constraint on the size of [A,B] does not need to concern us, as p needs to be exponential
in the security parameter. However, u and ` should be chosen in dependence of the interval size.
To get close to an optimal solution with respect to communication complexity one would first
choose a numerical approach like in [Bla97]. Then, it would be checked whether B −A < p+1

2u−1
holds for the computed u and `. By the exponential size of p, this should be the case for usual
ranges, but if not, one could refine the optimization constraints. For simplicity it is possible to
start with u = 2 and ` = dlog2(B −A)e.

4.2 Basic Anonymous Credential System

In this section, we present the first stage of our attribute-based credential system. In the
previous sections, we presented all necessary tools to implement such a system. In an (attribute-
based) credential system, we have users and organizations (in our setting we divide organizations
into two roles: issuer and verifier, the latter is sometimes called service provider). The main
goal of a user is to stay anonymous, i. e. nobody should learn about the user’s secret value
called the user secret when interacting with the user. The main tool to achieve this is the zero
knowledge argument of knowledge presented in Section 3.7. A user interacts with issuers to obtain
credentials attesting certain attributes. Basically, a credential is a digital signature (Section 3.4)
on the user secret and the attributes. Since the user is interested in staying anonymous, and the
issuer needs to issue a digital signature on the user secret, we implement the credential issuance
with the aid of the scheme for signing partially committed value presented in Section 4.1.1, where
the private message is the user secret. After having obtained credentials, the user uses these to
gain access to a service. The access policy of a service provider is formalized by a predicate.
A user then needs to verify that the attributes she was issued in form of her credentials match
the given predicate. To realize the showing of a credential, the main tool is the protocol for
proving knowledge of a signature presented in Section 4.1.2. Further, we want to reduce the
information transferred by the proof of the predicate satisfiability to a minimum. Here, the
technique of proofs of partial knowledge presented in Section 3.11 is a crucial tool. Our system
supports predicates over the relation introduced in Section 4.1.3. This means a service provider
can demand attributes to be (un)equal to some possibly public values, or even to be an element
of a set or a range. We emphasize at this point that proofs of partial knowledge allow predicates
of arbitrary combinations of relations as well as an arbitrary combination of conjunctions and
disjunctions. Not that we implicitly also support negation, by using the inequality relation
in place of the equality relation and using considering of membership in the complement of a
set/range.

4.2.1 Definition

We now define algorithms and interactive protocols, their inputs and outputs, which reflect these
considerations and build a basic credential system. This definition is similar to the framework
proposed by Camenisch and Lysyanskaya [CL01], but adds predicates and splits up the FormNym
protocol.

Definition 4.19. A basic credential system consists of the following (ppt) algorithms and
interactive protocols:

• Setup(1n): On input security parameter 1n, it outputs public parameters pp with |pp| ≥ n,
an attribute universe UA and a predicate universe UΦ ⊆ {φ | φ : UkA → {0, 1}, k ∈ N}.
Additionally, it (implicitly) outputs application-dependent auxiliary parameters ppaux.

• U.Init(pp): On input public parameters pp, it outputs a user secret key usk.

68

4.2 Basic Anonymous Credential System

• I.Init(pp, 1`): On input public parameters pp and 1` with ` ∈ N, it outputs an issuer public
key ipk and secret key isk. The number ` denotes the number of attributes supported by
the issuer.

• CreateNym(pp, usk): On input public parameters pp and user secret usk, it outputs a
pseudonym nym and corresponding pseudonym secret psk.

• (ProveNym(pp, nym, usk, psk),VrfyNym(pp, nym)) is an interactive protocol on common in-
puts public parameters pp and pseudonym nym, where the user has user secret usk and
pseudonym secret psk as private input. After execution the verifier outputs a bit b ∈ {0, 1}
and we interpret 1 as accepting, 0 as denying.

• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym, (ai)`i=1, isk)) is an interactive pro-
tocol on common inputs public parameters pp, pseudonym nym and attributes (a1, . . . , a`) ∈
U `A. The user has user secret usk, pseudonym secret psk and issuer public key ipk as addi-
tional input, whereas the issuer has secret key isk. After the interaction, the user outputs
(locally) either the credential cred corresponding to ipk over her user secret usk and the
attributes (a1, . . . , a`) or a failure symbol represented by ⊥.

• (ProveCred(pp, ipk, nym, φ, usk, psk, cred),VrfyCred(pp, ipk, nym, φ)) is an interactive proto-
col on common inputs public parameters pp, issuer public key ipk, pseudonym nym, and a
predicate φ ∈ UΦ, where the user has user secret usk, pseudonym secret psk and credential
cred as private input. After execution the verifier outputs a bit b ∈ {0, 1} and we inter-
pret 1 such that the credential cred satisfies the predicate φ and the verifier accepts, 0 as
denying.

Usage of the System We now give a concrete example of how these algorithms are supposed
to be used. At the very beginning, some (trusted) system manager runs Setup, in dependency
of a security parameter n, to generate the public parameters of the system. Note that all
algorithms have |pp| ≥ n as input, and thus are ppt algorithms in n. A user runs U.Init to
obtain a user secret usk. An issuer runs I.Init with additional input ` = 3, to receive secret key
isk for issuing three attributes, and a corresponding public key ipk. The number of attributes is
given in unary notation, to allow the algorithm to be ppt in ` and n. The public key ipk needs
to be made available to all participants, e. g. by a public-key-infrastructure (cf. Chapter 5).
Then, the user runs CreateNym to get a new pseudonym nym unknown to any other participant,
and the corresponding secret psk. Before requesting a credential, user and issuer run some
application-dependent protocol to agree on the attributes to be issued. For example, the user
knows (a1 = 25, a2 = Germany, a3 = 2894), where the first represents the user’s age and the
second the user’s living place. Given all these inputs, they run the (RcvCred,IssCred) protocol,
resulting in a credential cred corresponding to ipk over usk and the attributes. The issuer possibly
stores an association of nym with this particular issuance protocol. However, the user does not
want any connection to this protocol run and creates another pseudonym nym′. Using nym′ she
executes (ProveCred,VrfyCred) with some verifier, who demands to match the predicate

φ(a1, a2) = 1 :⇐⇒ (a1 ∈ [18, 150] ∧ a2 = Germany) ∨ (a1 ∈ [21, 150] ∧ a2 = USA).

After accepting, the verifier could associate nym′ with fulfilling the particular φ. This allows
them to run (ProveNym,VrfyNym) with nym′, instead of the larger, and therefore less efficient,
protocol (ProveCred,VrfyCred).

In the next paragraph, we formally describe when a credential system is functional, i.e. when it
is correct. Before we do this, we state the idea of what is meant by a correct credential system.
Note that this correctness does not include any security requirements, which are defined in

69

4 Anonymous Credential and Reputation System

Section 4.2.2. Intuitively, we want that in a system, that was set up using Setup, users can create
pseudonyms and receive credentials as well as prove the possession of some attributes via these
credentials. For this, it is important that the users and issuers generate their keys using U.Init,
respectively I.Init. Using their secret keys, users can create a pseudonym nym via CreateNym
which can be used in the (ProveNym, VrfyNym) protocol to prove that they actually know the
secret key belonging to this pseudonym. We call a pseudonym that is used in this protocol
with the corresponding parameters valid if the protocol outputs 1 with a significantly high
probability. Using these valid pseudonyms, one can receive a credential cred via the (RcvCred,
IssCred) protocol. This cred can then successfully be used in the (ProveCred, VrfyCred) protocol
to prove the possession of the attributes, which the credential was issued over. Here, we call
a credential cred valid regarding the parameters in the (ProveCred, VrfyCred) protocol, if using
cred in this protocol results in an output of 1 with significantly high probability.

Correctness We now want to formally define when an anonymous credential system works
correctly.

We say that an anonymous credential system is correct if

• Honestly generated pseudonyms are valid: For all n ∈ N, (pp, ·, ·) ∈ [Setup(1n)],
usk ∈ [U.Init(pp)], (nym, psk) ∈ [CreateNym(pp, usk)] we have that

Pr[(ProveNym(pp, nym, usk, psk)↔ VrfyNym(pp, nym))→ 1] = 1− µ(|pp|)

for some negligible function µ. We call such a nym vaild.

• Honestly issued credentials are valid:
For all n, ` ∈ N,
(pp,UA,UΦ) ∈ [Setup(1n)],
usk ∈ [U.Init(pp)],
(ipk, isk) ∈ [I.Init(pp, 1`)],
(nym, psk) ∈ [CreateNym(pp, usk)],
(nym′, psk′) ∈ [CreateNym(pp, usk)],
(a1, . . . , a`) ∈ U `A,
all φ ∈ UΦ with φ(a1, . . . , a`) = 1,
for all credentials cred output by RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk)↔
IssCred(pp, nym, (ai)`i=1, isk)

we have that

Pr[(ProveCred(pp, ipk, nym′, φ, usk, psk′, cred)↔ VrfyCred(pp, ipk, nym′, φ))→ 1] = 1−µ(|pp|)

for some negligible function µ. We call such a cred valid.

Note that in Honestly issued credentials are valid the pseudonyms are valid since they are
honestly generated.

4.2.2 Security Notions
The defined credential system still lacks clear security notions. As briefly mentioned before, we
want to achieve anonymity and soundness of the system. To prevent linking of user actions,
anonymity essentially pours down to hide the user identity, respectively the user secret, and the
used credential in any protocol execution from (cheating) issuers and verifiers. Next, soundness
basically assures, that only honestly issued credentials, over attributes matching a given predi-
cate, may be used to convince verifiers. Additionally, only the user, who created a pseudonym
or received a credential, should be able to use either.

70

4.2 Basic Anonymous Credential System

4.2.2.1 Anonymity

This section states what we require of a credential system to be anonymous, where anonymity
means that actions of users cannot be linked. To achieve this property, the algorithms and
interactive protocols defined in 4.19 have to hide the user secret. We will first give an intuitive
description what that means for the individual algorithms/protocols and conclude with a formal
definition of anonymity.

1. (CreateNym hides the user secret) Essentially, users want to use pseudonyms to stay
anonymous. Therefore, it is important that a created pseudonym does not tell any-
thing about the user secret. This means that an adversary cannot distinguish whether
a pseudonym nym was created using a secret key usk or another key usk′.

2. (ProveNym hides the user secret) When a user proves that she knows the key corre-
sponding to a pseudonym, she wants to be sure that taking part in this protocol does not
tell the other participant anything about her key. This means that an adversary cannot
tell which user secret was incorporated in a pseudonym, even if this adversary participates
in the protocol.

3. (Anonymity when executing RcvCred) A user that likes to receive a credential wants
to do this without the risk of being linked to other actions, which she already performed.
Therefore, it is important that performing the RcvCred part of the protocol executed when
issuing a credential does not tell anything about the user secret. Additionally, this has to
hold if the adversary can take the role of the issuer in this protocol execution.

4. (Anonymity when executing ProveCred) After a user obtained a (valid) credential
over certain attributes via RcvCred, she does not want her actions to be linked, when she
proves possession of it satisfying some predicate. This means, executing ProveCred must
not reveal anything about the user secret and anything beyond possession of some valid
credential for the demanded predicate. This even holds, if the adversary interacted with
RcvCred and then ProveCred.

We will now give a formal definition of the properties which we just described informally. These
formal definitions are inspired by the definitions given by Blömer and Bobolz [BB17].

Definition 4.20. We call a credential system Π = (Setup,U.Init, I.Init,CreateNym, (ProveNym,
VrfyNym), (RcvCred, IssCred), (ProveCred,VrfyCred)) (Definition 4.19) anonymous if the following
properties are fulfilled:

1. (CreateNym hides the user secret) For all n ∈ N, all (pp,UA,UΦ) ∈ [Setup(1n)], all
usk, usk′ ∈ [U.Init(pp)] and all (unrestricted) adversaries A the following distributions are
identical:
• outputA[nym← CreateNym(pp, usk) : A(pp, nym)]
• outputA[nym← CreateNym(pp, usk′) : A(pp, nym)]

2. (ProveNym hides the user secret) For all n ∈ N, (pp,UA,UΦ) ∈ [Setup(1n)], all usk, usk′ ∈
[U.Init(pp)], all ((nym, psk), (nym, psk′)) ∈ [CreateNym(pp, usk)]× [CreateNym(pp, usk′)] and
all (unrestricted) adversaries A the following distributions are identical:
• outputA[A(pp, nym)↔ ProveNym(pp, nym, usk, psk)]
• outputA[A(pp, nym)↔ ProveNym(pp, nym, usk′, psk′)]

3. (Anonymity when executing RcvCred) For all n, ` ∈ N, (pp,UA,UΦ) ∈ [Setup(1n)], all
usk, usk′ ∈ [U.Init(pp)], all ((nym, psk), (nym, psk′)) ∈ [CreateNym(pp, usk)]×[CreateNym(pp,
usk′)], all ipk, all (ai)`i=1 ∈ U `A and all (unrestricted) adversaries A the following distribu-
tions are identical:

71

4 Anonymous Credential and Reputation System

• outputA[A(pp, ipk, nym, (ai)`i=1)↔ RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk)]
• outputA[A(pp, ipk, nym, (ai)`i=1)↔ RcvCred(pp, ipk, nym, (ai)`i=1, usk′, psk′)]

4. (Anonymity when executing ProveCred) For all n, ` ∈ N, (pp,UA,UΦ) ∈ [Setup(1n)], all
usk, usk′ ∈ [U.Init(pp)], all ((nym, psk), (nym, psk′)) ∈ [CreateNym(pp, usk)]×[CreateNym(pp,
usk′)], all ipk, all φ ∈ UΦ, all (ai)`i=1, (a′i)`i=1 ∈ U `A with φ((ai)`i=1) = φ((a′i)`i=1), all (un-
restricted) adversaries A’, all cred 6=⊥ output by RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk)↔
A′((ai)`i=1), all cred′ 6=⊥ output by RcvCred(pp, ipk, nym, (a′i)`i=1, usk, psk) ↔ A′((a′i)`i=1)
and all (unrestricted) adversaries A the following distributions are identical:
• outputA[A(pp, ipk, nym, φ)↔ ProveCred(pp, ipk, nym, φ, usk, psk, cred)]
• outputA[A(pp, ipk, nym, φ)↔ ProveCred(pp, ipk, nym, φ, usk′, psk′, cred′)]

4.2.2.2 Soundness

In an anonymous credential system no user or group of users should be able to use or create a
credential for verification that was not issued to one of them. A user also should not be able to
successfully identify herself using a pseudonym which was created by another user.
Before we start with the formal definition of soundness, we will give the intuition of what a

possible adversary A is able to do in an anonymous credential system and when we consider this
system sound. We assume that the adversary wants to achieve its goals in a system that was
correctly set up using Setup. Respectively, all users and issuers used U.Init and I.Init to create
their keys. Afterwards, the adversary can make users and issuers execute the algorithms and
interactive protocols of the system. When A lets a user create a pseudonym, it receives the cre-
ated nym. For the (interactive) protocols, the adversary gets to know if these protocol runs were
successful, i.e. output 1. However, A does not get the credential created by the corresponding
issuing protocol. Moreover, the adversary can corrupt users and issuers from which it learns
all, previously secret, information. In the protocol runs, the adversary takes the role of the
corrupted user/issuer in the execution. By giving A the ability to corrupt, we ensure that our
system is secure for honest users and issuers even if some dishonest users and issuers collaborate.
We denote two goals of possible adversaries: Non-Impersonation and Credential-Unforgeability.
Non-Impersonation means that no one can successfully use a pseudonym nym for identification
without knowing the corresponding secret keys usk and psk. Credential-Unforgeability means
that no adversary is able to forge a valid credential that was not issued to her. We say that a
credential system is sound if no adversary, given the described abilities, can achieve any of the
mentioned goals. The experiment and definitions used in this chapter are roughly based on the
definitions proposed by Pashalidis and Mitchell [PM04]

Definition 4.21 (Soundness experiment). Define the following Experiment ExpSoundnessΠ,A (n)
for an ACS Π between a challenger and a ppt adversary A. Note here that we assume secure
communication for honest entities in the experiment (cf. Chapter 5). The adversary only sees
outputs which are explicitly mentioned in the definition below.

• The challenger runs (pp,UA,UΦ)← Setup(1n).

• The adversary A chooses 1nU , 1nI , 1`1 , . . . , 1`nI with nU , nI , `1, . . . , `nI ∈ N.

• The challenger creates sets U and I for users and issuers, with |U | = nU and |I| = nI ,
and initially empty subsets Û and Î for corrupted users and issuers respectively. The
challenger also creates an initially empty pseudonym-user-pair set Snym and a credential-
ID-credential-pair set Scred. The user and issuer sets contain unique IDs for each entity,
the mapping from the IDs to the actual entities is done by the challenger. The IDs are
chosen independently from any secret keys.

72

4.2 Basic Anonymous Credential System

• For each user u ∈ U the challenger makes u run U.Init(pp) to obtain a user secret key usk.

• For each issuer i ∈ I the challenger makes i run I.Init(pp, 1`j) to obtain an issuer public
key ipk and secret key isk. Using 1`j for the jth issuer. The ipk is made publicly available.

• After this initial setup the adversary gets as input the sets U , I and the public parameters
of the ACS Π. A may now issue the following oracle type queries to the challenger.
– corruptUser(u): A may arbitrarily select a user u ∈ U to gain control over her. The

challenger hands all private information of u to A. This includes the user’s usk, all of
her pseudonym/key pairs (nym, psk), her credentials and all her past protocol views.
From that point on, A has full control over u. Note here that, since A has full control
over u, it can arbitrarily choose a new usk for u and use it in following protocols. The
challenger adds u to Û .

– corruptIssuer(i, ipk′): A may arbitrarily select an issuer i ∈ I to gain control over
her. The challenger hands all private information of i to A. This includes the issuer’s
secret key isk, all pseudonyms users have used in past protocols with her and all her
past protocol views. From that point on A has full control over i. If ipk′ is not equal
to the ipk of i, ipk′ becomes i’s new public key. The challenger adds i to Î.

– runCreateNym(u): Amay select a user, which then runs CreateNym(pp, usk). A learns
the pseudonym nym but not the corresponding psk. The challenger adds (nym, u) to
Snym.

– runProveVrfyNym(u, v, nym): Where u ∈ U and v ∈ U ∪ I. The challenger makes
u and v execute ProveNym(pp, nym, usk, psk) ↔ VrfyNym(pp, nym), where usk is u’s
secret key and psk is the pseudonym secret of nym. If one or both of those entities are
corrupted, A takes the corresponding role in the protocol execution. The challenger
returns 1 to A if v outputs 1, 0 otherwise.

– runRcvIssCred(u, i, nym, (ai)`i=1): Where u ∈ U , i ∈ I, and where ` is the `j that A
has chosen for i in the setup. The challenger makes u and i execute RcvCred(pp, ipk,
nym, (ai)`i=1, usk, psk)↔ IssCred(pp, nym, (ai)`i=1, isk), where usk is u’s secret key, psk
is the pseudonym secret of nym and ipk and isk are i’s public and secret key. If one or
both of those entities are corrupted, A takes the corresponding role in the protocol
execution. If the protocol is successful, the challenger returns 1 and a unique credID
to A and adds (credID, cred) to Scred, else 0.

– runProveVrfyCred(u, v, nym, credID, φ): Where u ∈ U and v ∈ U ∪ I. If u is hon-
est and credID is not contained in a pair in Scred the challenger returns 0. Other-
wise, the challenger makes u and v execute ProveCred(pp, ipk, nym, φ, usk, psk, cred)↔
VrfyCred(pp, ipk, nym, φ), where cred is the credential in the (credID, cred) pair in
Scred, ipk is the public key of the issuer who issued cred, usk is u’s user secret and
psk the pseudonym secret corresponding to nym. If one or both of those entities are
corrupted, A takes the corresponding role in the protocol execution. The challenger
returns 1 to A if v outputs 1, 0 otherwise.

Definition 4.22 (Non-Impersonation). In GameNonImpΠ,A (n) an adversary A first participates in
ExpSoundnessΠ,A (n). After that it outputs nym, chooses a corrupted user u ∈ Û and an honest verifier
v ∈ (I ∪ U) \ (Î ∪ Û). Then, the challenger makes u and v execute ProveNym(pp, nym, usk, psk)
↔ VrfyNym(pp, nym), where pp are the public parameters of the prior experiment. Since u ∈ Û ,
A fully controls the user during protocol execution. A wins if and only if v accepts and the
following requirement is true:

• ∃ (nym, u′) ∈ Snym with u′ /∈ Û . Which means that nym does belong to a non-corrupted
user.

73

4 Anonymous Credential and Reputation System

If for all probabilistic polynomial-time adversaries A there exists a negligible function µ such
that Pr[GameNonImpΠ,A (1) = 1] ≤ µ(n), we say that Π offers non-impersonation.

Definition 4.23 (Credential Unforgeability). In GameCredForgeΠ,A (n) an adversary A first partic-
ipates in ExpSoundnessΠ,A (n). After that it outputs (ipk, nym, φ), chooses a user u ∈ Û and an honest
verifier v ∈ (I∪U)\(Î∪Û). Then, the challenger makes u and v execute ProveCred(pp, ipk, nym, φ,
usk, psk, cred) ↔ VrfyCred(pp, ipk, nym, φ), where pp are the public parameters of the prior ex-
periment. Since u ∈ Û , A fully controls the user during protocol execution. A wins if and only
if v accepts and the following requirements are true:

• ipk is the public key of a non-corrupted issuer.

• A has never queried runRcvIssCred(u′, i, nym′, (ai)`i=1), where φ((ai)`i=1) = 1, i is the issuer
corresponding to ipk and u′ ∈ Û . The latter includes instances where corruptUser(u′) got
queried after the credential got granted.

If for all probabilistic polynomial-time adversaries A there exists a negligible function µ such
that Pr[GameCredForgeΠ,A (n) = 1] ≤ µ(n), we say that Π offers credential unforgeability.

Note here that we, at this point, do not look at the case where two fully colluding users share
a credential. If the first user gives a credential and her user secret to another user, in regards
to the credential system the second user is now the first one.

Definition 4.24 (Soundness). We call Π sound if it offers both non-impersonation and cre-
dential unforgeability.

4.2.3 Construction of an ACS
Now we can construct a basic credential system according to Definition 4.19. In short, pseudo-
nyms are Pedersen commitments on a generated user secret, and credentials are (partially)
blindly signed Pointcheval-Sanders signatures on the user secret and certain attributes. The
protocols from Section 4.1 help to achieve soundness and anonymity of the system. Note that
each following PK{(. . .) : . . .}-representation can be instantiated as Σ-protocol, and will be trans-
formed into a concurrent zero-knowledge argument of knowledge by Damgårds technique.

Construction 4.25. Let G be a type 3 bilinear group generator (Definition 3.2), let Πcom =
(Πcom.Setup,Com,Open) be the Pedersen commitment scheme (Construction 3.23) and let Πsign =
(Πsign.Setup,Gen,Sign,Vrfy) be the Pointcheval-Sanders signature scheme (Construction 3.17).

• Setup(1n): On input security parameter 1n, Setup generates a type 3 bilinear group
(p,G1,G2,GT , e)← G(1n) and pseudonym public parameters ppnym := (gnym, hnym, p,G1)
with gnym ← G1 \ {1} and hnym ← G1. Additionally, it creates ppaux by generating public
parameters of Nguyen accumulator (Section 3.12.3) based on the bilinear group, to enable
membership proofs in predicates (Section 4.1.3.3). It returns (p,G1,G2,GT , e, ppnym) and
implicitly ppaux.

• U.Init(pp): On input public parameters pp = (p,G1,G2,GT , e, ppnym), U.Init returns user
secret key usk with usk ← Zp.

• I.Init(pp, 1`): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and number ` ∈ N,
I.Init generates and returns issuer key pair (ipk, isk) ← Πsign.Gen`+1(p,G1,G2,GT , e) with
ipk = (g, Y0, Y1, . . . , Y`, g̃, X̃, Ỹ0, Ỹ1, . . . Ỹ`).

• CreateNym(pp, usk): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and user
secret usk, CreateNym generates and returns (nym, psk) ← Com1(ppnym, usk) with psk =
(usk, d).

74

4.2 Basic Anonymous Credential System

• (ProveNym(pp, nym, psk),VrfyNym(pp, nym)) is an interactive protocol with public param-
eters pp = (p,G1,G2,GT , e, ppnym) and ppnym = (gnym, hnym, p,G1). The prover parses the
pseudonym secret psk as (usk, d) and performs an interactive zero-knowledge argument of
knowledge of form PK

{
(usk, d) : nym = gdnymh

usk
nym

}
with the verifier.

• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym, (ai)`i=1, isk)) is an interactive pro-
tocol with public parameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1)
and issuer public key ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`). The receiver parses the pseudo-
nym secret psk as (usk, d) and sets ppiss = (g, Y0, p,G1) := BlindInit(pp, ipk, {0}) (ignoring
ppnym in pp) and computes (C, (usk, r))← Com1(ppiss, usk). Then, she sends C to the
issuer and runs a Σ-protocol of form

PK
{

(usk, d, r) : nym = gdnymh
usk
nym ∧ C = grY usk

0

}
with the issuer. As in (BlindRcv,BlindIssue), the issuer chooses u← Z∗p, computes (σ′1, σ′2) :=
(gu, (gx · C ·

∏`
i=1 Y

ai
i)u) and sends (σ′1, σ′2) to the receiver. The receiver computes σ =

(σ′1, σ′2 · (σ′1)−r), and checks the signature’s validity via Vrfy(pp, ipk, (usk, a1, . . . , a`), σ). If
the check fails, she (locally) outputs ⊥ and else a credential cred = (σ, (a1, . . . , a`), ipk).

• (ProveCred(pp, ipk, nym, φ, usk, psk, cred),VrfyCred(pp, ipk, nym, φ)) is an interactive proto-
col with public parameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1) and
issuer public key ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`).
The prover parses her private input to psk = (usk, d), cred = ((σ1, σ2), (a1, . . . , a`), ipk). If
Vrfy(pp, ipk, (usk, a1, . . . , a`), σ) = 0 or φ(a1, . . . , a`) = 0 holds, she outputs ⊥ and stops.
Else she chooses (u, r)← Z∗p×Zp, sets σ′ := (σ′1, σ′2) := (σu1 , (σ2 ·σr1)u) and sends σ′ to the
verifier. For i = 1, . . . , ` she generates (Ci, (ai, di))← Com(ppnym, ai) and sends Ci to the
verifier. Then, she runs a zero-knowledge argument of knowledge of form

PK

(usk, d, (ai, di)`i=1, r) :

e(σ′1, g̃)re(σ′1, Ỹ0)usk ∏̀
i=1

e(σ′1, Ỹi)ai = e(σ′2, g̃)
e(σ′1, X̃)

∧ nym = gdnymh
usk
nym

∧̀
i=1

Ci = gdinymh
ai
nym ∧ φ(a1, . . . , a`) = 1

with the verifier, where the proof of φ(a1, . . . , a`) = 1 is instantiated via the technique for
proofs of partial knowledge (Construction 3.59) and the protocols from Section 4.1.3. The
verifier accepts, if and only if σ′1 6= 1 and it accepts within the proof.

Before we give further information about the usage of the concrete construction of the ACS,
we show that it is a correct credential system according to Definition 4.19.

Lemma 4.26. Construction 4.25 is a correct anonymous credential system (Definition 4.19).

Proof. An anonymous credential system is correct if 1) honestly generated pseudonym are valid
and 2) honestly issued credentials are valid. We show these two properties separately.
Let us start by showing that honestly generated pseudonyms are valid. More formally, we fix

arbitrary n ∈ N, (pp, ·, ·) ∈ [Setup(1n)], usk ∈ [U.Init(pp)] and (nym, psk) ∈ [CreateNym(pp, usk)].
Assume the user and the verifier act honestly in (ProveCred,VrfyCred). We show that in this
case it holds

Pr[(ProveNym(pp, nym, usk, psk)↔ VrfyNym(pp, nym))→ 1]] = 1− µ(|pp|)

for some negligible function µ(·). Since (nym, psk) ∈ [CreateNym(pp, usk)], it holds nym =
grnymh

usk
nym by definition of the Pedersen commitment scheme. This together with the assumption

75

4 Anonymous Credential and Reputation System

that the user and verifier act honestly, we get that the zero-knowledge argument of knowledge
carried out in (ProveCred,VrfyCred) will be accepted by the verifier with probability 1 implying

Pr[(ProveNym(pp, nym, usk, psk)↔ VrfyNym(pp, nym))→ 1]] = 1.

It remains to show that honestly issued credentials are valid. Fix arbitrary n, ` ∈ N, (pp,UA,
UΦ) ∈ [Setup(1n)], usk ∈ [U.Init(pp)], (ipk, isk) ∈ [I.Init(pp, 1`)], (nym, psk) ∈ [CreateNym(pp, usk)],
(nym′, psk′) ∈ [CreateNym(pp, usk)], (a1, . . . , a`) ∈ U `A, φ ∈ UΦ with φ(a1, . . . , a`) = 1 and a cre-
dential cred = (σ, (a1, . . . , a`), ipk) output by RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk)↔ IssCred(pp,
nym, (ai)`i=1, isk). We need to show that

Pr[(ProveCred(pp, ipk, nym′, φ, usk, psk′, cred)↔ VrfyCred(pp, ipk, nym′, φ))→ 1] = 1− µ(|pp|)

for some negligible function µ(·). Since cred was output by running (RcvCred, IssCred) and
Construction 4.4 is a correct scheme for signing partially committed values, we have that σ
contained in cred is a valid PS-signature of (usk, a1, . . . , a`) under ipk. Moreover, by assumption
nym and nym′ are pseudonyms for the same usk, and φ(a1, . . . , a`) = 1 holds. The proof used in
the protocol

ProveCred(pp, ipk, nym′, φ, usk, psk′, cred)↔ VrfyCred(pp, ipk, nym′, φ)

is an AND-composition of three Σ-protocols, which yields a Σ-protocol as well. A Σ-protocol
always fulfills the property of completeness. As mentioned above cred contains a valid signature,
nym′ is a pseudonym for usk and φ is satisfied by the given attributes. By the completeness of
the used Σ-protocol, it is implied that

Pr[(ProveCred(pp, ipk, nym′, φ, usk, psk′, cred)↔ VrfyCred(pp, ipk, nym′, φ))→ 1] = 1.

Thus, we have the following usage of the system. The Setup algorithm should be run by a
trusted party and generates public parameters for both, Pointcheval-Sanders signatures used for
credentials, and Pedersen commitments used for pseudonyms. Users run U.Init to obtain a user
secret, chosen uniformly at random from Zp. They can create pseudonyms with CreateNym,
which simply outputs a Pedersen commitment on usk and the corresponding open value called
pseudonym secret psk. To prove some pseudonym belongs to a user, (ProveNym,VrfyNym) is an
interactive zero-knowledge proof of knowledge of opening the commitment. Issuers, which want
to issue credentials on ` attributes, receive a Pointcheval-Sanders key pair for `+1 messages from
I.Init. They need to be able to sign `+ 1 messages, since the user secret is part of the credential,
alongside the ` attributes. Credentials are obtained in (RcvCred,IssCred) via the protocol for
signing partially committed values, such that in any case the user secret is perfectly hidden
in the sent commitment C (by running BlindInit with {0}). The protocol (ProveCred,VrfyCred)
is a zero-knowledge proof of knowledge of a signature, such that the user secret matches the
pseudonym and the signed attributes fulfill the given predicate φ.

4.2.4 Security Proofs

In the following, let G be a type 3 bilinear group generator (Definition 3.2), let Πcom =
(Πcom.Setup,Com,Open) be the Pedersen commitment scheme (Construction 3.23) and let Πsign =
(Πsign.Setup,Gen,Sign,Vrfy) be the Pointcheval-Sanders signature scheme (Construction 3.17).
Let Π = (Setup,U.Init, I.Init,CreateNym, (ProveNym,VrfyNym), (RcvCred, IssCred), (ProveCred,
VrfyCred)) be the credential system from Construction 4.25 using Πcom and Πsign.

76

4.2 Basic Anonymous Credential System

4.2.4.1 Anonymity

In the following proofs, we use an implication of the zero-knowledge property; namely that
the transcripts generated by such proofs are distributed independently of the witness. In the
literature, this property is called witness indistinguishability and was introduced by Feige and
Shamir [FS90a]. For convenience, we state this implication in the next lemma and prove it
before going over to show the anonymity of the credential system.

Lemma 4.27. Let (P,V) be a zero-knowledge proof (Definition 3.39) for some language LR
of an NP-Relation R. Then, it holds for every verifier V∗ that for all (x,w) ∈ R and all
y ∈ {0, 1}p(|v|), for some polynomial p(·), the transcripts, T (P(v, w)↔ V∗(v, y)), are distributed
independently of w.

Proof. Fix an arbitrary interactive algorithm V∗ and arbitrary v, w,w′, y such that (v, w), (v, w′) ∈
R and y ∈ {0, 1}p(|v|), for some p(·). Since (P,V) is a zero-knowledge proof, there exists a simula-
tor S for verifier V∗ that on input (v, y) outputs accepting transcripts with the same distribution
as T (P(v, w)↔ V∗(v, y)) regardless of the behavior of V∗. Moreover, S outputs, on input (v, y),
accepting transcripts with the same distribution as T (P(v, w′)↔ V∗(v, y)). This implies that the
random variables T (P(v, w)↔ V∗(v, y)) and T (P(v, w′)↔ V∗(v, y)) are distributed identically.
Hence, the transcripts T (P(v, w)↔ V∗(v, y)) are distributed independently of the witness.

Let us proceed by showing that our basic credential system given in Construction 4.25 is
anonymous according to Definition 4.20. To this end, we show that each of the properties stated
in Definition 4.20 holds for Construction 4.25 in separate lemmas. Subsequently, we conclude
the anonymity in Theorem 4.32 based on these lemmas.

Lemma 4.28. Π.CreateNym hides the user secret (Definition 4.20.1).

Proof. Let n be a security parameter. Let pp = (p,G1,G2,GT , e, ppnym) ∈ [Setup(1n)]. Let usk ∈
[U.Init(pp)]. Since CreateNym(pp, usk) is essentially just a Pedersen commitment with public
parameters ppnym on message usk, we only need to look at the properties of the commitment
scheme. We have that ppnym is generated the same way as in Πcom.Setup, and usk and usk′ are
in the message space of Πcom, thus, by the perfect hiding property of the Pedersen commitment
we have that the distributions of commitments on two different messages are the same. In
particular, we have that the distributions of

outputA[nym← CreateNym(pp, usk) : A(pp, nym)] and
outputA[nym← CreateNym(pp, usk′) : A(pp, nym)]

are exactly the same for all unrestricted adversaries A, all n ∈ N and all (pp,UA,UΦ) ∈
[Setup(1n)].

Lemma 4.29. Π.ProveNym hides the user secret (Definition 4.20.2).

Proof. The only messages that are exchanged between an adversary and ProveNym are that of
an interactive zero-knowledge argument of knowledge, thus it only remains to have look at this
argument. By Lemma 4.27 we get that these exchanged messages are independent of the witness,
meaning user secret usk and pseudonym secret psk. Hence, we have that the distributions

outputA[A(pp, nym)↔ ProveNym(pp, nym, usk, psk)] and
outputA[A(pp, nym)↔ ProveNym(pp, nym, usk′, psk′)]

are the same for all unrestricted A, for all n ∈ N, (pp,UA,UΦ) ∈ [Setup(1n)], all usk, usk′ ∈
[U.Init(pp)] and all ((nym, psk), (nym, psk′)) ∈ [CreateNym(pp, usk)]× [CreateNym(pp, usk′)].

77

4 Anonymous Credential and Reputation System

Lemma 4.30. A user stays anonymous when executing Π.RcvCred (Definition 4.20.3).

Proof. RcvCred consists of two stages, where first a commitment C on usk is announced to the
interacting party, and second a zero-knowledge argument of knowledge over opening C and the
commonly known pseudonym nym to the same usk is performed. We show, that all messages
sent by RcvCred are independent of user secret usk and pseudonym secret psk = (r1, usk).

By Lemma 4.6, which states that the constructed scheme for signing partially committed
values is secure for the user, we know that C reveals no information on the private usk and
its open value r2 chosen in RcvCred. This holds, since on a valid ipk from Pointcheval-Sanders
signature scheme, BlindInit outputs an environment for hiding generalized Pedersen commitments
on |S| values. In the particular case, the set S is statically set to be {0}, ensuring that usk is
always hidden in C.
For the second part, Lemma 4.27 gives us that messages sent within the zero-knowledge

argument of knowledge PK
{

(usk, r1, r2) : nym = gr1nymh
usk
nym ∧ C = gr2Y usk

0

}
are independent of

the witnesses (usk, r1, r2). Hence all messages exchanged are independent of psk and usk, thus
the distributions

outputA[A(pp, ipk, nym, (ai)`i=1)↔ RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk)]
outputA[A(pp, ipk, nym, (ai)`i=1)↔ RcvCred(pp, ipk, nym, (ai)`i=1, usk′, psk′)]

are identical for all unrestricted adversaries A, all n, ` ∈ N, all (pp,UA,UΦ) ∈ [Setup(1n)], all
usk, usk′ ∈ [U.Init(pp)], all ((nym, psk), (nym, psk′)) ∈ [CreateNym(pp, usk)]×[CreateNym(pp, usk′)],
all ipk and all (ai)`i=1 ∈ U `A.

Lemma 4.31. A user stays anonymous when executing Π.ProveCred (Definition 4.20.4).

Proof. To show users executing ProveCred stay anonymous, we essentially prove that messages
sent by the algorithm, are independent of its private inputs cred, usk and psk. For that, we fix
an adversary.
As demanded in Definition 4.20.4, cred 6=⊥ is any output of RcvCred run on attributes

(a1, . . . , a`), user secret usk from U.Init and some ipk in interaction with the adversary. The
last check of RcvCred in Construction 4.25 ensures, that for the stated inputs cred 6=⊥ only
holds if cred is of form (σ, (ai)`i=1, ipk) with Vrfy(pp, ipk, (usk, a1, . . . , a`), σ) = 1. The latter is
independent of any interaction with A.
Further, if φ((ai)`i=1) = 0 holds, RcvCred stops without any output. In this case, nothing,

but the attributes not satisfying the predicate, is revealed. In the other case, the attributes
fulfill φ, and RcvCred has an opening value for the pseudonym and a valid Pointcheval-Sanders
signature on the attributes. The Pedersen commitments on the attribute values are perfectly
hiding and thus independent of the private inputs. Then (ProveCred,VrfyCred) is the Σ-protocol
from Construction 4.8 for proving knowledge of a signature, AND-composed with zero-knowledge
arguments for satisfying φ with the signed attributes and opening nym and the Pedersen commit-
ments. This composition is a Σ-protocol again and is instantiated as zero-knowledge argument
of knowledge in the ACS using the technique of proofs of partial knowledge. Lemma 4.27 yields,
that the messages exchanged are independent of the witnesses ((σ1, σ2), (a1, . . . , a`), (d, usk)).
The exchanged messages do still depend on whether φ is satisfied or not. However any two
attribute tuples from U `A, with the same outcome evaluated by φ, cannot be distinguished.
Concluding, the distributions

outputA[A(pp, ipk, nym, φ)↔ ProveCred(pp, ipk, nym, φ, usk, psk, cred)]
outputA[A(pp, ipk, nym, φ)↔ ProveCred(pp, ipk, nym, φ, usk′, psk′, cred′)]

are identical for all unrestricted A, all n, ` ∈ N, (pp,UA,UΦ) ∈ [Setup(1n)], all usk, usk′ ∈
[U.Init(pp)], all ((nym, psk), (nym, psk′)) ∈ [CreateNym(pp, usk)] × [CreateNym(pp, usk′)], all ipk,

78

4.2 Basic Anonymous Credential System

all φ ∈ UΦ, all (ai)`i=1, (a′i)`i=1 ∈ U `A with φ((ai)`i=1) = φ((a′i)`i=1), all (unrestricted) adversaries
A’, all cred 6=⊥ output by RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk)↔ A′((ai)`i=1), and all cred′ 6=⊥
output by RcvCred(pp, ipk, nym, (a′i)`i=1, usk, psk)↔ A′((a′i)`i=1).

Consequently, Lemmas 4.28 to 4.31 imply the following statement:

Theorem 4.32. The credential system given in Construction 4.25 is anonymous regarding
Definition 4.20.

4.2.4.2 Soundness

In the following section, we will prove the soundness of our Construction 4.25 according to Defi-
nition 4.24. We will do that by giving individual proofs for non-impersonation (Definition 4.22)
and credential unforgeability (Definition 4.23). Subsequently, we conclude the overall soundness
in Theorem 4.36.
For the soundness proofs, we often make use of an extractor of an argument of knowledge

when constructing an adversary. Since the extractor only has expected polynomial runtime in
the security parameter, an adversary using it would also have expected polynomial runtime. Due
to our security models requiring ppt adversaries, this does not suffice. Thus we introduce the
following lemma to transform an adversary with expected polynomial runtime into an adversary
with probabilistic polynomial time but marginally worse success probability.

Lemma 4.33. For a probabilistic algorithm A with expected polynomial runtime, there exists
a ppt algorithm A′ with Pr[x ← A′ : x = X] ≥ 1

2 Pr[x ← A : x = X] for all X 6=⊥, where ⊥ is
some error symbol.

Proof. Let RT be the random variable describing the runtime of A. Then, construct A′ to
simulate A on the same input up to a maximum number of 2 ·E[RT] steps. A′ outputs whatever
A outputs. If the runtime bound is reached A′ instead outputs an error symbol ⊥. Furthermore,
for every output X 6=⊥ of A, we have

Pr[x← A′ : x = X] = Pr[x← A : x = X ∧ RT < 2 · E[RT]]
=Pr[x← A : RT < 2 · E[RT] | x = X] · Pr[x← A : x = X]
=(1− Pr[x← A : RT ≥ 2 · E[RT] | x = X]) · Pr[x← A : x = X]

Markov
≥ 1

2 Pr[x← A : x = X]

Lemma 4.34. If the generalized Pedersen commitment scheme is computationally binding
(Lemma 3.27), then the credential system Π from Construction 4.25 offers non-impersonation
(Definition 4.22).

Proof. Let Acred be an adversary in the non-impersonation game against Π. Let E be an
extractor for the argument of knowledge in (ProveNym,VrfyNym) of Π. Construct an extractor
E′ that works the same as E, but, in parallel, chooses some usk′ and exhaustively searches for
some psk′ such that Open(ppC , nym, psk′) = usk′ holds. E′ outputs the witness of whichever
process finds one first. Construct an adversary AC against the computational binding property
of Πcom:

79

4 Anonymous Credential and Reputation System

Adversary AC(ppC)

1 :

Perform ExpSoundnessΠ,Acred
(n) by taking the role of the challenger and simulating Acred with the

following exceptions:
• After pp = (p,G1,G2,GT , e, ppnym) is generated, replace it with pp =

(p,G1,G2,GT , e, ppC).
• When Acred queries runCreateNym, also store the psk in Snym.

Receive (pp, nym, psk) and (u, v) ∈ Û × (I ∪ U) \ (Î ∪ Û) from Acred.

2 : Simulate (ProveNym(pp, nym, usk, psk)↔ VrfyNym(pp, nym))→ b between u and v. If u ∈ Ū ,
Acred still controls u.

3 : If b = 0 or any of the conditions in the real experiment do not hold, abort.

4 : Run E′(pp, nym) with black-box access to Acred in the argument of knowledge of
ProveNym(pp, nym, usk, psk)↔ VrfyNym(pp, nym) between u and v.

5 : The extractor outputs some (usk2, d2).

6 : Search for a (nym, u′, psk1) with u′ /∈ Û in Snym and let usk1 be the secret key corresponding
to u′.

7 : Output (nym, (usk1, psk1), (usk2, d2)).

Then, we have

Pr[BindingΠcom,AC (n) = 1] = Pr[GameCredForgeΠ,Acred (n) = 1 ∧ (usk1, psk1) 6= (usk2, d2)],

due to the following reasons:

• The view of Acred is perfectly simulated.

• If AC passes step 3, then there exists an honest user with the pseudonym output by Acred.
Thus, AC can find a (nym, u′, psk1) with u′ /∈ Û in Snym.

• Open(pp, nym, psk1) = usk1 6=⊥, since it was honestly generated.

• Open(pp, nym, psk2) = usk2 6=⊥, since it was output by the extractor.

Since Πcom is perfectly hiding, nym is independent from usk1. Furthermore, there exist
exactly p different combinations of (a, b) such that Open(nym, b) = a. Thus, we have that
Pr[(usk1, psk1) = (usk2, psk2)] = 1

p and that this event is independent from Acred’s action.
Therefore, we have

Pr[BindingΠcom,AC (n) = 1] = p− 1
p
· Pr[GameCredForgeΠ,Acred (n) = 1].

What is left to prove is that AC has expected polynomial runtime. Then we can use
Lemma 4.33 to receive a ppt adversary A′ which is marginally worse. Let RT be the random
variable that describes the runtime of AC . Let run(·) be a polynomial bounding the runtime
of AC except for the extracting step. Let ε(n, v) be the probability of u convincing v in step 2.
Assume that the randomness r for the proof is fixed. Thus, the announcement the adversary
outputs is fixed, and, after the challenge is chosen by the honest verifier, the response is also
fixed. Therefore, ε(n, v) corresponds to the number of challenges the adversary can answer di-
vided by the size of the challenge space, i.e. we have ε(n, v) = i · κ(n) for some i ∈ N0, where
κ(·) is the knowledge error of the argument of knowledge. If ε(n, v) > κ(n) and thus i ≥ 2, we
have the following:

E[RT|i ≥ 2] =run(n) + ε(n, v) · E[RTE |r] + (1− ε(n, v)) · 0

=r(n) + ε(n, v) · p(|v|)
ε(n, v)− κ(n)

80

4.2 Basic Anonymous Credential System

=r(n) + i · κ(n) · p(|v|)
(i− 1) · κ(n)

=r(n) + i · p(|v|)
i− 1 ≤ 2 · p(|v|)

If ε(n, v) = κ(n), then E never finds two pairs of the same randomness and same challenge for
which the verifier accepts. Instead, E′ outputs a witness due to the parallel process after a
running time of O(p). But, since we have this extractor runtime only with probability κ(n) = 1

p

and else an extractor runtime of 0, the expected runtime of the extractor is E[RTE] = 1
p ·O(p) =

O(1). If ε(n, v) = 0, then the extractor has an expected runtime of 0, since it will never be used.
Therefore, E[RT] is bounded by a polynomial in expectation.

Then, by Lemma 4.33, there exists an adversary A′C with Pr[x← A′C : X = x] ≥ 1
2 ·

Pr[x← AC : X = x], for an X 6=⊥ output by AC . Therefore, we have

Pr[BindingΠcom,A′C (n) = 1] ≥ p− 1
2p · Pr[GameCredForgeΠ,Acred (n) = 1].

Thus, if Pr[BindingΠcom,A′C (n) = 1] is negligible, Pr[GameNonImpΠ,Acred (n) = 1] is also negligible.

Lemma 4.35. If the multi-message Pointcheval-Sanders signature scheme is existentially un-
forgeable (Theorem 3.19), Π offers credential unforgeability (Definition 4.23).

To proof the credential unforgeability, we show that given an existing adversary Acred that
can forge a credential with high probability, we can construct an adversary Asign who can forge
a signature with high probability.

Proof. If the Pointcheval-Sanders signature scheme is existentially unforgeable, (BlindInit,
(BlindRcv,BlindIssue)) from Construction 4.4 is secure for the signer by Lemma 4.7. Thus,
there exists a simulator S ′ for BlindIssue. From that we want to construct a simulator S for
IssCred: S on input (pp, ipk, nym, (ai)`i=1) receives a commitment C from the receiver and then
partakes in the argument of knowledge as IssCred does. If the argument of knowledge suc-
ceeds, S extracts (usk, psk) from it by using the associated extractor with oracle access to Acred
in the argument of knowledge. In parallel, the extractor chooses some usk′ and searches ex-
haustively for some psk′ and r′ that form a witness for the proof. Whichever process finds
a witness first, returns it. After that, S parses pp to (p,G1,G2,GT , e, ppnym) and simulates
S ′((p,G1,G2,GT , e), ipk, C, {0}, (ai)`i=1, psk) to receive a blind signature σ. After that, S sends
σ to u. This simulates BlindIssue perfectly, since the argument of knowledge is done the same
way and the blinded signature is generated by the simulator for blind issue on correct input.
Let E be an extractor for the argument of knowledge in (ProveCred,VrfyCred) of Π. Construct

an extractor E′ that does the same as E, but does the following in parallel: It computes some
a1, .., a` such that φ(a1, .., a`) = 1. For each Ci it exhaustively searches for some di such that
Ci = gdinymh

ai
nym. Then, it uniformly chooses some usk and exhaustively searches for some d

such that nym = gdnymh
usk
nym. After that, it exhaustively searches for some r, such that the

last equation of the argument of knowledge is fulfilled. E′ returns the witness of the process
that finished first. Let Acred be an adversary in the credential-unforgeability game against Π.
Construct an adversary Asign against the multi-message Pointcheval-Sanders signature scheme
as follows:

81

4 Anonymous Credential and Reputation System

AOsign(ppps, pkps)

1 : Create an initially empty multi-set R.

2 :

Perform ExpSoundnessΠ,Acred
(n) by taking the role of the challenger and simulating Acred with the following

exceptions:
• After Acred chooses nI , choose j ← {1, ..., nI}.
• After pp = (·, ppnym) is generated, replace it with pp = (ppps, ppnym).

• After running I.Init for each issuer, replace the ipk of the j-th issuer by pkps.

Answer all oracles as specified in the experiment except for the following:
• corruptIssuer(i): if i = j, abort the experiment. Else do the same as in the real experiment.

• runRcvIssCred(u, i, nym, (ai)`i=1):
– if i = j and u ∈ Û , execute RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk) ↔
S(pp, ipk, nym, (ai)`i=1), where the parameters are of the corresponding u and i. If the
simulator queries for the signing of an m, answer only the first query with O(m). If u is
corrupted, Acred still has control over it. If the protocol is successful, return 1 to Acred,
else 0.

– if i = j and u /∈ Û , do not generate any protocol messages. Instead, add (u, nym, (ai)`i=1)
to R.

– else, answer the query as in the real experiment.

• corruptUser(u): if u /∈ Ū , do the following: for each (u, nym, (ai)`i=1) ∈ R execute
RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk) ↔ S(pp, ipk, nym, (ai)`i=1) as in runRcvIssCred. After
that, do the same things corruptUser(u) does in the normal experiment.

3 : Acred outputs (pp, ipk, nym, φ, usk, psk, cred), u ∈ Û and v ∈ I ∪ U \ (Î ∪ Û).

4 : Run (ProveCred(pp, ipk, nym, φ, usk, psk, cred) ↔ VrfyCred(pp, ipk, nym, φ)) → b between u and v,
while Acred controls u. If b = 0 or any of the conditions in the real experiment do not hold, abort.

5 :
Run E′(pp, ipk, nym, φ) with black-box access to Acred in the argument of knowledge of
ProveCred(pp, ipk, nym, φ, usk, psk, cred)↔ VrfyCred(pp, ipk, nym, φ) between u and v (the adversary
controls u).

6 : The extractor outputs some w = (usk′, psk′, cred′).
7 : Parse cred′ to (σ, (a1, ..., a`), ipk′).
8 : Let j′ be the issuer corresponding to ipk′ in cred′.
9 : If j′ = j, output ((a1, ..., a`), σ).

Then, we have

Pr[Sig-forgePS,Asign(n) = 1] = Pr[GameCredForgeΠ,Acred (n) = 1 ∧ j′ = j]

due to the following reasons:

• Asign only outputs a signature if Acred outputs parameters so that u proves knowledge of
the credential and j′ = j.

• The view of Acred is perfectly simulated, unless Acred asks for corruptIssuer(i) with i = j,
but then Acred would lose anyways.

• The extractor always outputs some valid credential, unless it was aborted due to a too
high runtime.

• The signing oracle is only used iff Acred queries runRcvIssCred or he corrupts a user that
received a credential from j. Then, if Asign loses due to having queried for a signature he
outputs, then Acred loses due to having queried for a cred that he later outputs.

82

4.3 Extended Anonymous Credential System

Since Acred is a ppt, nI is pI(n) for some polynomial pI(·). Furthermore, the choice of j is
independent from the rest. Thus, we have that

Pr[Sig-forgePS,Asign(n) = 1] = 1
pI(n) · Pr[GameCredForgeΠ,Acred (n) = 1].

What is left to prove is that Asign has expected polynomial runtime. Then, we can use
Lemma 4.33 to obtain a ppt adversary A′sign with marginally worse success probability. Since
Asign obviously has polynomial runtime when ignoring the extractors, we only look at the
runtimes of the latter. For both, it holds that their parallel process has a runtime of O(p), since
they exhaustively search for some witness, else they have polynomial runtime. But, similar to
the proof of Lemma 4.34, the extractors are used only with probability 1

p , thus their expected
runtime is polynomial. Thus, by Lemma 4.33 there exists an adversary A′sign with Pr[x ←
A′sign : X = x] ≥ 1

2 ·Pr[x← Asign : X = x] for some output X 6=⊥ of Asign. Thus, we have that

Pr[Sig-forgePS,A′sign(n) = 1] ≥ 1
2 · pI(n) · Pr[GameCredForgeΠ,Acred (n) = 1]

and furthermore that if Pr[GameCredForgeΠ,Acred (n) = 1] is non-negligible, then Pr[Sig-forgePS,A′sign(n) =
1] is also non-negligible.

From the two lemmas above we get the following theorem:

Theorem 4.36. The ACS from Construction 4.25 is sound in regards to Definition 4.24.

4.3 Extended Anonymous Credential System
We extend the basic ACS from Construction 4.25 by features like traceability of users by a
trusted system manager. Therefore we first provide an adapted definition for an extended ACS,
modeling these features. Next, we adjust the demanded security notions from Section 4.2.2
accordingly. We provide a new construction, which builds upon of the basic ACS. Finally we,
prove the extended ACS matches the updated security notions.

4.3.1 Definition
To achieve the extended feature traceability, we need to adapt the definition of the basic
ACS (Definition 4.19) accordingly. Users have to be able to join a system in which they re-
ceive registration information. This information can later be opened to the corresponding user
with help of an open secret key. We therefore generate a key pair for opening and a registry
using MGen, which are used when a user joins the system by executing the interactive protocol
(Join,MJoin). After a successful execution of this protocol, the registry gets updated to include
the newly joined user and the user receives the registration information reginfo which is included
when proving the possession of a credential over some attributes. Moreover, the algorithm Open
is introduced to actually open a transcript to a public key of a user. In total, this leads to the
following definition:

Definition 4.37. An extended credential system consists of the following (ppt) algorithms and
interactive protocols:

• Setup(1n): On input security parameter 1n, it outputs public parameters pp with |pp| ≥ n,
an attribute universe UA and a predicate universe UΦ ⊆ {φ | φ : UkA → {0, 1}, k ∈ N}.
Additionally, it (implicitly) outputs application-dependent auxiliary parameters ppaux.

• MGen(pp): On input public parameters pp, it outputs a tuple (osk, opk, reg) of open secret
key, open public key and a user registry.

83

4 Anonymous Credential and Reputation System

• U.Init(pp, opk): On input public parameters pp and open public key, it outputs a user
secret key usk and a user public key upk.

• I.Init(pp, 1`): On input public parameters pp and 1` with ` ∈ N, it outputs an issuer public
key ipk and secret key isk. The number ` denotes the number of attributes supported by
the issuer.

• CreateNym(pp, usk): On input public parameters pp and user secret usk, it outputs a
pseudonym nym and corresponding pseudonym secret psk.

• (Join(pp, opk, upk, usk),MJoin(pp, opk, upk, osk, reg)) is an interactive protocol on common
inputs public parameters pp, open public key opk, user public key upk. Secret inputs
are user secret key usk for the user and open secret key osk and user registry reg for the
trusted party. At the end of the interaction, MJoin either outputs an error symbol ⊥ or
the updated reg′. Join outputs a reginfo containing registration information.

• (ProveNym(pp, nym, usk, psk),VrfyNym(pp, nym)) is an interactive protocol on common in-
puts public parameters pp and pseudonym nym, where the user has user secret usk and
pseudonym secret psk as private input. After execution the verifier outputs a bit b ∈ {0, 1}
and we interpret 1 as accepting, 0 as denying.

• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym, (ai)`i=1, isk)) is an interactive pro-
tocol on common inputs public parameters pp, pseudonym nym and attributes (a1, . . . , a`) ∈
U `A. The user has user secret usk, pseudonym secret psk and issuer public key ipk as addi-
tional input, whereas the issuer has secret key isk. After the interaction, the user outputs
(locally) either the credential cred corresponding to ipk over her user secret usk and the
attributes (a1, . . . , a`) or a failure symbol represented by ⊥.

• (ProveCred(pp, opk, ipk, nym, φ, usk, psk, cred, reginfo),VrfyCred(pp, opk, ipk, nym, φ)) is an in-
teractive protocol on common inputs public parameters pp, open public key opk, issuer
public key ipk, pseudonym nym, and a predicate φ ∈ UΦ, where the user has user secret
usk, pseudonym secret psk, credential cred on attributes (a1, .., a`) ∈ U `A and registration
information reginfo as private input. After execution the verifier outputs a bit b ∈ {0, 1}
and we interpret 1 such that the credential cred satisfies the predicate φ and the verifier
accepts, 0 as denying.

• Open(opk, osk, reg, t): On input open public key opk, open secret key osk, registry reg and
a transcript t, it outputs a user public key upk or an error symbol ⊥.

It remains to state when an extended anonymous credential system is correct. The main
difference to the basic ACS is that we now have to be able to successfully open a transcript to
a user public key, which is mentioned in point 3 in the following.
We say that an extended anonymous credential system is correct if for

all n, `, c ∈ N,
(pp,UA,UΦ)← Setup(1n),
(osk, opk, reg)← MGen(pp),
all (a1, . . . , a`) ∈ U `A,
all φ ∈ UΦ with φ(a1, . . . , a`) = 1,
(ipk, isk)← I.Init(pp, 1`),
(uski, upki)← U.Init(pp) for 1 ≤ i ≤ c,
all j ∈ {1, . . . , c},

84

4.3 Extended Anonymous Credential System

(nym, psk), (nym′, psk′)← CreateNym(pp, uskj),
reginfoi ← (Join(pp, opk, upki, uski) ↔ MJoin(pp, opk, upki, osk, regi)) → regi+1 for
1 ≤ i ≤ c,
cred← (RcvCred(pp, ipk, nym, (ai)`i=1, uskj , psk)↔ IssCred(pp, nym, (ai)`i=1, isk)),
all transcripts t from (ProveCred(pp, opk, ipk, nym′, φ, uskj , psk′, cred, reginfoj)

↔ VrfyCred(pp, opk, ipk, nym′, φ))

1. Honestly generated pseudonyms are valid:

1− µ(|pp|) = Pr[(ProveNym(pp, nym, uskj , psk)↔ VrfyNym(pp, nym))→ 1]

holds for some negligible function µ, where the probability is taken over the coin tosses of
the algorithms and their inputs’ distribution. We call such a nym valid.

2. Honestly issued credentials are valid:

1− µ(|pp|) = Pr[(ProveCred(pp, opk, ipk, nym′, φ, uskj , psk′, cred, reginfoj)
↔ VrfyCred(pp, opk, ipk, nym′, φ))→ 1]

holds for some negligible function µ, where the probability is taken over the coin tosses of
the algorithms and their inputs’ distribution. We call such a cred valid.

3. ProveCred is traceable by the open manager:

1− µ(|pp|) = Pr[Open(opk, osk, regc+1, t) = upkj]

holds for some negligible function µ, where the probability is taken over the coin tosses of
the algorithms and their inputs’ distribution.

Note that we do not necessarily have to integrate the open mechanism into the (ProveCred,
VrfyCred) protocol. It is also possible that the registration information is included in the
(ProveNym,VrfyNym) protocol. This would mean that this protocol has to be executed when
accessing some service in order to provide a traceable transcript. However, we see the proving
of a credential as the main aspect that should include the registration information and want to
keep proving of a pseudonym efficient.

4.3.2 Security Notions
Since we added the traceability feature to the extended ACS, we have to adapt the security
notions we introduced in Section 4.2.2. Regarding anonymity the (ProveCred,VrfyCred) protocol
is the only protocol a user runs with a non-trusted party which changed compared to the basic
ACS (cf. Definition 4.37). Therefore we need to redefine the corresponding part of the anonymity
using an experiment. The structure of the soundness definition stays the same and will only be
extended by an additional oracle and a further winning condition.

4.3.2.1 Anonymity

In addition to the already defined anonymity in the basic system, we have to take a look at the
case that transcripts of user interactions can be opened to the corresponding user public key.
It should be infeasible for an adversary to distinguish between two users of her choice within a
(ProveCred,VrfyCred) execution. To define this property formally, we introduce a game in the
following definition. An adversary can make users run the different algorithms and protocols of
our extended ACS and has access to an open oracle. Since we model a security property for
the user we assume that all issuers are corrupted and the adversary has full control over them.

85

4 Anonymous Credential and Reputation System

Moreover, she can corrupt users which results in the total control over these users as well as the
knowledge of the users’ secret keys. Eventually, the adversary chooses two non-corrupted users
and an issuer from which the challenger selects one user. The challenger then makes the selected
user form a new pseudonym and lets her run (ProveCred,VrfyCred) with the chosen issuer. Given
that information, the adversary wins if she is able to state which user the challenger selected.
If no adversary is able to win this game with high probability, we say that our extended ACS
fulfills anonymity. The formal definition looks as follows:

Definition 4.38. Define the game ExpanonΠ,A (n) of an extended ACS Π (Definition 4.37) against
an adversary A to be the following:

• The challenger runs (pp,UA,UΦ)← Setup(1n).

• The challenger runs (osk, opk, reg)← MGen(pp).

• The challenger creates Snym := ∅ to store pseudonym-user-pairs, Scred := ∅ to store
credential-user-pairs and t∗ := ε to store the challenge transcript.

• The challenger gives pp,UA,UΦ and opk to the adversary.

• The adversary A chooses 1nU , 1nI with nU , nI ∈ N.

• The challenger creates sets U and I for users and issuers, with |U | = nU and |I| = nI ,
and an initially empty subset Û for corrupted users. User and issuer sets contain a unique
ID for each entity, chosen independently from any secret keys. The mapping from IDs to
actual entities is done by the challenger.

• For each user u ∈ U the challenger makes u run U.Init(pp, opk) to obtain a user secret key
usk and a user public key upk. The challenger gives the upk of all users to the adversary.

• For each issuer i ∈ {1, ..., nI} the adversary gives an ipki to the challenger together with
an 1`i describing the number of supported attributes by i.

• The adversary obtains the sets U and I from the challenger. Furthermore, she gets full
knowledge of and full control over all issuers. A may query following oracles, where ⊥ is
returned if the oracle input is invalid.
– corruptUser(u, upk′), where u ∈ U : A may arbitrarily select a user u ∈ U to gain

control over her. The challenger hands all private information of u to A. This includes
the user’s usk, her registration information, all of her pseudonym/key pairs (nym, psk),
credentials and past protocol views. From that point on, A has full control over u.
Note here that, since A has full control over u, it can arbitrarily choose a new usk for
u and use it in following protocols. If upk′ is not equal to the upk of u, upk′ becomes
the new public key of u. The challenger adds u to Û .

– runCreateNym(u), where u ∈ U \ Û : The challenger makes u run CreateNym(pp, usk)
to obtain (nym, psk). The challenger adds (nym, u) to Snym, stores the corresponding
psk and returns nym to A.

– runJoin(u), where u ∈ U : The challenger makes u execute Join(pp, opk, upk, usk) ↔
MJoin(pp, opk, upk, osk, reg) with herself. If u is honest, i. e. u ∈ U \ Û , upk and usk
correspond to u and the challenger obtains and stores reginfo in relation to u (and
overwrites old versions, if she has any for the same user). The challenger overwrites
the old reg with output reg′ On success the challenger returns 1 and else 0.

– runProveVrfyNym(u, v, nym), where u ∈ U , v ∈ U ∪ I and (nym, u) ∈ Snym: The
challenger makes u and v execute ProveNym(pp, nym, usk, psk) ↔ VrfyNym(pp, nym),
where psk is the pseudonym secret related to nym, and usk corresponds to u. The
challenger returns 1 to A if v outputs 1, 0 otherwise.

86

4.3 Extended Anonymous Credential System

– runRcvIssCred(u, i, nym, (aj)`ij=1), where u ∈ U , i ∈ I and (nym, u) ∈ Snym: The chal-
lenger makes u and i execute RcvCred(pp, ipk, nym, (aj)`ij=1, usk, psk) ↔ IssCred(pp,
nym, (aj)`ij=1, isk), where ipk and isk are i’s public and secret key. If RcvCred outputs
cred and not ⊥, the challenger chooses a unique index j, adds (cred, j, u) to Scred and
returns j to A. Else the challenger returns ⊥.

– runProveVrfyCred(u, v, nym, j, φ), where u ∈ U , v ∈ U ∪ I, (nym, u) ∈ Snym and ∃cred
with (cred, j, u) ∈ Scred: The challenger makes u and v execute ProveCred(pp, opk,
ipk, nym, φ, usk, psk, cred, reginfo) ↔ VrfyCred(pp, opk, ipk, nym, φ), where ipk is the
public key of the issuer who issued cred, usk is u’s user secret and psk the pseudonym
secret corresponding to nym. The challenger returns 1 to A if v outputs 1, 0 otherwise.

– Open(t), where t 6= t∗: The challenger responds with Open(opk, osk, reg, t).

• For k ∈ {0, 1} the adversary outputs (uk, jk), ipk, φ ∈ UΦ and i ∈ I such that uk joined the
system, ∃credk = ((a0, a1, . . . , a`i), ·, ipk), such that (credk, jk, uk) ∈ Scred and φ(a1, . . . , a`i) =
1. If a requirement does not hold, A loses and the experiment outputs 0.

• The challenger chooses a bit b← {0, 1}.

• The challenger runs CreateNym(pp, usk) to obtain (nym∗, psk∗) (not added to Snym), where
usk corresponds to ub.

• The challenger makes ub and i execute ProveCred(pp, opk, ipk, nym∗, φ, uskb, psk∗, reginfob,
cred∗) ↔ VrfyCred(pp, opk, ipk, nym∗, φ) and stores the transcript in t∗, where cred∗ =
(a0, ..., a`i , ·, ipk) is some credential with (cred∗, ·, ub) ∈ Scred and φ(a1, ..., a`i) = 1.

• The adversary may query her oracles as before until she outputs a bit b′. If b = b′ and
u0, u1 /∈ Û , the experiment’s output is 1 and we say that A wins. Else, the output is 0
and A loses.

Note that the adversary may use the corruptUser oracle more than once on the same user.
Then, she does not learn anything new, since she controls the user anyway, but may change the
user’s upk multiple times.
We move on to the security definitions, which, in general mirror the definitions of Defini-

tion 4.20.

Definition 4.39. We call an extended credential system Π = (Setup,MGen,U.Init, I.Init,
CreateNym, (Join,MJoin), (ProveNym,VrfyNym), (RcvCred, IssCred), (ProveCred,VrfyCred),Open)
anonymous if the following properties are fulfilled:

1. CreateNym hides the user secret (Definition 4.20.1), ProveNym hides the user secret
(Definition 4.20.2), Anonymity when executing RcvCred (Definition 4.20.3)

2. (Anonymity when executing ProveCred) For all ppt adversaries A we have that
Pr[ExpanonΠ,A (n) = 1]− 1

2 is negligible.

Note that the reused security definitions of Definition 4.20 need to be altered slightly to
accommodate for the changes of the extended ACS. Since they would be altered in a non-
meaningful way, we do not specify them.

4.3.2.2 Soundness

With the addition of the new opening feature and the corresponding changes to the definition
we also have to incorporate those into the soundness definition. To achieve that, we adapt
the oracle queries in ExpSoundnessΠ,A (n) (cf. Section 4.2.2.2) and add an opening oracle. We also

87

4 Anonymous Credential and Reputation System

slightly adjust the winning conditions for the adversary and add a new one. In the new game an
adversary has to show a credential where the protocol transcript is not traceable to a corrupt
user.

Definition 4.40 (Soundness experiment). Define the following Experiment ExpExt−SoundnessΠ,A (n)
for an extended ACS Π (Definition 4.37) between a challenger and a ppt adversary A. Note
here that we assume secure communication for honest entities in the experiment. The adversary
only sees outputs which are explicitly mentioned in the definition below.

• The challenger runs (pp,UA,UΦ)← Setup(1n).

• The challenger runs (osk, opk, reg)← MGen(pp).

• The adversary A chooses 1nU , 1nI , 1`1 , . . . , 1`nI with nU , nI , `1, . . . , `nI ∈ N.

• The challenger creates sets U and I for users and issuers, with |U | = nU and |I| = nI , and
initially empty subsets Û and Î for corrupted users and issuers respectively. The challenger
also creates an initially empty pseudonym-user-pair set Snym, an registered-upk-user-pair
set Supk and a credential-ID-credential-pair set Scred. The user and issuer sets contain
unique IDs for each entity, the mapping from the IDs to the actual entities is done by the
challenger. The IDs are chosen independently from any secret keys.

• For each user u ∈ U the challenger makes u run U.Init(pp, opk) to obtain a user secret key
usk and a user public key upk.

• For each issuer i ∈ I the challenger makes i run I.Init(pp, 1`j) to obtain an issuer public
key ipk and secret key isk. Using 1`j for the jth issuer. The ipk is made publicly available.

• After this initial setup the adversary gets as input the sets U , I and all public parameters,
including the upks and ipks of the ACS Π. A may query following oracles, where ⊥ is
returned if the oracle input is invalid.

– corruptUser(u, upk′): A may arbitrarily select a user u ∈ U to gain control over her.
The challenger hands all private information of u toA. This includes the user’s usk, all
of her pseudonym/key pairs (nym, psk), her credentials, her registration information
and all her past protocol views. From that point on, A has full control over u. Note
here that, since A has full control over u, it can arbitrarily choose a new usk for u
and use it in following protocols. If upk′ is not equal to the upk of u, upk′ becomes
u’s new public key. The challenger adds u to Û .

– corruptIssuer(i, ipk′): A may arbitrarily select an issuer i ∈ I to gain control over
her. The challenger hands all private information of i to A. This includes the issuer’s
secret key isk, all pseudonyms users have used in past protocols with her and all her
past protocol views. From that point on A has full control over i. If ipk′ is not equal
to the ipk of i, ipk′ becomes i’s new public key. The challenger adds i to Î.

– runCreateNym(u): Amay select a user, which then runs CreateNym(pp, usk). A learns
the pseudonym nym but not the corresponding psk. The challenger adds (nym, u) to
Snym.

– runJoin(u): A may select a user, which then executes Join(pp, opk, upk, usk) ↔
MJoin(pp, opk, upk, osk, reg) with the challenger, where usk is u’s secret key and upk
is u’s public key. If the protocol is successful, the user saves reginfo (and overwrites
old versions, if she has any), the challenger overwrites the old reg with output reg′,
adds (upk, u) to Supk and returns 1 to A, else 0.

88

4.3 Extended Anonymous Credential System

– runProveVrfyNym(u, v, nym): Where u ∈ U and v ∈ U ∪ I. The challenger makes
u and v execute ProveNym(pp, nym, usk, psk) ↔ VrfyNym(pp, nym), where usk is u’s
secret key and psk is the pseudonym secret of nym. If one or both of those entities are
corrupted, A takes the corresponding role in the protocol execution. The challenger
returns 1 to A if v outputs 1, 0 otherwise.

– runRcvIssCred(u, i, nym, (ai)`i=1): Where u ∈ U , i ∈ I, and where ` is the `j that A
has chosen for i in the setup. The challenger makes u and i execute RcvCred(pp, ipk,
nym, (ai)`i=1, usk, psk)↔ IssCred(pp, nym, (ai)`i=1, isk), where usk is u’s secret key, psk
is the pseudonym secret of nym and ipk and isk are i’s public and secret key. If one or
both of those entities are corrupted, A takes the corresponding role in the protocol
execution. If the protocol is successful, the challenger returns 1 and a unique credId
to A and adds (credId, cred) to Scred, else 0.

– runProveVrfyCred(u, v, nym, credId, φ): Where u ∈ U and v ∈ U ∪ I. If u is honest
and either has not successfully joined the system or credId is not contained in a pair
in Scred the challenger returns 0. Otherwise the challenger makes u and v execute
ProveCred(pp, opk, ipk, nym, φ, usk, psk, cred, reginfo) ↔ VrfyCred(pp, opk, ipk, nym, φ),
where cred is the credential in the (credId, cred) pair in Scred, ipk is the public key
of the issuer who issued cred, usk is u’s user secret, psk the pseudonym secret corre-
sponding to nym and reginfo is u’s registration information which u got through Join.
If one or both of those entities are corrupted, A takes the corresponding role in the
protocol execution. The challenger returns 1 to A if v outputs 1, 0 otherwise.

– Open(t): The challenger responds with Open(opk, osk, reg, t).

Note that as in Definition 4.38 the corruptUser and corruptIssuer oracles may be used on
the same entity multiple times to change the entities public key.

Definition 4.41 (Non-Impersonation). In GameNonImpΠ,A (n) an adversary A first participates in
ExpExt−SoundnessΠ,A (n). After that it outputs nym, chooses a corrupted user u ∈ Û and an honest
verifier v ∈ (I∪U)\(Û ∪ Î). Then, the challenger makes u and v execute ProveNym(pp, nym, usk,
psk) ↔ VrfyNym(pp, nym), where pp are the public parameters of the prior experiment. Since
u ∈ Û , A fully controls the user during protocol execution. A wins if and only if v accepts and
the following requirement is true:

• ∃ (nym, u′) ∈ Snym with u′ /∈ Û . Which means that nym does belong to a non-corrupted
user.

If for all probabilistic polynomial-time adversaries A there exists a negligible function µ such
that Pr[GameNonImpΠ,A (1) = 1] ≤ µ(n), we say that Π offers non-impersonation.

Definition 4.42 (Credential Unforgeability). In GameCredForgeΠ,A (n) an adversary A first par-
ticipates in ExpExt−SoundnessΠ,A (n). After that it outputs (ipk, nym, φ), chooses a corrupted user
u ∈ Û and an honest verifier v ∈ (I ∪ U) \ (Û ∪ Î). Then, the challenger makes u and v exe-
cute ProveCred(pp, opk, ipk, nym, φ, usk, psk, cred, reginfo)↔ VrfyCred(pp, opk, ipk, nym, φ), where
pp, opk are the public parameters of the prior experiment. Since u ∈ Û , A fully controls the
user during protocol execution. A wins if and only if v accepts and the following requirements
are true:

• ipk is the public key of a non-corrupted issuer.

• A has never queried runRcvIssCred(u′, i, nym′, (aj)`ij=1), where φ((aj)`ij=1) = 1, i is the
issuer corresponding to ipk and u′ ∈ Û . The latter includes instances where corruptUser(u′)
got queried after the credential got granted.

89

4 Anonymous Credential and Reputation System

If for all probabilistic polynomial-time adversaries A there exists a negligible function µ such
that Pr[GameCredForgeΠ,A (n) = 1] ≤ µ(n), we say that Π offers credential unforgeability.

Definition 4.43 (Traceability). In GameTraceΠ,A (n) an adversary A first participates in
ExpExt−SoundnessΠ,A (n). After that it outputs (ipk, nym, φ), chooses a user u ∈ Û and an honest
verifier v ∈ (I ∪U)\ (Û ∪ Î). Then, the challenger makes u and v execute ProveCred(pp, opk, ipk,
nym, φ, usk, psk, cred, reginfo) ↔ VrfyCred(pp, opk, ipk, nym, φ), where pp, opk are the public pa-
rameters of the prior experiment. Since u ∈ Û , A fully controls the user during protocol
execution. Denote the transcript of the protocol execution by t. A wins if and only if v accepts
and the following requirement is true:

• Open(opk, osk, reg, t) outputs a upk with ∀u′ ∈ Û : (upk, u′) /∈ Supk.

If for all probabilistic polynomial-time adversaries A there exists a negligible function µ such
that Pr[GameTraceΠ,A (n) = 1] ≤ µ(n), we say that Π offers Traceability.

Note here that we, at this point, do not look at the case where two fully colluding users share
a credential. If the first user gives a credential and her user secret to another user, in regards
to the credential system the second user is now the first one.

Definition 4.44 (Soundness). We call Π sound if it offers Non-Impersonation (Definition 4.41),
Credential Unforgeability (Definition 4.42) and Traceability (Definition 4.43).

4.3.3 Construction
Now we proceed with the concrete construction of our extended ACS. We use techniques of the
group signature scheme proposed by Pointcheval and Sanders [PS16, Appendix B], which yields
the demanded security properties. Essentially a system master creates a group, which users
need to join to successfully execute ProveCred. This execution then is traceable via the group
signature’s Open mechanism. Therefore we apply the Fiat-Shamir heuristic from Section 3.10
on the Schnorr proofs (Construction 3.44) mentioned in the following.

Construction 4.45. Let G be a type 3 bilinear group generator (Definition 3.2), let Πcom =
(Πcom.Setup,Com,Open) be the Pedersen commitment scheme (Construction 3.23) and let Πsign =
(Πsign.Setup,Gen,Sign,Vrfy) be the Pointcheval-Sanders signature scheme (Construction 3.17).

• Setup(1n): On input security parameter 1n, Setup generates a type 3 bilinear group
(p,G1,G2,GT , e)← G(1n) and pseudonym public parameters ppnym := (gnym, hnym, p,G1)
with gnym ← G1 \ {1} and hnym ← G1. Additionally, it creates ppaux by generating public
parameters of Nguyen accumulator (Section 3.12.3) based on the bilinear group, to enable
membership proofs in predicates (Section 4.1.3.3). It returns (p,G1,G2,GT , e, ppnym).

• MGen(pp): On input public parameters pp = (p,G1,G2,GT , e, ppnym), MGen returns
(osk, opk, reg) with opening key pair (osk, opk)← Πsign.Gen1(p,G1,G2,GT , e) and registry
reg := ∅.

• U.Init(pp, opk): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and opener
public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), U.Init chooses user secret key usk ← Zp, sets
public key upk := gusk

opk and returns (usk, upk).

• I.Init(pp, 1`): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and number ` ∈ N,
I.Init generates and returns issuer key pair (ipk, isk) ← Πsign.Gen`+1(p,G1,G2,GT , e) with
ipk = (g, Y0, Y1, . . . , Y`, g̃, X̃, Ỹ0, Ỹ1, . . . Ỹ`) for issuing credentials over ` attributes and a
usk.

90

4.3 Extended Anonymous Credential System

• CreateNym(pp, usk): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and user
secret usk, CreateNym generates and returns (nym, psk) ← Com1(ppnym, usk) with psk =
(usk, d).

• (Join(pp, opk, upk, usk),MJoin(pp, opk, upk, osk, reg)) is an interactive protocol with public
parameters pp = (p,G1,G2,GT , e, ppnym), opener public key opk = (gopk, Yopk, g̃opk, X̃opk,

Ỹopk) and ppnym = (gnym, hnym, p,G1). The system manager parses the opener secret key
osk as (x, y). The user computes τ̃ := Ỹ usk

opk , sends τ̃ to the manager and runs a Σ-protocol
of form

PK
{

(usk) : upk = gusk
opk

}
.

The manager proceeds, if and only if she accepts in this proof and e(upk, Ỹopk) = e(gopk, τ̃)
holds. If there is an entry (upk, σ, ·) in reg, the manager returns σ and stops. Else the
manager chooses u ← Z∗p, computes σ := (σ1, σ2) := (guopk, (gxopk · upky)u), sends σ to the
user, adds the entry (upk, σ, τ̃) to reg and (locally) outputs the updated reg. Then, the
user checks the signature’s validity via Vrfy(pp, opk, usk, σ). If the check fails, she (locally)
outputs ⊥, and else registration information reginfo = (σ, opk).

• (ProveNym(pp, nym, usk, psk),VrfyNym(pp, nym)) is an interactive protocol with public pa-
rameters pp = (p,G1,G2,GT , e, ppnym) and ppnym = (gnym, hnym, p,G1). The prover parses
the pseudonym secret psk as (usk, d) and performs an interactive zero-knowledge argument
of knowledge of form PK

{
(usk, d) : nym = gdnymh

usk
nym

}
with the verifier.

• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym, (ai)`i=1, isk)) is an interactive pro-
tocol with public parameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1)
and issuer public key ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`). The receiver parses the pseudo-
nym secret psk as (usk, d) and generates ppiss = (g, Y0, p,G1) := BlindInit(pp, ipk, {0})
(ignoring ppnym in pp) and computes (C, (usk, r))← Com1(ppiss, usk). Then, she sends C
to the issuer and runs a Σ-protocol of form

PK
{

(usk, d, r) : nym = gdnymh
usk
nym ∧ C = grY usk

0

}
with the issuer. As in (BlindRcv,BlindIssue), the issuer now chooses u ← Z∗p, computes
(σ′1, σ′2) := (gu, (gx·C ·

∏`
i=1 Y

ai
i)u) and sends (σ′1, σ′2) to the receiver. The receiver computes

σ = (σ′1, σ′2·(σ′1)−r), and checks the signature’s validity via Vrfy(pp, ipk, (usk, a1, . . . , a`), σ).
If the check fails, she (locally) outputs ⊥ and else a credential cred = (σ, (a1, . . . , a`), ipk).

• (ProveCred(pp, opk, ipk, nym, φ, usk, psk, reginfo, cred),VrfyCred(pp, opk, ipk, nym, φ)) is an in-
teractive protocol with public parameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym,

hnym, p,G1), opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk) and issuer public key
ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`). The prover parses her private input to psk = (usk, d),
reginfo = ((σ̂1, σ̂2), opk) and cred = ((σ1, σ2), (a1, . . . , a`), ipk).

If Vrfy(pp, ipk, (usk, a1, . . . , a`), σ) = 0, Vrfy(pp, opk, usk, σ̂) = 0 or φ(a1, . . . , a`) = 0 holds,
she outputs ⊥ and stops. Else she chooses s← Z∗p, sets σ̂′ := (σ̂s1, σ̂s2) and sends σ̂′ to the
verifier. Next, she chooses (u, r)← Z∗p×Zp, sets σ′ := (σ′1, σ′2) := (σu1 , (σ2 ·σr1)u) and sends
σ′ to the verifier. For i = 1, . . . , ` she generates (Ci, (ai, di)) ← Com(ppnym, ai) and sends
Ci to the verifier. The user computes a non-interactive argument π using the Fiat-Shamir

91

4 Anonymous Credential and Reputation System

heuristic (Construction 3.55) on the Σ-protocol of form

PK

(usk, d, (ai, di)`i=1, r) :

e(σ′1, g̃)re(σ′1, Ỹ0)usk ∏̀
i=1

e(σ′1, Ỹi)ai = e(σ′2, g̃)
e(σ′1, X̃)

∧ nym = gdnymh
usk
nym

∧̀
i=1

Ci = gdinymh
ai
nym ∧ φ(a1, . . . , a`) = 1

∧ e(σ̂′1, Ỹopk)usk = e(σ̂′2, g̃opk)
e(σ̂′1, X̃opk)

,

where the proof of φ(a1, . . . , a`) = 1 is instantiated via the technique for proofs of partial
knowledge (Construction 3.59) and the protocols from Section 4.1.3. The verifier (de-
terministically) accepts, if and only if σ′1 6= 1 6= σ̂′1 holds and π is valid according to
Construction 3.55.

• Open(opk, osk, reg, t): On input open public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), open
secret key osk, registry information obtained from MJoin and a transcript t = ((σ̂′1, σ̂′2), ·),
Open first uses VrfyCred to check, whether the transcript is valid. If it is invalid, it outputs
⊥. Else it iterates through the entries (upk, ·, τ̃) from reg, until e(σ̂′2, g̃opk)e(σ̂′1, X̃opk)−1 =
e(σ̂′1, τ̃) holds. If it finds such an entry, it outputs upk, and else outputs ⊥.

Lemma 4.46. Construction 4.45 is a correct extended anonymous credential system (Defini-
tion 4.37).

Proof. According to Definition 4.37 an extended anonymous credential system is correct if
1) honestly generated pseudonyms are valid, 2) honestly issued credentials are valid and 3) ProveCred
is traceable by the open manager. We prove correctness by first fixing arbitrary outputs of the
algorithms from Construction 4.45 and then arguing why the three properties hold.
Concretely, we first fix arbitrary n, c, ` ∈ N, j ∈ {1, . . . , c}, (pp,UA,UΦ) ∈ [Setup(1n)], (osk, opk,

reg) ∈ [MGen(pp)], (a1, . . . , a`) ∈ U `A, φ ∈ UΦ with φ(a1, . . . , a`) = 1, (ipk, isk) ∈ [I.Init(pp, 1`)],
((uski, upki))1≤i≤c ∈ [U.Init(pp)]c and (nym, psk), (nym′, psk′) ∈ [CreateNym(pp, uskj)]. For i =
1, . . . , c fix arbitrary reginfoi, regi+1 of (Join(pp, opk, upki, uski)↔ MJoin(pp, opk, upki, osk, regi)),
cred of (RcvCred(pp, ipk, nym, (ai)`i=1, uskj , psk) ↔ IssCred(pp, nym, (ai)`i=1, isk)) and transcript t
of (ProveCred(pp, opk, ipk, nym′, φ, uskj , psk′, cred, reginfoj)↔ VrfyCred(pp, opk, ipk, nym′, φ)).

1) Since (ProveNym,VrfyNym) and the choice of its inputs remained exactly the same in Con-
struction 4.45 compared to our basic ACS (Construction 4.25), we have that honestly generated
pseudonyms are valid by Lemma 4.26. Hence we know that nym and nym′ are valid pseudonyms.
2) To prove honestly issued credentials are valid we need to show that

1− µ(|pp|) = Pr[(ProveCred(pp, opk, ipk, nym′, φ, uskj , psk′, cred, reginfoj)
↔ VrfyCred(pp, opk, ipk, nym′, φ))→ 1]

holds for some negligible function µ. We mainly rely on Lemma 4.26, as the only difference
between Construction 4.45 and Construction 4.25 is related to reginfoj . It is left to show
that reginfoj from (Join,MJoin) as input of ProveCred suffices to make VrfyCred always accept.
By construction of MGen and Gen1 from the Pointcheval-Sanders signature scheme (Construc-
tion 3.17) we know osk = (x, y) ∈ Z2

p and opk = (g, Y, g̃, X̃, Ỹ) = (g, gy, g̃, g̃x, g̃y) for generators
g, g̃ (we omit opk as index for the sake of readability). With uskj as input, Join computes
τ̃ := Ỹ uskj = g̃y·uskj and by correctness of the generalized Schnorr protocol succeeds in the
argument of knowledge, since upkj = guskj is output of U.Init. The check e(upkj, Ỹ) = e(g, τ̃) in
MJoin is fulfilled too, shown by

e(upkj, Ỹ) = e(guskj , g̃y) = e(g, g̃)y·uskj = e(g, g̃y·uskj) = e(g, τ̃).

92

4.3 Extended Anonymous Credential System

Hence reginfoj = (σ̂1, σ̂2) = (gu, g(x+y·uskj)u) is output of Join for some u ∈ Z∗p. ProveCred
computes (σ̂′1, σ̂′2) := (σ̂s1, σ̂s2) = (gus, g(x+y·uskj)us) for some s ∈ Z∗p. Since Z∗p is closed under
multiplication us = r holds for some r ∈ Z∗p. Thus, for generator g, σ̂′1 = gr 6= 1 holds, and the
corresponding check at the end of VrfyCred is fulfilled. It remains to show the non-interactive
argument of knowledge is accepted. We can compute

e(σ̂′2, g̃)
e(σ̂′1, X̃ ′)

= e(g(x+y·uskj)r, g̃)
e(gr, g̃x) = e(g, g̃)rx+ry·uskj

e(g, g̃)rx = e(g, g̃)ry·uskj = e(gr, g̃y·uskj) = e(σ̂′1, Ỹ)uskj

and hence see that uskj is a valid witness for the argument of knowledge. By correctness of
the Fiat-Shamir heuristic and the remaining parts of ProveCred (Lemma 4.26) we conclude that
VrfyCred always accepts. Formally we have

Pr[(ProveCred(pp, opk, ipk, nym′, φ, uskj , psk′, cred, reginfoj)
↔ VrfyCred(pp, opk, ipk, nym′, φ))→ 1] = 1,

meaning honestly issued credentials are valid in Construction 4.45.
3) The last point to prove is ProveCred is traceable by the open manager or formally that

Open(opk, osk, regc+1, t) = upkj

holds. Open first uses VrfyCred to check whether the fixed transcript t is valid, i. e. checks if the
deterministic VrfyCred outputs 1 for the non-interactive proof. As shown before, honestly issued
credentials are valid, hence the fixed transcript t is accepted and Open iterates through its reg
entries. By construction of the algorithms, regc+1 contains an entry (upki, ·, τ̃) = (guski , ·, Ỹ uski)
for each i = 1, . . . , c. We know that t contains (σ̂′1, σ̂′2) = (gr, g(x+y·uskj)r) for some r ∈ Z∗p (cf.
part 2). For i = 1, . . . , c Open checks whether e(σ̂′2, g̃′)e(σ̂′1, X̃ ′)−1 = e(σ̂′1, τ̃i) holds. By

e(σ̂′2, g̃′)e(σ̂′1, X̃ ′)−1 = e(g, g̃)(x+y·uskj)re(g, g̃)−rx = e(g, g̃)ry·uskj ?= e(σ̂′1, τ̃i) = e(g, g̃)ry·uski

we see, this happens if and only if ry · uski = ry · uskj mod p. This holds only for uski = uskj ,
when ry ∈ Z∗p. By r ∈ Z∗p, the only case where ry 6∈ Z∗p occurs is for y = 0. Since y is chosen
uniformly at random from Zp, this happens with probability 1

p . If we have y = 0, the (possibly
correct) first upk entry of reg is output by Open. Therefore we have

Pr[Open(opk, osk, regc+1, t) = upkj] ≥ 1− 1
p
,

where 1
p is negligible in |pp|. This proves that ProveCred is traceable by the open manager.

4.3.4 Security Proofs

In the following section, we are going to prove the anonymity and soundness of our extended
ACS Π (Construction 4.45) in regards to the definitions from Section 4.3.2.

4.3.4.1 Anonymity

We show our extended ACS Π (Construction 4.45) is anonymous according to both requirements
of Definition 4.39. The first (Definition 4.39.1) demands anonymity when executing RcvCred and
that CreateNym, as well as ProveNym, hides the user secret. These notions essentially remained
the same as for anonymity of a basic ACS (Definition 4.20). Since the corresponding protocols
did not change, i. e. still are perfect zero-knowledge (in the random oracle model), the proofs
are analogue to Lemmas 4.28, 4.29 and 4.30.

93

4 Anonymous Credential and Reputation System

To prove anonymity when executing ProveCred (Definition 4.39.2), we essentially need to show
that the partially randomized signatures (σ̂s1, σ̂s2) in ProveCred are computationally indistinguish-
able from fully randomized ones. We proceed similar to the selfless anonymity proof by Bichsel
et al. [Bic+10]. In particular, we also show a successful adversary A against the anonymity
game (Definition 4.38) breaks the XDDH assumption (Definition 3.6). Different to their model,
we allow adversaries to corrupt users.

Lemma 4.47. Let Π be the extended ACS from Construction 4.45. If the XDDH problem
(Definition 3.6) is hard relative to the bilinear group generator G and Π offers traceability, a
user stays anonymous when executing Π.ProveCred (Definition 4.39.2) in the random oracle
model.

First we give an intuition to the proof of Lemma 4.47. The adversary A′ (Figure 4.2) chooses
two of the nU users uniformly at random and uses gβ from its XDDH challenge (g, gα, gβ, gαβ+γδ, g̃)
to create their reginfo. Afterwards A′ simulates the view of A computationally indistinguishable
to the original experiment Expanon until A selects the users for its challenge. If A does not
select the previously chosen users A′ stops and outputs a bit δ′ chosen uniformly at random.
Else, happening with non-negligible probability Ω(n−2), A′ chooses one of these users uniformly
at random and uses gα and gαβ+γδ to create the challenge transcript. If δ = 0, A wins with
probability 1

2 + ε(n) + µ(n), where ε corresponds to the advantage of A and µ is negligible, due
to the computational indistinguishability from the real experiment. If δ = 1, A obtains a tran-
script independent of the user secrets of either user and wins exactly with probability 1

2 . Since
simulation succeeds with non-negligible probability, a non-negligible ε(n) would imply that A′
distinguishes between both cases of δ and wins the XDDH game with non-negligible probability.
This would break the XDDH assumption and finishes the proof by contradiction.

Proof. We prove anonymity when executing ProveCred under the XDDH assumption (Defini-
tion 3.6) in the random oracle model. Therefore we construct adversary A′ (Figure 4.2) against
the XDDH game (Figure 3.2) from an arbitrary ppt adversary A against the anonymity game
(Definition 4.38) and show their winning probabilities are polynomially related. Let A be an
arbitrary but fixed ppt adversary with Pr[ExpanonΠ,A (n) = 1] = 1

2 + ε(n), which, without loss of
generality, always outputs a bit b′ ∈ {0, 1} after a polynomial time. Further remember, adver-
saries in the XDDH game obtain a tuple (g, gα, gβ, gαβ+γδ, g̃), where α, β, γ ∈ Z∗p, δ ∈ {0, 1} are
chosen uniformly at random, and output a guess δ′ for δ.
Let us first argue that the view of A is simulated computationally indistinguishable compared

to the anonymity game (Definition 4.38), assuming the event E that {u0, u1} = U∗ holds in line
10 and δ = 0 for line 12. For all non-corrupted users u ∈ U \U∗ the view is simulated perfectly
by looking up their usk and running the real protocols honestly. For i ∈ {0, 1} and u∗i ∈ U∗
the usk is (implicitly) set to βri with ri ← Zp, hence distributed identically to an output of
U.Init. The corresponding upk is sufficient to create reginfo, as done in runJoin(·). Using reginfo,
runProveVrfyCred can be simulated like the oracles runProveVrfyNym and runRcvIssCred by
programming the random oracle H. It is possible, however, that for challenge c, instance x and
simulated announcement z an entry ((x, z), c′) ∈ H with c 6= c′ already exists. Since z is chosen
uniformly at random from at least p elements (cf. simulator of generalized Schnorr protocols
from Lemma 3.47) and the number of elements in H is polynomial, such a collision occurs with
negligible probability. Consequently this difference to the original game can only be detected
with negligible probability by A. Furthermore we store transcripts output by runProveVrfyCred
for a queried user u ∈ U∗ in T to simulate the open oracle. Since show is traceable by the open
manager (Lemma 4.46) the real Open would output upk of u for these stored transcripts exactly
as A′ does. When A provides a valid transcript for which the simulated open outputs 0, a real
system manager either could not have opened it herself (obviously contradicting traceability) or
would have opened it to a user in U∗ (since tracing information of other users u ∈ U \ U∗ is

94

4.3 Extended Anonymous Credential System

Adversary A′(p,G1,G2,GT , e, g, g
α, gβ, gαβ+γδ, g̃)

1 : Run Π.Setup(1n) with (p,G1,G2,GT , e) fixed and output (pp,UA,UΦ).
2 : Run MGen(pp) to obtain osk = (x, y), opk = (g, gy, g̃, g̃x, g̃y) and reg = ε.
3 : Simulate A on input pp,UA,UΦ, opk until it outputs 1nU , 1nI .
4 : Set U := {1, . . . , nU}, Û := ∅,H := ∅, T := ∅, Snym := ∅, Scred := ∅,t∗ := ε.
5 : Choose u∗0 ← U, u∗1 ← U \ {u∗0}. Set U∗ := {u∗0, u∗1}.
6 : For u ∈ U \ U∗ run U.Init(pp, opk) to obtain (usk, upk).
7 : For i ∈ {0, 1} choose and store ri ← Zp and set upk := (gβ)ri for user u∗i .

8 : Simulate A on input pp,opk and all upk until it outputs for each issuer i an ipk and correspond-
ing 1`i representing the number of attributes. Set I := {1, . . . , nI}.

9 :

Answer oracle queries of A for u 6∈ U∗ exactly as in the real experiment (Definition 4.38).
Answer oracle queries for u ∈ U∗ as in the following.
• H(x): If (x, y) ∈ H exists return y. Else choose y ← Zp, add (x, y) to H and return y.

• corruptUser(u, upk′), where u ∈ U∗: Return ⊥.
• runCreateNym(u), where u ∈ U∗: Choose nym ← G1, add (nym, u) to Snym and return

nym.
• runJoin(u), where u ∈ U∗: Look up upk of u, choose t ← Z∗p, set reginfo :=

(gt, (gx(upky)t) for u and return 1.
• runProveVrfyNym(u, v, nym), where u ∈ U∗, v ∈ U ∪ I and (nym, u) ∈ Snym: Choose
c← Zp, run (ProveNym,VrfyNym)’s simulator (cf. Lemma 4.29) for instance x to obtain
transcript (z, c, r), add ((x, z), c) to H and send (z, c, r) to v. If v outputs 1 return 1,
and else return 0.

• runRcvIssCred(u, i, nym, (aj)`j=1), where u ∈ U∗, i ∈ I, ` = `i and (nym, u) ∈ Snym: Look
up ipk related to i and create commitment parameters ppiss := BlindInit(pp, ipk, {0}).
Generate a commitment on 0 by (C, (0, r)) ← Com1(ppiss, 0) and send C to i. Choose
c← Zp and run (RcvCred, IssCred)’s simulator (cf. Lemma 4.30) for instance x to obtain
transcript (z, c, r). Add ((x, z), c) to H and send ((x, z), c, r) to i. Unblind the signature
returned by IssCred using r as in RcvCred and check its validity under ipk on message
(0, a1, . . . , a`i

). If it is valid, choose a unique index j, set cred = ((a1, . . . , a`i
), ·, ipk),

add (cred, j, u) to Scred and return j. Else return ⊥.
• runProveVrfyCred(u, v, nym, j, φ), where u ∈ U∗, v ∈ U ∪ I, (nym, u) ∈ Snym and ∃cred

with (cred, j, u) ∈ Scred: Look up reginfo = (σ̂1, σ̂2) of u, choose t ← Z∗p and set (σ̂′) =
(σ̂t1, σ̂t2). Choose c ← Zp, run (ProveCred,VrfyCred)’s simulator (cf. Lemma 4.31) for
instance x to obtain transcript (z, c, r). Add ((x, (σ̂′, z)), c) to H, send t = ((σ̂′, z), c, r)
to v and add (t, u) to T . If v outputs 1 output 1 and else 0.

• Open(t), where t 6= t∗: If there is an entry (t, u) ∈ T return upk of user u. Check the
validity of t using VrfyCred. If t is invalid return ⊥. Else run Open(t). If it outputs upk
of user in U∗ or ⊥ output 0. Else return output of Open(t).

10 :
Simulate A on input pp,opk, all upk and ipk until it outputs for k ∈ {0, 1} (uk, jk), ipk, φ ∈
UΦ and i ∈ I, such that uk joined the system and ∃credk = ((a0, a1, . . . , a`i

), ·, ipk) with
(credk, jk, uk) ∈ Scred and φ(a1, . . . , a`i

) = 1.

11 : If {u0, u1} 6= U∗ choose δ′ ← {0, 1} uniformly at random, output δ′ and stop the simulation.
Else run corruptUser(u, upk) for all u ∈ U \ U∗ (w.l.o.g. assume any adversary would do so).

12 :
Choose new pseudonym nym ← G1 (not added to Snym), b ← {0, 1} and set (σ̂′1, σ̂′2) :=
(gα, ((gα)x(gαβ+γδ)rby)). Simulate the remaining part of (ProveCred,VrfyCred) protocol as in
the corresponding oracle to obtain transcript t, store it in t∗ and send it to A.

13 : Simulate A until it outputs bit b′. If b = b′ holds output 0, else output 1.

Figure 4.2: AdversaryA′ for XDDH experiment fromA for anonymity when executing ProveCred

95

4 Anonymous Credential and Reputation System

known by A’). The latter breaks the assumed traceability as well, because it requires a valid
transcript not in T but opened to a user in U∗. Therefore A detects this difference to the original
experiment with negligible probability only. Next, assuming δ = 0 and {u0, u1} = U∗ in line 10,
the challenge transcript t from line 12 is distributed exactly as in the real experiment. This holds
by σ̂′ = (gα, (gα)x((gαβ)rby)) = (gα, (gxgβrby)α), where α is distributed uniformly at random in
Z∗p by the XDDH setup and only used once to create this particular transcript. Finally, assuming
event E (i. e. {u0, u1} = U∗ in line 10), without loss of generality an adversary A against the
anonymity game does not corrupt a challenged user from U∗ and detects the wrong behavior of
the corruptUser oracle, unless it distinguished simulated and real experiment before. As stated
previously the latter happens with negligible probability. Concluding, under event E and δ = 0
(for line 12) A can distinguish simulated and real experiment (Definition 4.38) with negligible
probability only. Therefore the winning probability of A in this simulated experiment is

Pr[b = b′|E ∧ δ = 0] = Pr[ExpanonΠ,A (n) = 1] + µ(n) = 1
2 + ε(n) + µ(n), (4.1)

where |µ| is a negligible function due to the negligible probability of detecting the stated differ-
ences.
Remember, that A′ wins in the XDDH game, if δ′ = δ holds. We analyze

Pr[XDDHA′,G(n)] =
∑

i∈{0,1}
(Pr[δ = i ∧ δ′ = i ∧ E] + Pr[δ = i ∧ δ′ = i ∧ ¬E])

= 1
2
∑

i∈{0,1}
(Pr[δ′ = i|δ = i ∧ E] Pr[E|δ = i] + Pr[δ′ = i|δ = i ∧ ¬E] Pr[¬E|δ = i]).

(4.2)

We first prove that event E (i. e. A chooses {u0, u1} = U∗ in line 10) happens with non-
negligible probability independently of δ. Note, that U∗ is independent of A’s choice of {u0, u1}
in line 10, up to the detection of one of the previously described differences in the oracles. This
holds, since the users from U∗ are chosen uniformly at random and their information obtained
by A is distributed identically to any user from U . Furthermore, δ is used the first time in line
12 and therefore cannot affect event E in line 10. We have

Pr[E] = Pr[E|δ = 0] = Pr[E|δ = 1] = 2
nU (nU − 1) + µ′(n) =: p(n), (4.3)

where p(n) is non-negligible, because |µ′| is negligible and nU polynomial in n.
Under event ¬E, A′ outputs a bit δ′ ∈ {0, 1} chosen uniformly at random, i. e. for i ∈ {0, 1}

Pr[δ′ = i|δ = i ∧ ¬E] = Pr[δ′ ← {0, 1} : δ′ = i] = 1
2 . (4.4)

Conditioned on E and δ = 0 A′ outputs δ′ = 0, if and only if A correctly guesses b. Hence
(4.1) yields

Pr[δ′ = 0|δ = 0 ∧ E] = Pr[b = b′|δ = 0 ∧ E] = 1
2 + ε(n) + µ(n). (4.5)

The last missing part of (4.2) is outputting δ′ = 1 under condition δ = 1 and E. A′ outputs 1
in line 13, if and only if b 6= b′ holds. However, under condition δ = 1, the challenge transcript is
distributed independently of the chosen user ub and b by the randomization with δγ for γ ← Z∗p
in the XDDH setup. Since we assume that A′ always outputs a bit b′ we have

Pr[δ′ = 1|δ = 1 ∧ E] = Pr[b 6= b′|δ = 1 ∧ E] = Pr[b← {0, 1} : b 6= b′] = 1
2 . (4.6)

96

4.3 Extended Anonymous Credential System

We plug (4.3), (4.4), (4.5) and (4.6) into (4.2) to obtain

Pr[XDDHA′,G(n)] = 1
2

((1
2 + ε(n) + µ(n)

)
p(n) +

(
1− p(n)

)1
2 + 1

2p(n) +
(

1− p(n)
)1

2

)
= 1

2

(
1 + p(n)ε(n) + p(n)µ(n)

)
= 1

2 + p(n)
2 ε(n) + p(n)

2 µ(n),

where p is non-negligible and |µ| is negligible in n as previously shown. Hence, if ε were non-
negligible A′ would have a non-negligible advantage in the XDDH game. This contradicts the
XDDH assumption (Definition 3.6) and implies that ε is negligible. Therefore a user stays anony-
mous when executing Π.ProveCred, assuming traceability of the system and that the XDDH
problem is hard relative to the bilinear group generator G.

Thus, by Lemmas 4.28, 4.29, 4.30 and 4.47 we have the following theorem:

Theorem 4.48. The credential system Π from Construction 4.45 is anonymous, if the XDDH
problem (Definition 3.6) is hard relative to the bilinear group generator G and Π offers trace-
ability.

4.3.4.2 Soundness

To prove soundness of the extended ACS, we have to prove that it offers non-impersonation
(Definition 4.41), credential unforgeability (Definition 4.42) and traceability (Definition 4.43).
Note that the definitions of non-impersonation and credential unforgeability are the same for the
basic ACS and extended ACS, except for the open oracle and the setup of related parameters.
Thus, we can reuse the proofs of the basic ACS by generating the open parameters along the
setup and simulating the oracle as in the soundness experiment. Therefore, we only have to
prove traceability.

Lemma 4.49. Assuming that the SDLP assumption (Definition 3.5) holds, if the Pointcheval-
Sanders multi-message signature scheme is existentially unforgeable (Theorem 3.19), then Con-
struction 4.45 offers traceability.

Proof. Let Π be the extended ACS from Construction 4.45. Let Acred be an adversary against Π.
To bound the success probability of Acred, we want to construct two adversaries, Asdlp and Asign
against the SDLP assumption and the unforgeability of the Pointcheval-Sanders signatures.
Before we construct those adversaries, we want to talk about repeating patterns in the con-

structions: In the extended ACS, we use non-interactive zero-knowledge proofs of knowledge by
using the Fiat-Shamir heuristic on the Σ-Protocols described in the protocols. In the constructed
adversaries, we want to simulate the environment for an adversary against the ACS. There, we
have to simulate those protocols and the random oracle among other things. Assume that the
random oracle maps into a space C. To simulate it, we use the following general approach: We
define an initially empty set H and define the random oracle H(x) to output a y ← C and save
(x, y) to C, if there is no (x, ·) ∈ H. Else, i.e. for H(x) there is a (x, y) ∈ H, H outputs y. Then,
suppose we want to generate a valid transcript of a non-interactive version of a Σ-Protocol with
(v, ·) ∈ R and challenge space C. We choose a c ← C and use the honest-verifier simulator of
the Σ-Protocol to generate a transcript (a, c, r). Then, we set H(v||a) = c, i.e. save (v||a, c) to
H. Thus, we have a simulated transcript (a, c, r) and H stays consistent by remembering old
values. Note that H and H stay the same for different protocols.

Furthermore, if we want to extract a witness from a Fiat-Shamir heuristic based on a Σ-
Protocol (P,V) for an NP-relation R and a v ∈ LR, we use the idea of the Forking Lemma

97

4 Anonymous Credential and Reputation System

[BN06]: We use the forking algorithm to extract two transcripts on which we use the special
soundness extractor from the Σ-Protocol to extract a witness. Since the forking algorithm
only has a success probability of acc · (accq −

1
p), where acc is the success probability of the

prover and q is an upper bound for the hash queries of the prover, we repeatedly try to use the
forking algorithm until we succeed. Then, for some polynomial runtime poly(n) of the prover,
we have an expected runtime of RT = (acc · (accq −

1
p))−1 · poly(n) of this process, since we

repeat it that often in expectation. Since RT is boundable by a polynomial, the extraction
takes expected polynomial time. As in the proof of Lemma 4.35, we exhaustively search for a
witness to the proof with a runtime of O(p). Since this case is used only with probability 1

p (as
in the proof of Lemma 4.35), the parallel process also has expected polynomial time, thus the
extractor as a whole has expected polynomial time. Assume that the prover always queries the
random oracle to compute the challenge for the non-interactive proof, because else she would
only have negligible chance to guess it correctly. Then, if the success probability of the prover
is greater than the knowledge error, the extractor always outputs two transcripts with the same
announcement except for negligible cases, since the announcement is part of the input for the
random oracle. If the success probability is equal to the knowledge error, the extractor outputs
an error symbol.
With those two sub-constructions, we can construct the new adversaries. The idea is that
Acred wins in two cases: Either she outputs a proof which opens to ⊥, which means that the
trusted party has no corresponding tracing information, or Open outputs the upk of an honest
user. We use the first case to construct an adversary against the SDLP assumption, while we use
the latter to construct an adversary against the unforgeability of Pointcheval-Sanders signatures.

Asdlp(p,G1,G2,GT , e, g, g̃, a, ã)

1 :

Perform ExpSoundnessΠ,Acred
(n) by taking the role of the challenger and simulating Acred with the

following exceptions:
• Instead of running G(1n) in Setup, take the public parameters from the input.
• After Acred returns nU , choose a j ← {1, .., nU}. Set upkj = a.

Answer all oracles as specified in the experiment except for the following:
• runJoin(u): If u = j, then u sends τ̃ = ãy to the system manager. Then, the trusted

party computes σ as in the original experiment, sends it to u and adds (a, σ, τ̃) to reg.
If u 6= j, do the same as in the original experiment.

• corruptUser(u): If u = j, output ⊥. If u 6= j, do the same as in the original experiment.
• runProveV rfyNym(u, v, nym): If u = j, simulate the non-interactive proof as described

above. If u 6= j, do the same as in the original experiment.

• runRcvIssCred(u, i, nym, (ai)`i=1): If u = j, u chooses C ← G1 and sends it to v. Then,
u engages in the non-interactive proof by simulating as described above. If u 6= j, do
the same as in the original experiment.

• runProveV rfyCred(u, v, nym, credId, φ): If u = j, compute and send σ̂′ and σ′ as in
the original experiment. Then, u engages in the non-interactive proof by simulating as
described above. If u 6= j, do the same as in the original experiment.

2 : Acred outputs (ipk, nym, φ), u ∈ Û and an honest verifier v ∈ (U ∪ I)\(Û ∪ Î).

3 :
Execute (ProveCred(pp, opk, ipk, nym, φ, usk, psk, cred, reginfo) ↔ VrfyCred(pp, ipk, nym, φ)) → b
between u and v, while Acred controls u. Let t be the transcript of this interaction. If b = 0 or
any of the winning conditions in the real experiment do not hold, output ⊥.

4 : If Open(opk, osk, reg, t) 6= upkj , output ⊥.
5 : Extract a w = (usk′, psk′, cred′, reginfo′) from the argument of knowledge as described above.
6 : Output usk′.

Let PS be the Pointcheval-Sanders signature scheme. Construct an adversary Asign against
the unforgeability of PS.

98

4.3 Extended Anonymous Credential System

AOsign(ppsign, pksign)

1 :

Perform ExpSoundnessΠ,Acred
(n) by taking the role of the challenger and simulating Acred with the

following exceptions:
• Instead of running G(1n) in Setup, take the public parameters from the input.
• Instead of generating opk, set opk = pksign.

Answer all oracles as specified in the experiment except for runJoin(u): If u /∈ Û , do the
interaction as normal, but instead of computing σ, query O(usku). If u ∈ Û , u sends a τ̃ to the
trusted party as before, then both participate in the argument of knowledge and the system
manager checks whether e(upk, Ỹ) = e(g, τ̃). If the trusted party accepts, it extracts a usk′
from the PoK as described above, and then sends σ ← O(usk′) to u. At last, it saves (upk, σ, τ̃)
to reg.

2 : Acred outputs (ipk, nym, φ), u ∈ Û and an honest verifier v ∈ (U ∪ I)\(Û ∪ Î).

3 :
Execute (ProveCred(pp, opk, ipk, nym, φ, usk, psk, cred, reginfo) ↔ VrfyCred(pp, ipk, nym, φ)) → b
between u and v, while Acred controls u. Let t be the transcript of this interaction. If b = 0 or
any of the winning conditions in the real experiment do not hold, output ⊥.

4 : If Open(opk, osk, reg, t) =⊥, extract a (usk′, psk′, cred′, reginfo′) from the argument of knowledge
as described above.

5 : Output (usk′, reginfo′).

Let Frame be the event that Open outputs the upk of an honest user when given the transcript
of the challenge proof. Let Trace be the event that Open outputs ⊥ with the same input. Then,
we have that

Pr[GameTraceΠ,Acred(n) = 1] = Pr[GameTraceΠ,Acred(n) = 1 ∧ Frame] + Pr[GameTraceΠ,Acred(n) = 1 ∧ Trace],

as in the case of ¬Frame ∧ ¬Trace the output of Open would be the upk of a dishonest user,
which would mean that the adversary loses.
Let Guess be the event that the j that Asdlp guesses is the u that Open outputs at the end of
Asdlp. Now, consider when Asdlp wins. This happens exactly in the event of GameTraceΠ,Acred(n) =
1 ∧ Frame ∧ Guess. This is true due to the following reasons: Acred is perfectly simulated by
definition of Asdlp, except for the corruptUser oracle when given j, but then Asdlp would lose
anyway, since the output of Acred would not correspond to a and ã. Furthermore, the extracted
usk′ is the discrete logarithm of a: since Open outputs upkj , there is an entry (upkj , ·, τ̃) =
(a, ·, ãy) in reg with e(σ̂′1, ãy) = e(σ̂′2, g̃)e(σ̂′1, X̃ ′)−1. Suppose that a = gb. Then, we have that
e(σ̂′1, Ỹ)b = e(σ̂′2, g̃)e(σ̂′1, X̃ ′)−1. Thus, the adversary convinces the verifier that it knows a d,
such that gd = a, meaning that the usk′ that we extract has the same property. Therefore, if
Asdlp is able to extract a witness, it is able to compute the discrete logarithm of a.
Note that Asdlp makes use of an extractor with only expected polynomial time. By a similar

argument to Lemma 4.34, we conclude that Asdlp has expected polynomial time as well. Then,
we can use Lemma 4.33 to get a ppt adversary A′sdlp with success probability greater than half
of the success probability of Asdlp.

We conduct a similar analysis for Asign. Let Guess be defined analogously. Then, we have

Pr[Sig-forgePS,Asign(1n) = 1] = Pr[GameTraceΠ,Acred(n) = 1 ∧ Trace ∧Guess],

since in the event of GameTraceΠ,Acred(n) = 1∧Trace∧Guess the adversary Acred is able to convince
the verifier in (ProveCred,VrfyCred) of possession of some witness, such that the transcript opens
to ⊥. This means we can extract some (usk′, ·, ·, reginfo′), such that reginfo′ is a signature on the
message usk, that when verified with opk = pksign is valid. Since Guess is independent from the
other events, we have that

Pr[Sig-forgePS,Asign(1n) = 1] = 1
nU
· Pr[GameTraceΠ,Acred(n) = 1].

99

4 Anonymous Credential and Reputation System

As before, we have to prove that Asign has expected polynomial time, since she makes use
of extractors with expected polynomial time. But since every extractor in Asign has expected
polynomial runtime, the sum of all runtimes of the extractors is polynomial as well. Thus, Asign
has expected polynomial time as well and we can use Lemma 4.33 to get a ppt adversary A′sign
with Pr[Sig-forgePS,A′sign(n) = 1] ≥ 1

2 · Pr[Sig-forgePS,Asign(n) = 1].
Putting everything together, we have

Pr[GameTraceΠ,Acred(n) = 1] ≤2nU · (Pr[(p,G1,G2,GT , e)← G(1n), x← Zp, g ← G1 \ {1},
g̃ ← G2 \ {1}, y ← A(p,G1,G2,GT , e, g, g̃, g

x, g̃y) : gy = gx]

+ Pr[Sig-forgePS,Asign(n) = 1]
)
,

where nU is boundable by a polynomial.
Therefore, if the SDLP assumption (Definition 3.5) holds and the Pointcheval-Sanders multi-

message signature scheme is existentially unforgeable (Theorem 3.19), then Pr[GameTraceΠ,A (n) = 1]
is negligible for all adversaries A.

Thus, we have that the extended ACS is sound.

Theorem 4.50. Assuming that the SDLP assumption holds (Definition 3.5), if the general-
ized Pederson commitment scheme is computationally binding (Lemma 3.27) and if the multi-
message Pointcheval-Sanders signature scheme is existentially unforgeable (Theorem 3.19), then
the extended credential system from Construction 4.45 is sound.

4.4 Attribute-Based Anonymous Credential and Reputation System
In Sections 4.2.3 and 4.3, we developed an anonymous credential system for arbitrary policies
that supports identity escrow in case of misuse. The next step is to extend the system presented
in Section 4.3 such that it also includes the features of a reputation system. To this end, we
integrate the functionalities of creating ratings and public linkability. We call this system an
attribute-based anonymous credential and reputation system (ACRS).

4.4.1 Definition
To formally define what an attribute-based anonymous credential and reputation system is, we
further extend our extended ACS given in Definition 4.37 by algorithms and protocols to support
the features an reputation system provides.
The extensions to Definition 4.37 given next introduce a new role in the system, that is a

review token issuer. This entity often is a service provider that verifies that a user bought a
product by issuing a review token. To support this feature, we add an issuance protocol for
review tokens. Moreover, we add an algorithm enabling users to create a rating and one to
verify a given rating. Finally, we add an algorithm to link two ratings created by the same user.
This algorithm prevents that a user is able to rate some item or service more than once.

Definition 4.51. An attribute-based credential and reputation system (CRS) consists of the
following (ppt) algorithms and interactive protocols:

• Setup(1n): On input security parameter 1n, it outputs public parameters pp with |pp| ≥ n,
an attribute universe UA and a predicate universe UΦ ⊆ {φ | φ : UkA → {0, 1}, k ∈ N}.
Additionally, it (implicitly) outputs application-dependent auxiliary parameters ppaux.

• MGen(pp): On input public parameters pp, it outputs a tuple (msk,mpk, reg) of master
secret key, master public key and a user registry. The key pair (msk,mpk) also contains
the opening secret key osk and the opening public key opk.

100

4.4 Attribute-Based Anonymous Credential and Reputation System

• U.Init(pp, opk): On input public parameters pp, and open public key, it outputs a user
secret key usk and a user public key upk.

• I.Init(pp, 1`): On input public parameters pp and 1` with ` ∈ N, it outputs an issuer public
key ipk and secret key isk. The number ` denotes the number of attributes supported by
the issuer.

• R.Init(pp): On input public parameters pp it outputs a review secret key rsk and a review
public key rpk.

• CreateNym(pp, usk): On input public parameters pp and user secret usk, it outputs a
pseudonym nym and corresponding pseudonym secret psk.

• (Join(pp, opk, upk, usk),MJoin(pp, opk, upk, osk, reg)) is an interactive protocol on common
inputs public parameters pp, open public key opk, user public key upk. Secret inputs
are user secret key usk for the user and open secret key osk and user registry reg for the
(trusted) system manager. At the end of the interaction, MJoin either outputs an error
symbol ⊥ or the updated reg′. Join outputs a reginfo containing registration information.

• (ProveNym(pp, nym, usk, psk),VrfyNym(pp, nym)) is an interactive protocol on common in-
puts public parameters pp and pseudonym nym, where the user has user secret usk and
pseudonym secret psk as private input. After execution the verifier outputs a bit b ∈ {0, 1}
and we interpret 1 as accepting, 0 as denying.

• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym, (ai)`i=1, isk)) is an interactive pro-
tocol on common inputs public parameters pp, pseudonym nym and attributes (a1, . . . , a`) ∈
U `A. The user has user secret usk, pseudonym secret psk and issuer public key ipk as addi-
tional input, whereas the issuer has secret key isk. After the interaction, the user outputs
(locally) either the credential cred corresponding to ipk over her user secret usk and the
attributes (a1, . . . , a`) or a failure symbol represented by ⊥.

• (ProveCred(pp, opk, ipk, nym, φ, usk, psk, cred, reginfo),VrfyCred(pp, opk, ipk, nym, φ)) is an in-
teractive protocol on common inputs public parameters pp, open public key opk, issuer
public key ipk, pseudonym nym, and a predicate φ ∈ UΦ, where the user has user secret
usk, pseudonym secret psk, credential cred on attributes (a1, .., a`) ∈ U `A and register in-
formation reginfo as private input. After execution the verifier outputs a bit b ∈ {0, 1}
and we interpret 1 such that the credential cred satisfies the predicate φ and the verifier
accepts, 0 as denying.

• Open(opk, osk, reg, t): On input open public key opk, open secret key osk, registry reg and
a transcript t, it outputs a user public key upk or an error symbol ⊥.

• (RcvToken(pp, rpk, nym, item, usk, psk), IssToken(pp, nym, item, rsk)) is an interactive proto-
col with common inputs public parameter pp, pseudonym nym and an item identifier item.
The user has rating public key rpk, user secret key usk and pseudonym secret key psk as
additional input, whereas the issuer has the rating secret key rsk as additional input. After
the interaction, the user outputs a review token token corresponding to the item identified
by item or a failure symbol ⊥.

• Rate(pp,mpk, rpk, item, reginfo, token, usk,m): On inputs public parameters pp, master pub-
lic key mpk, review public key rpk, item identifier item, registration information reginfo,
review token token and a message m. It outputs a rating rating.

• Vrfy(pp,mpk, rpk, item, rating,m): On inputs public parameters pp, master public key mpk,
review public key rpk, item identifier item, rating rating and message m it checks whether

101

4 Anonymous Credential and Reputation System

rating is a valid rating for the item identified by item and contains the message m. It
outputs 1 if this check holds and 0 otherwise.

• Link(pp,mpk, rpk, rating, rating∗): On inputs public parameter pp, master public key mpk,
review public key rpk and two ratings rating and rating∗ it checks whether these two ratings
can be linked. It outputs 1 if this check holds and 0 otherwise.

For completeness most of the algorithms are repeated. The usage of these additional al-
gorithms in combination with the algortihms of an extended ACS is described in detail in
Section 4.4.2, where we introduce the construction of our system.

Correctness We continue to state the correctness of the system defined in Definition 4.51. We
say an attribute-based credential and reputation system is correct if (Setup,MGen,U.Init, I.Init,
CreateNym, (Join,MJoin), (ProveNym,VrfyNym), (RcvCred,VrfyNym), (RcvCred, IssCred), (ProveCred,
VrfyCred),Open) is a correct extended credential system as defined in Section 4.3.1 and addi-
tionally the following holds:

For all n, c ∈ N
all (pp, ·, ·) ∈ [Setup(1n)]
all (msk,mpk) ∈ [MGen(pp)]
all (uski, upki) ∈ U.Init with 1 ≤ i ≤ c
all j ∈ {1, . . . , c}
all (rsk, rpk) ∈ R.Init
all (nym, psk) ∈ [CreateNym(pp, usk)]
all (nym∗, psk∗) ∈ [CreateNym(pp, uskj)]
all item ∈ {0, 1}∗

all m,m∗ ∈ {0, 1}∗

all token output by RcvToken(pp, rpk, nym, item, usk, psk)↔ IssToken(pp, nym, item, rsk)
all token∗ output by RcvToken(pp, rpk, nym∗, item, uskj , psk∗)↔ IssToken(pp, nym∗, item, rsk)
all reginfoi output by (Join(pp, opk, upk, usk)↔ MJoin(pp, opk, upk, osk, regi)→ regi+1) for 1 ≤ i ≤ c
all rating output by Rate(pp,mpk, rpk, item, reginfoj , token, uskj ,m)
all rating∗ output by Rate(pp,mpk, rpk, item, reginfoj , token, uskj ,m∗)

1. Honestly generated ratings are valid:

Pr[Vrfy(pp,mpk, rpk, item, rating,m) = 1] = 1− µ(|pp|)

holds for some negligible function µ, where the probability is taken over the coin tosses of
the algorithms and their inputs’ distribution.

2. Two ratings for the same item by one user can be linked:

Pr[Link(pp,mpk, rpk, rating, rating∗) = 1] = 1− µ(|pp|)

holds for some negligible function µ, where the probability is taken over the coin tosses of
the algorithms and their inputs’ distribution.

3. Ratings are traceable by the open manager:

1− µ(|pp|) = Pr[Open(opk, osk, regc+1, rating) = upkj]

holds for some negligible function µ, where the probability is taken over the coin tosses of
the algorithms and their inputs’ distribution.

102

4.4 Attribute-Based Anonymous Credential and Reputation System

4.4.2 Construction

In this section, we present the construction of our attribute-based anonymous credential and
reputation system. The construction given next adapts the concepts used by Blömer, Juhnke,
and Kolb [BJK15] in their reputation system to introduce rating and linking of ratings to our
extended ACS (Construction 4.45). In contrast to the construction given in [BJK15], we use
credentials to show membership of the system as well as to verify the purchase of an item,
and transferred the linking of two ratings into our type 3 bilinear group setting. The use of
credentials is a logical consequence of the infrastructure we build up with our credential system.
This allows us to add the reputation system features with little effort.
We start with the construction and continue with the use of the thus created system.

Construction 4.52. Let G be a type 3 bilinear group generator (Definition 3.2), let
Πcom = (Πcom.Setup,Com,Open) be the Pedersen commitment scheme (Construction 3.23)
and let Πsign = (Πsign.Setup,Gen,Πsign.Sign,Πsign.Vrfy) be the Pointcheval-Sanders signature
scheme (Construction 3.17). Further, let HG : {0, 1}∗ → G be a hash function hashing into a
group G (Theorem 3.10).

• Setup(1n): On input security parameter 1n, Setup generates a type 3 bilinear group
(p,G1,G2,GT , e)← G(1n) and pseudonym public parameters ppnym := (gnym, hnym, p,G1)
with gnym ← G1 \ {1} and hnym ← G1. Additionally, it creates ppaux by generating public
parameters of Nguyen accumulator (Section 3.12.3) based on the bilinear group, to enable
membership proofs in predicates (Section 4.1.3.3). It returns (p,G1,G2,GT , e, ppnym).

• MGen(pp): On input public parameters pp = (p,G1,G2,GT , e, ppnym), MGen returns
(mpk,msk) := ((opk, b), osk, reg) with opening key pair (opk, osk) ← Πsign.Gen1(p,G1,G2,
GT , e), public linkability basis b← G2 and registry reg := ε.

• U.Init(pp, opk): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and opener
public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), U.Init chooses user secret key usk ← Zp, sets
public key upk := gusk

opk and returns (usk, upk).

• I.Init(pp, 1`): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and number ` ∈ N,
I.Init generates and returns issuer key pair (ipk, isk) ← Πsign.Gen`+1(p,G1,G2,GT , e) with
ipk = (g, Y0, Y1, . . . , Y`, g̃, X̃, Ỹ0, Ỹ1, . . . Ỹ`).

• R.Init(pp): On input public parameters pp = (p,G1,G2,GT , e, ppnym), R.Init generates and
returns a review token key pair (rpk, rsk)← I.Init(pp, 11).

• CreateNym(pp, usk): On input public parameters pp = (p,G1,G2,GT , e, ppnym) and user
secret usk, CreateNym generates and returns (nym, psk) ← Com1(ppnym, usk) with psk =
(usk, d).

• (Join(pp, opk, upk, usk),MJoin(pp, opk, upk, osk, reg)) is an interactive protocol with public
parameters pp = (p,G1,G2,GT , e, ppnym), opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk)
and ppnym = (gnym, hnym, p,G1). The system manager parses the opener secret key osk as
(x, y). The user computes τ̃ := Ỹ usk

opk , sends τ̃ to the system manager and runs a Σ-protocol
of form

PK
{

(usk) : upk = gusk
opk

}
.

The system manager proceeds, if and only if she accepts in this proof and e(upk, Ỹopk) =
e(gopk, τ̃) holds. If there is an entry (upk, σ, ·) in reg, the system manager returns σ and
stops. Else she chooses u ← Z∗p, computes σ := (σ1, σ2) := (guopk, (gxopk · upky)u), sends σ
to the user, adds the entry (upk, σ, τ̃) to reg and (locally) outputs the updated reg. Then,

103

4 Anonymous Credential and Reputation System

the user checks the signature’s validity via Vrfy(pp, opk, σ). If the check fails, she (locally)
outputs ⊥, and else registration information reginfo = (σ, opk).

• (ProveNym(pp, nym, psk),VrfyNym(pp, nym)) is an interactive protocol with public param-
eters pp = (p,G1,G2,GT , e, ppnym) and ppnym = (gnym, hnym, p,G1). The prover parses the
pseudonym secret psk as (usk, d) and performs an interactive zero-knowledge argument of
knowledge of form PK

{
(usk, d) : nym = gdnymh

usk
nym

}
with the verifier.

• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym, (ai)`i=1, isk)) is an interactive pro-
tocol with public parameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1)
and issuer public key ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`). The receiver parses the pseudonym
secret psk as (usk, d) and generates ppiss = (g, Y0, p,G1) := BlindInit(pp, ipk, {0}) (ignoring
ppnym in pp) and computes (C, (usk, r))← Com1(ppiss, usk). Then, she sends C to the
issuer and runs a Σ-protocol of form

PK
{

(usk, d, r) : nym = gdnymh
usk
nym ∧ C = grY usk

0

}
with the issuer. As in (BlindRcv,BlindIssue), the issuer now chooses u ← Z∗p, computes
(σ′1, σ′2) := (gu, (gx·C ·

∏`
i=1 Y

ai
i)u) and sends (σ′1, σ′2) to the receiver. The receiver computes

σ = (σ′1, σ′2·(σ′1)−r), and checks the signature’s validity via Vrfy(pp, ipk, (usk, a1, . . . , a`), σ).
If the check fails, she (locally) outputs ⊥ and else a credential cred = (σ, (a1, . . . , a`), ipk).

• (RcvToken(pp, rpk, nym, item, usk, psk), IssToken(pp, nym, item, rsk)) is an interactive proto-
col, where RcvToken performs the same steps as RcvCred except that it uses rpk =
(g, Y0, Y1, g̃, Ỹ0, Ỹ1) instead of ipk and HZp(item) instead of (ai)`i=1. Similarly, IssToken per-
forms the same steps as IssCred except that it uses rsk instead of isk, and again, HZp(item)
instead of (ai)`i=1. After unblinding the computed signature σ, the user checks the sig-
nature’s validity via Πsign.Vrfy(rpk, (usk, HZp(item)), σ). If the check fails, she (locally)
outputs ⊥ and else a review token token = (σ, item, rpk).

• (ProveCred(pp, opk, ipk, nym, φ, usk, psk, reginfo, cred),VrfyCred(pp, opk, ipk, nym, φ)) is an in-
teractive protocol with public parameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym,

hnym, p,G1), opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk) and issuer public key
ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`). The prover parses her private input to psk = (usk, d),
reginfo = ((σ̂1, σ̂2), opk), cred = ((σ1, σ2), (a1, . . . , a`), ipk).
If Vrfy(pp, ipk, (usk, a1, . . . , a`), σ) = 0, Vrfy(pp, opk, usk, σ̂) = 0 or φ(a1, . . . , a`) = 0 holds,
she outputs ⊥ and stops. Else she chooses s← Z∗p, sets σ̂′ := (σ̂s1, σ̂s2) and sends σ̂′ to the
verifier. Next, she chooses (u, r)← Z∗p×Zp, sets σ′ := (σ′1, σ′2) := (σu1 , (σ2 ·σr1)u) and sends
σ′ to the verifier. For i = 1, . . . , ` she generates (Ci, (ai, di)) ← Com(ppnym, ai) and sends
Ci to the verifier. The user computes a non-interactive argument π using the Fiat-Shamir
heuristic (Construction 3.55) on the Σ-protocol of form

PK

(usk, d, (ai, di)`i=1, r) :

e(σ′1, g̃)re(σ′1, Ỹ0)usk ∏̀
i=1

e(σ′1, Ỹi)ai = e(σ′2, g̃)
e(σ′1, X̃)

∧ nym = gdnymh
usk
nym

∧̀
i=1

Ci = gdinymh
ai
nym ∧ φ(a1, . . . , a`) = 1

∧ e(σ̂′1, Ỹopk)usk = e(σ̂′2, g̃opk)
e(σ̂′1, X̃opk)

,

where the proof of φ(a1, . . . , a`) = 1 is instantiated via the technique for proofs of partial
knowledge (Construction 3.59) and the protocols from Section 4.1.3. The verifier (de-
terministically) accepts, if and only if σ′1 6= 1 6= σ̂′1 holds and π is valid according to
Construction 3.55.

104

4.4 Attribute-Based Anonymous Credential and Reputation System

• Open(opk, osk, reg, t): On input open public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), open
secret key osk, registry information obtained from MJoin and a transcript t = ((σ̂′1, σ̂′2), ·),
Open first uses VrfyCred to check, whether the transcript is valid. Instead of a transcript, it
is also possible to use a rating as input since it also includes (σ̂′1, σ̂′2). In this case, Open uses
Vrfy instead of VrfyCred. If one of the verification steps outputs 0, Open outputs ⊥. Else
it iterates through the entries (upk, ·, τ̃) from reg, until e(σ̂′2, g̃opk)e(σ̂′1, X̃)−1 = e(σ̂′1, τ̃)
holds. If it finds such an entry, it outputs upk, and else outputs ⊥.

• Rate(pp,mpk, rpk, item, reginfo, token, usk,m) is a non-interactive algorithm with public pa-
rameters pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1), master public key
mpk = (opk, b) with opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk) and review
token issuer public key rpk = (g, Y0, Y1, g̃, X̃, Ỹ0, Ỹ1). Further, Rate parses reginfo =
((σ̂1, σ̂2), opk) and token = ((σ1, σ2), item, rpk).

If Πsign.Vrfy(opk, usk, (σ̂1, σ̂2)) = 0 or Πsign.Vrfy(rpk, (usk, HZp(item)), (σ1, σ2)) = 0 it out-
puts ⊥ and stops. Otherwise, it chooses s ← Z∗p, sets σ̂′ := (σ̂s1, σ̂s2). Next, it chooses
(u, r) ← Z∗p × Zp, sets σ′ := (σ′1, σ′2) := (σu1 , (σ2 · σr1)u). For public linkability, it chooses
ζ ← Zp and computes values L1 := HG1(rpk, item)ζ+usk and L2 := bζ .

To create the rating itself it obtains signature scheme (FS.Sign,FS.Vrfy) by applying the
Fiat-Shamir heuristic applied to the following Σ-protocol:

PK

(usk, ζ, r) :

e(σ̂′2, g̃opk)
e(σ̂′1, X̃opk)

= e(σ̂′1, Ỹopk)usk ∧ L1 = HG1(rpk, item)ζ+usk ∧ L2 = bζ

∧ e(σ′2, g̃)
e(σ′1, X̃) e(σ′1, Ỹ1)HZp (item) = e(σ′1, g̃)r e(σ′1, Ỹ0)usk

.

Note that w := (usk, ζ, r) is a witness for instance x := (pp,mpk, rpk, item, σ̂′, σ′, L1, L2) of
the relation underlying the Σ-protocol given above. Finally, it computes ρ← FS.Sign(x,w,
m) for x,w defined above and outputs a rating rating = (m, item,mpk, rpk, σ̂′, σ′, ρ, L1, L2).

• Vrfy(pp,mpk, rpk, item, rating,m) is an non-interactive algorithm with public parameters
pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1), master public key mpk =
(opk, b) with opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), review token issuer pub-
lic key rpk = (g, Y0, Y1, g̃, X̃, Ỹ0, Ỹ1), and a rating rating = ((m, item), (mpk, rpk, σ̂′, σ′, ρ,
L1, L2)) for item.

Vrfy applies the Fiat-Shamir heuristic to the Σ-protocol described in Rate. We denote the
resulting signature scheme by (FS.Sign,FS.Vrfy).

Finally, it runs FS.Vrfy((pp,mpk, rpk, item, σ̂′, σ′, L1, L2),m, ρ) and outputs the same as
FS.Vrfy.

• Link(pp,mpk, rpk, rating, rating∗) is an non-interactive algorithm with public parameters
pp = (p,G1,G2,GT , e, ppnym), ppnym = (gnym, hnym, p,G1), master public key mpk =
(opk, b) with opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), review token issuer
public key rpk = (g, Y0, Y1, g̃, X̃, Ỹ0, Ỹ1), and ratings rating = ((m, item), (mpk, rpk, σ̂′, σ′, ρ,
L1, L2)) and rating∗ = ((m∗, item), (mpk, rpk, σ̂′∗, σ′∗, ρ∗, L∗1, L∗2)) for item. First, it checks
whether rating and rating∗ are valid ratings using the Vrfy algorithm of this system. If one
of these check fails, output ⊥ and stop. Otherwise, return 1 if and only if the following
equation holds:

e

(
L1
L∗1
, b

)
= e

(
HG1(rpk, item), L2

L∗2

)
.

105

4 Anonymous Credential and Reputation System

Usage of the System Let us give further information about the usage of these additional
features. The system developed in Section 4.3 provides us with all tools for access control and
even an identity escrow mechanism in case of misuse. However, in practice it is also desirable
to rate the service a user used. Construction 4.52 extends this system by these functionalities.
For illustration, we consider a typical usage of our system: Suppose a user already obtained

some credentials including the registration information, and wants to use some service that
grants access via our system. Further, assume that the user’s credentials are sufficient to satisfy
the service’s policy. As described before, the user runs the protocol (ProveCred,VrfyCred) to show
that she is allowed to use the service. After successful execution, access is granted to the user.
The service provider in general is interested in the opinion of the user after using the service.
Therefore, the service provider triggers an execution of the new protocol (RcvToken, IssToken)
to issue a review token for the used service and the user it was granted for. The review token is
realized by a credential with one attribute namely the item bought.
Now, a user can use her registration information and the issued token to create a review using

Rate. The review essentially is a signature of knowledge on an arbitrary rating text m ∈ {0, 1}∗
asserting that the signer is in possession of both, a valid registration information (with respect
to some master public key) and a valid review token (with respect to some review token public
key). Consequently, everyone that sees a review can verify (using algorithm Vrfy) whether the
signer is actually a registered user in the system and whether she actually was granted access
to the service.
A user publishes a created rating on the reputation board. The reputation board is a system-

wide storage for ratings containing entries of the form (rpk, item, rating). Here, rpk denotes the
service providers public key, item denotes the service/item the rating is about and rating denotes
the rating output by a run of the algorithm Rate. Usually, a reputation board has no logic at
all. However, we assume for convenience that the reputation board verifies a rating before
publishing, i. e. runs the algorithm Vrfy.

Besides these basic rating system, users can publicly link two ratings using the algorithm Link.
Every user includes linking information (values L1 and L2) in every rating created. This feature
enables every entity with access to the reputation board, probably even outsiders, to check
whether two ratings were created by the same user for the same item. This is not permitted
in our system; each user is only allowed to give a single rating for an item of a specific service
provider.

Remarks on Security Since further extensions to the security model given in Section 4.3.2
would complicate it even further, we do not explicitly adapt it for the extensions made in this
section. Nevertheless, we describe how the model needs to be adapted for the new system.

Our definition of anonymity (Definition 4.39) roughly needs to be extended by two proper-
ties. First, we need to make sure that a user stays anonymous while receiving a review token.
This includes that RcvToken should not reveal anything about the user, in particular her usk.
Formally, this is captured analogously to anonymity when executing RcvCred (Definition 4.20.3).
Therefore, anonymity for RcvToken holds by similiar arguments as given in Lemma 4.30. Sec-
ond, we need to assure that ratings maintain the user’s anonymity. Formally, two ratings output
by Rate for the same pp, mpk, rpk, m and item but different reginfo, token and usk should be
(computational) indistinguishable.
The soundness definition (Theorem 4.44) needs to be extended by two additional games. First,

we talk about the unforgeability of ratings. A user, or a group of users, should not be able to
give a rating without joining the group first, as well as giving a rating without the token to rate
the specific item. To prove this, we would construct a game similar to those in Section 4.3.2.2.
Second, we explain how public linkability of ratings changes the security definitions. A user
should not be able to give more than one rating on the same item without those being publicly
linkable. Analogously a group of n users should not be able to give n + 1 ratings on the same

106

4.5 Further Extensions

item where no pair of those ratings is publicly linkable. To prove this we would adapt the
experiment based proof given in [BJK15].
Furthermore, we need to require certain properties of the hash functions HZp and HG1 used in

Construction 4.52. To guarantee security, HZp theoretically needs to be collision-resistant and
HG1 theoretically needs to be modeled as a random oracle. However, in practice both functions
can be replaced by good cryptographic hash functions, such as SHA-2 or SHA-3. Let us argue
why this properties are crucial from a theoretical point of view. The collision resistance of HZp
ensures with high probability that the hashes of the attribute values for two different items do
not collide. This results in different review tokens for different items for the same review token
issuer and user. To model HG1 as a random oracle is a technical detail to ensure anonymity.
To ensure that the Σ-Protocol given in algorithm Rate of Construction 4.52 is zero-knowledge,
we need to be able to simulate it. Without HG1 being modeled as a random oracle the values
L1 and L2 would be distributed dependently on each other since ζ is used in both values. This
makes it impossible to simulate the protocol properly. The random oracle fixes this issue by
randomizing the base of L1.

4.5 Further Extensions
We proceed with possible extensions to our anonymous credential and reputation system. We
did not include them into definitions and constructions as they would have complicated our
security model and proofs unnecessarily, although they are rather simple to add practically.
However, this means we have not proven security of the following extensions. Therefore we
argue briefly, when needed, why they intuitively do not interfere with our security notions.

4.5.1 Revocation

We already introduced the Open algorithm, which allows a trusted system manager to identify a
user who misbehaves, e. g. rates the same item many times. The system manager should be able
to revoke this user from the system. Furthermore, it is reasonable that credential issuers want
to revoke distinct credentials from the system. Both should happen verifier-locally, i. e. verifiers
who fetched the most recent list of revocation information can check for themselves whether a
user or credential has been revoked. Especially there is no need to interact with a trusted third
party during a verification process.

4.5.1.1 Revocation of Users

Revoking a user is a valuable mean when a user acts maliciously within the system or loses
her secret key to an attacker. To revoke a user in our system the manager simply can add the
tracing information (upk, τ̃) to a revocation list RL. Then the deterministic VrfyCred algorithm
additionally needs to check whether Open with RL instead of reg as input does not output ⊥ for
the transcript at hand. This check can be performed on already accepted proofs and therefore
especially on ratings. For security, intuitively spoken, an accepted proof/rating from a revoked
user suffices to break traceability, since the system manager could not open it correctly, i. e.
would output ⊥ or a wrong user.
This integration is simple and allows revocation in hindsight, but is not very efficient for

upcoming verification protocols. For example a verifier needs to iterate through all entries in
RL and compute several pairings when interacting with a non-revoked user. If many users
are revoked over time, this check may be impractical as users need to wait too long until some
confirmation. An intuitive way to overcome this is that the system manager issues a personalized
“non-revoked” credential to a joining user. When revoking a user, this credential needs to
be revoked (Section 4.5.1.2) additionally to publishing the tracing information. ProveCred is
extended by a proof that the “non-revoked” is valid at this point in time, i. e. with respect to

107

4 Anonymous Credential and Reputation System

the current information on RL. A verifier who fetched RL is able to check this proof more
efficient than using Open. Nevertheless, using Open seems inevitable for our construction when
checking already accepted transcripts and ratings for revocation.

4.5.1.2 Revocation of Credentials

Besides the revocation of users by the system manager, some issuers may need the option to
revoke single credentials they have issued. This can already be achieved via a unique identifier
chosen by the issuer, fixed to the credential and on revocation added to a black list or deleted
from a white list. This approach demands that (ProveCred,VrfyCred) contains a proof, stating
“identifier in cred is (is not) on white list (black list)”. The white list approach is simple to
integrate via the predicate φ and a set membership proof (Construction 4.14). A black list
could efficiently be integrated via a non-membership protocol, possible via AND-concatenated
inequality proofs (Section 4.1.3.2) or probably a universal accumulator like from Li, Li, and
Xue [LLX07]. Note, that the anonymity of a user is disclosed to the point that the credential
contains an identifier (not) on the list. If a white list contains only a single identifier which has
really been issued within a credential a user might be tracked. Therefore, this approach should
only be used with a trusted issuer, as users cannot check which identifiers were issued.

4.5.1.3 Expiration of Credentials

Expiration or a time to live of credentials can be seen as a kind of revocation happening au-
tomatically after some time span. This feature can be integrated using the predicates of our
system. An issuer can add an expiration date in form of a timestamp to issued credentials.
Users would then need to show the timestamp lies within the required interval via a range proof
(Section 4.1.3.3).

4.5.2 Non-Frameability of Users via Judge Algorithm

Regarding accountability, no party should be able to falsely accuse a user of having performed
some action within the system. Such a property is called non-frameability in the field of group
signatures. This especially targets the system manager, whose outputs of Open are not verifiable
in our actual construction.
We can use the Judge-mechanism given in the group signature scheme of Pointcheval and

Sanders [PS16, Appendix B]. In Join a user additionally generates (usk′, upk′) of some secure
signature scheme and sends a signature on upk to the system manager. The Open procedure,
in case of success, outputs a non-interactive proof of knowledge π (via the Fiat-Shamir heuris-
tic (Construction 3.55)) of the correct tracing information of user with upk. Additionally, the
correct signature of upk under upk′ is output. This ensures, that the user with upk′ verifiably
joined the system with upk, as else a signature under upk′ would have been forged. Note, that
the tracing information is not disclosed, hence only the single opened transcript can be linked to
the user. Therefore, the anonymity proof still works and our system remains anonymous. The
Judge algorithm only checks the signature and runs the verifier part of the Fiat-Shamir heuristic
on π.

4.5.3 Removing the Random Oracle

In the security proofs of our extended ACS we rely on the random oracle model (ROM). The
ROM is not always favorable and we give an intuition how to remove it as an assumption for our
extended system’s security. The random oracle is used within the group signature scheme, which
we employ to assure traceability of users in our system while remaining their anonymity at a high
degree. In particular we used the group signature scheme proposed by Pointcheval and Sanders
[PS16, Appendix B] and combined its Sign method with the (ProveCred,VrfyCred)-protocol from

108

4.5 Further Extensions

our basic ACS (Construction 4.25). However, we could have extended the basic ACS using
any other group signature scheme with the same security properties by signing a completed
transcript at the end of an interactive, basic (ProveCred,VrfyCred) execution. For example we
could have used the efficient scheme proposed by Ateniese et al. [Ate+05] which is an adaption
of [Bic+10] without random oracle. Since the latter scheme is very similar to the one we use,
an analogue adaption seems possible, minimizing the changes for Construction 4.45. Note, that
this modularity of replacing the group signature scheme in order to remove the random oracle is
only meaningful in the extended ACS. This is due to the fact that we rely on the random oracle
to create non-interactive arguments within the Rate method.

4.5.4 Credentials for k-time Use

Another interesting feature is restricting credentials to at most k uses. The most relevant case
might be the one-time use, for example when using credentials as a kind of voucher. Intuitively
one could say the public linkability information achieves exactly this behavior. Remember, it
implies using several review tokens to output two or more unlinkable ratings for the same item
is infeasible for a single user. This is desirable for ratings, however, a user might receive two
different vouchers for the same item and should be able to use both without being linked.
The idea is analogue to Shamir’s secret sharing scheme [Sha79]. The user chooses a polynomial

P of degree k with P (0) = usk uniformly at random. In particular, the user chooses coefficients
ai ← Zp for i = 1, . . . , k, which are blindly added to the credential by the issuer. When executing
ProveCred the user is asked to evaluate P at the challenge c and output the result R. The user
can prove R = P (c) = usk +

∑k
i=1 aic

i with a generalized Schnorr protocol. After a successful
proof, the verifier interpolates for each combination of (c,R) with k previously accepted points
(ci, Ri) a polynomial P ′ and computes usk′ = P ′(0). If usk′ is valid, i. e. g̃usk is the correct
tracing information for the transcript, the credential has been used more than k times and the
user disclosed her identity. For large values of k this is not very efficient, because many (wrong)
combinations of points from other users with different polynomials might be tested. However,
the risk and cost of disclosing usk should deter users from using such credentials too often.

4.5.5 Disable Rating Own Products

A problem inherent to reputation systems is the intent of rating products worse or better than
they are, e. g. as competitor or seller respectively. We deliberately allow rating issuers to join
the system as user, e. g. to buy and resell items, for which a rating token is provided. However,
our current construction provides no mean to prevent issuing a rating token to the own user
identity. By public linkability this method allows at most one undetectable rating, assuming
the issuer can join the system as user only once. We considered this as minor problem and did
not cover it in the construction.
To avoid such scenarios we need to require that an issuer is always bound to a user identity,

i. e. a public key upk of form gusk in our system. Particularly, an issuer with rpk should only
be accepted by users or verifiers, if she possesses a verifiable certificate stating that upk and rpk
belong to the same entity. In our system the issuer could first join via Join using a upk from
U.Init and then generate rpk via R.Init. Afterwards she could go to the system manager, prove the
public keys belong to her and for example obtain an ordinary signature signing both together.
Next, Rate needs to be changed, such that a proof logg(upk) 6= usk is included, where usk is
included in the rating token. This can be handled via an inequality proof as Construction 4.12.
Assuming that users are restricted to have only one upk within the system, this method prevents
the usage of rating tokens given from an issuer to her own user identity.

109

4 Anonymous Credential and Reputation System

4.5.6 Invalidation of Ratings
At some point in time a user might decide a previous rating of herself should be invalidated, for
example because she changed her mind about a product.
Our first proposal assumes a central reputation board managed by an honest party. For

invalidation the user authenticates herself as the rating’s author, e. g. by proving knowledge
of usk related to (σ̂′1, σ̂′2) from the rating. This can exactly be done as in the Schnorr proof
of the Rate algorithm. If verification succeeds, the manager should delete the rating from its
board. The approach obviously demands a manager, who acts honestly and deletes the rating.
Furthermore, no copies of this rating should exist at other places, because they remain valid.
Managers would need to store deleted ratings to check whether an incoming rating is not an old
copy. However, usually we cannot assume a single board where all ratings are stored. In fact
a feature of our system is that ratings can be published anywhere and checked verifier-locally,
possibly supported by an up-to-date revocation list.
The second idea is to have a central, lightweight invalidation list allowing for verifier-local

invalidation checks, which circumvents to have a single (trusted) reputation board. An entry
of the list needs to contain a verifiable proof that the original author demanded invalidation of
her rating. For example, the user can use the Fiat-Shamir heuristic to output a proof over usk,
such that e(σ̂′2, g̃′)e(σ̂′1, X̃ ′)−1 = e(σ̂′1, Ỹ)usk holds for (σ̂′1, σ̂′2) from the rating. This proof should
additionally sign the old rating and perhaps a message like “rating invalid”. Soundness, i. e. the
infeasibility of deleting foreign ratings, follows because knowledge of usk is proven. Anonymity
still holds due to the proof’s zero-knowledge property. A more efficient, yet potentially insecure
method is to store ζ from the rating creation and publish gζ to the list in case of invalidation. A
verifier only needs to check whether e(gζ , b) = e(g, L2) holds for L2 of a rating. This approach
might harm the anonymity of the user who invalidates her rating and requires deeper security
analysis.

4.5.7 Editability of Ratings
A user who changed her mind about some product may favor to edit an old rating instead
of deleting it completely. This can essentially be done by deleting/invalidating the old rating
(Section 4.5.6) and outputting a new rating bound to the invalidation information. Concretely,
the user could compute a signature of knowledge of usk as above, which signs the old rating
alongside the text of a new rating message. Again, it potentially suffices to compute gζ and
output a signature of knowledge of ζ, signing the edited rating and its new message. Both
approaches can be applied several times by editing the most recent rating on the central list of
edited ratings.

110

Part II

Practical Realization

111

5 From Theory to Practice

On the theoretical side, there are several security assumptions that need to be reflected in
the implementation of our system to meet the required security goals (cf. Section 4.2.2). This
section will emphasize that not all of those assumptions can be directly translated into a practical
implementation and how those have been adapted to fulfill the required security goals.

Random Oracle Model In our security proofs we sometimes assume the existence of a random
oracle, the so called random oracle model. To realize this in practice, one would have to first
choose a random function out of all possible random functions and then share it among all
participating parties. But not every truly random function can be encoded in polynomial size,
thus there cannot exist an efficient way to share every possible random function. Therefore, we
need to use another method, which is efficient and closely resembles a random function. What
we do instead is using a cryptographic hash function. By using a good cryptographic hash
function such as SHA-256 [15], we achieve efficient generation of seemingly random outputs.
The outputs are not truly random since functions like SHA-256 are deterministic. But, by

definition of a cryptographic hash function, there is no way of getting any information about the
input given only the output. Therefore, it has all properties of a random oracle for our scenario.
We have to be careful to only use state-of-the-art hash functions though, since using outdated
hash functions such as SHA-1 would lead to possible security breaches [WYY05].

Secure Channels Since we are constructing an anonymous credential system, we want to make
sure that every entity can only obtain the relevant information that is needed for him. Thus, if
two participants of the ACS communicate, a third entity should not be able to know the contents
of the communication. Therefore, we want to have confidential channels to send all messages
over. To be more specific, we also require forward secrecy [Gün90], else our security proof for
credential unforgeability (cf. Lemma 4.35) does not hold.
Furthermore, we want our channels to be authenticated. Else, there is the possibility of imper-

sonation through a so called man-in-the-middle attack (MTM). There, an adversary intercepts
the encrypted messages between two parties A and B. To A, the adversary poses as B and to B
he poses as A. Thus, both A and B think they speak directly with each other, while in reality
they talk to the adversary. Since we only have confidentiality between direct communication
partners, the adversary is able to read every message.
To provide secure channels, we can simply use TLS. It is important to encrypt everything with

TLS though, since we want to prevent a leakage of disclosed attributes or any data manipulation.
This means that every protocol and every other communication has to be encrypted.
Since we can use existing tools to encrypt with TLS, this approach is easily implemented.

Another thing we get for free with this is forward secrecy as well. This ensures that even if a
key is compromised, stored data from before can still not be decrypted.

Public Key Infrastructure For the prevention of MTM attacks we assumed the existence of
public keys to authenticate the communication. Since in practice such keys do not just exist,
they need to be generated and distributed. Furthermore, users need some way to make sure
that the distributed keys are not compromised. We do this by using a public-key infrastructure.
In such a structure, every public key is certified by a trusted authority. Therefore, an adversary

113

5 From Theory to Practice

would have to forge such a certificate or compromise a participant that both users trust in order
to do the MTM, which is hard or not probable respectively.
Optimally, we would use TLS public keys and build our PKI that way. Since this would be

a lot of overhead for our simple example application, we instead provide unique identities for
all entities ourselves. We do this by putting all public information of an entity into an identity
object. If an entity has no such information, we simply choose a random element.
Note that this approach has some flaws. Choosing a random element might result in duplicate

entities since a public identity is not necessarily unique if it is chosen at random. But since we
only showcase the library functionalities within the example application in a simple manner,
this approach ensures the desired properties. It is important to point out that a real-world
application should use TLS public keys and a real PKI though. Furthermore, the user public
key should not be publicly known (the system manager knows it though), since we want users to
be anonymous. The public keys of verifier or issuer instances must be publicly known though,
since users need these public keys to initialize the TLS handshake.

(Non-)Interactive Protocols With the ACS being constructed as it currently is, there exists
a rather trivial attack to break the credential unforgeability.
An adversary seeing some message(s) from a prover P to a verifier V can send the same

message(s) to V to gain access herself. Note that this attack is not possible if interactive protocols
are used, since a verifier chooses a random challenge for every execution of the protocol and the
exact same message(s) would therefore most likely not work. For non-interactive protocols, this
attack would work if no auxiliary information is used though.
Similarly, an adversary can play the role of a verifier in a protocol with some prover P

and concurrently play the prover in a protocol against some verifier V . Then, the adversary
could simply send the messages sent by P to V and vice-versa. Thus, V believes that the
adversary possesses credentials to access V ’s service. This attack is called a relay attack. Even for
interactive protocols, the adversary could choose the same challenge as the verifier to successfully
prove the possession of the prover’s credentials just by using his messages.
In our implementation, we use only non-interactive protocols. Furthermore, we use the iden-

tity of the verifier together with the policy information as auxiliary information. We do this
specifically by applying the fiat-shamir-heuristic on interactive protocols to transform it into a
non-interactive proof (cf. Section 3.10) and then adding the public identity together with the
policy information as auxiliary information in these proofs. By including the public identity of
the verifier within the proof, she can check if the proof was meant for her or not. Note that with
this approach, we prevent replay and relay attacks at once. In both cases, the verifier would
check if she is the correct recipient for the proof and reject if that is not the case. Additionally,
by including the policy information within the auxiliary information within the proof, the ad-
versary also can not change the policy to always accept anything the prover sends and then use
this to initialize the opening with the system manager. The usage of non-interactive protocols
also enables us to utilize the RESTful API for the example application, since this would not be
possible with stateful protocols.

Support for More Predicates An important remark is that our security model does not support
proving knowledge of attributes with credentials issued by different issuers. It only covers proofs
of possession of a single credential from a single issuer. Through an application-dependent
approach, this is extendable to an AND-composition of (threshold-)sub policies, by expecting
multiple executions of the (ProveCred,VrfyCred)-protocol with the same pseudonym. But adding
OR-gates this way is not possible without letting the verifier know which policies the prover
fulfills, which goes against our security goals. However, in our implementation we support the
more complicated predicates (cf. Section 6.4.4.2). There, proving to fulfill a policy with AND-
gates, OR-gates and threshold-gates has to be done in a single proof. Still, our security model

114

can be extended to cover this functionality. For example, instead of using a single credential
in ProveCred a vector of credentials is used, while VrfyCred gets a vector of issuer public keys.
Furthermore, credential unforgeability would require that no ppt adversary is able to convince
a verifier that he fulfills a policy if he was not issued credentials that fulfill the policy. Since
covering this functionality would result in more complicated definitions and especially more
complicated proofs of security, we decided to only use the simple security model.

115

6 Implementation

Contents

6.1 Introduction . 118
6.2 Architecture . 118
6.3 Building Blocks . 119

6.3.1 Commitment Schemes . 119
6.3.1.1 Pedersen Commitment Scheme . 121
6.3.1.2 HashThenCommit Commitment Scheme 121

6.3.2 Arguments of Knowledge . 122
6.3.2.1 Sigma Protocols . 122
6.3.2.2 Generalized Schnorr Protocol . 124
6.3.2.3 Damgård’s Technique . 125
6.3.2.4 Fiat-Shamir Heuristic . 126

6.3.3 Signature Schemes . 127
6.3.3.1 Fiat-Shamir Signature Scheme . 127
6.3.3.2 Pointcheval-Sanders Signature Scheme 127

6.3.4 Accumulators . 128
6.3.4.1 Nguyen Accumulators . 130

6.4 Zero-Knowledge Component . 131
6.4.1 Protocol Overview: . 132
6.4.2 Building Blocks of the Zero-Knowledge Component 133

6.4.2.1 Generation of Generalized Schnorr Protocols 133
6.4.2.2 Secret-Sharing . 135
6.4.2.3 Proofs of Partial Knowledge . 135

6.4.3 Protocol Overview: . 137
6.4.3.1 Join/MJoin . 137
6.4.3.2 ProveNym/VrfyNym . 138
6.4.3.3 IssueCred/RcvCred . 138
6.4.3.4 ProveCred/VrfyCred . 138

6.4.4 ProveCred/VrfyCred . 138
6.4.4.1 Policies . 138
6.4.4.2 ProveCred/VrfyCred Implementation 139

6.4.5 Common Input . 140
6.5 Reputation System . 141

6.5.1 Ratings/Reviews . 141
6.5.2 Reusing the Credential Issuing Structure . 142
6.5.3 Reviewing . 142
6.5.4 Verifying and Linking . 142

6.6 API . 142
6.6.1 Setup . 143

117

6 Implementation

6.6.2 Actor creation . 143
6.6.2.1 System Manager . 143
6.6.2.2 Issuer . 143
6.6.2.3 ReviewTokenIssuer . 144
6.6.2.4 User . 144
6.6.2.5 CredentialVerifier . 144
6.6.2.6 ReactReviewVerifier . 145

6.6.3 Actor interaction . 145
6.6.3.1 Issuing of credentials . 145
6.6.3.2 Proving of credentials . 146
6.6.3.3 Reviewing of items . 147
6.6.3.4 Verification of reviews . 148

6.7 Example Application . 148
6.7.1 Architecture . 148
6.7.2 Use Cases . 150

6.7.2.1 Initialization . 150
6.7.2.2 Pseudonym Creation and Product Hosting Credentials Issuing 151
6.7.2.3 Hosting A New Product . 153
6.7.2.4 Buying and Rating A Product . 153

6.1 Introduction

In this chapter, we give further documentation for the library additional to the JavaDoc that
is provided for the code itself. We start by showing an overview of the architecture before
elaborating the individual modules. One of the larger modules is the zero-knowledge component,
which is explained in detail. Furthermore, we explain how the different entities interact with each
other and how the library has to be used to develop a secure application. At last, we showcase
our implementation with our example application, illustrating a possible implementation.

6.2 Architecture

In order to ease the use and extendability of the library it was separated into multiple modules.
This section will explain the purpose and the dependencies between these individual modules.
To be able to reuse a set of lower-level cryptographic functions the modules make use of

the two libraries CrACo and PBC1. From the CrACo library features like the Pointcheval-
Sanders signature scheme, secret sharing and low-level policies are used. The PBC library
provides primitives for pairing-based cryptography, but also common groups from algebra. It
also comes with a serialization framework which is also being used in the CrACo library. Thus,
for consistency, the modules developed as part of the ACRS were also developed utilizing these
serialization methods.
The individual modules are realized as Maven sub-modules2 which are aggregated using a

parent pom.xml. This parent module references the following sub-modules:
1https://sfb901.uni-paderborn.de/de/projects/tools-and-demonstration-systems/

tools-from-the-1st-funding-period/craco/
2https://maven.apache.org/

118

https://sfb901.uni-paderborn.de/de/projects/tools-and-demonstration-systems/tools-from-the-1st-funding-period/craco/
https://sfb901.uni-paderborn.de/de/projects/tools-and-demonstration-systems/tools-from-the-1st-funding-period/craco/
https://maven.apache.org/

6.3 Building Blocks

building-blocks: provides the implementation for standalone primitives like commitment
schemes (cf. Section 6.3.1) or signature schemes (cf. Section 6.3.3). This sub-module
only depends on the CrACo and PBC libraries and thus is independent of the actual
ACRS implementation.

protocols: provides primitives which allow the implementation of the Zero-Knowledge Com-
ponent (cf. Section 6.4). Implementations for the Schnorr Protocol, Damgard or Accu-
mulators reuse the elements from the building-blocks module while still not mandating
specific predicates.

predicate-protocols: provides the implementation for the predicates which are required in
order to construct the ACRS with the anticipated features. Namely, equality-, inequality-,
range and set membership-proofs are implemented here.

acs: provides the actual implementation of the ACRS. It contains the high-level actor classes
which expose the functionality of the system in a consumer-friendly form. This module
is the interface as described in Section 6.6 and is the API against which an user of the
library should implement.

support: provides optional functionality which may not be required for an actual ACRS use-
case, but still might be useful for consumers of the library. Currently it only exports utility
functions for encrypting serializable objects to arbitrary streams.

As illustrated in Figure 6.1, the upper layers in the architecture utilize lower-level modules
and thus depend on them.
While the intended interface for applications consuming the library is the acs module, the

other modules can still be used in order to either, achieve greater control about the internals of
the credential system, or also to reuse parts for completely credential system unrelated use-cases.
For example, the commitment or signature schemes from the building-blocks module can be
reused in a different context with this architecture.

6.3 Building Blocks
In this section we describe the basic building blocks (cf. Chapter 3) we implemented and
reason the design decisions that we took. One challenge in realizing the building blocks was
to achieve interoperability. For achieving this we oriented on the design criteria of CrACo (cf.
Section 6.2) and decided to use interfaces for reflecting the theoretical properties of cryptographic
constructions. A more detailed example of this approach is described in Section 6.3.1. Later
sections rather use class diagrams to describe the important parts of the implementation.

6.3.1 Commitment Schemes

In our library we want the option that a sender does not have to reveal the content of her message
immediately, but is able to do so at a later point. This can be achieved through commitment
schemes. A commitment scheme is a non-interactive protocol between a sender and a receiver.
The sender first commits to a message and then sends this commitment to the receiver. When
this commitment arrives, the receiver will not be able to gain any information about the content
inside the commitment.

For representing the functionality and theoretical properties of commitment schemes (cf. Sec-
tion 3.5) we created the interfaces which need to be implemented by concrete commitment
schemes realizations (like the Pedersen commitment scheme, cf. Section 6.3.1.1). The interfaces
can be seen in Table 6.1 with a brief description:

119

6 Implementation

Commitment-
Schemes

Credentials Attributes

Accumulators

Damgard Schnorr

Inequality-Proof

Policies Equality-Proof

Issuer

Public-
Parameters User

Encrypted-
Serializer support

acs

predicate-protocols

protocols

building-blocks

...

...

...

...

...

Figure 6.1: The layer based architecture of the developed library.

Table 6.1: Overview of interfaces for a commitment scheme
Interface Short description
CommitmentScheme Main class handling most functionality
CommitmentSchemePublicParameters Encapsulates the public parameters
CommitmentSchemePublicParametersGen Generator for the public parameters
CommitmentPair Encapsulates the commitment return values
CommitmentValue Encapsulates the commitment value
OpenValue Encapsulates the open value

In order to allow consumers of commitment schemes like Damgård’s technique (cf. Sec-
tion 6.3.2.3) to only work on the general interfaces it is necessary to use decoupled value types.
Hence, concrete data types are encapsulated in interfaces as well. The provided interfaces for
data types used in a commitment scheme are shown in Table 6.2, mapping the theoretical con-
structs to our implemented interfaces.

Table 6.2: Overview of interfaces for data types
Interface Theoretical Construct
CommitmentPair (c, d)
CommitmentValue c

OpenValue d

We decided to use a PlainText implementation from CrACo for the message space of a
CommitmentScheme in general as it can handle/encapsulate most possible forms of input.

Following CrACo’s design, the setup() of a commitment scheme’s public parameters is real-
ized by the CommitmentSchemePublicParametersGen; all other functionality of a commitment
scheme is provided in the CommitmentScheme-interface.

120

6.3 Building Blocks

The CommitmentScheme interface covers the following functionality:

• commit()

• open()

• verify()

• mapToPlainText()

In addition to the functions from the theoretical definition (cf. Section 3.5) we added the
methods verify() and mapToPlainText(). The method verify() receives a PlainText of
the plain message and compares it to the result of opening the CommitmentValue with the
OpenValue; if this is the case it returns true. Having this method simplifies the usage of com-
mitment schemes in combination with hashing (cf. Section 6.3.1.2) which enables enlarging the
message space to any bit string (cf. Construction 3.29). Hash-functions as used in HashThen-
CommitCommitmentScheme (cf. Section 6.3.1.2) return the hash in the form of a byte-array. In
order to use commitment schemes in combination with such byte-arrays it is necessary to pro-
vide a method mapping a byte-array to a PlainText. We decided to use the mapToPlainText()
method as is defined for CrACo’s SignatureScheme. The method mapToPlainText() gener-
ates an injective mapping (injectivity is only guaranteed for arrays of the same length) from a
byte-array to a PlainText corresponding to the input space of the concrete CommitmentScheme
implementation. The mapping has to be injective in order to prevent collisions or different
mappings for the same input-array.

6.3.1.1 Pedersen Commitment Scheme

The Pedersen commitment scheme is one of the major building blocks in our library as it
is the concrete commitment scheme implementation that many other building blocks such as
Damgård’s technique (cf. Section 6.3.2.3) depend on. Therefore, each commitment scheme
interface (cf. Section 6.3.1) is implemented in our Pedersen commitment scheme realization, thus
achieving loose coupling such that consumers can work on the interfaces only. The input space of
the Pedersen commitment scheme as defined in our theory part (cf. Construction 3.23) consists
of ZpElement(s). Since the PedersenCommitmentScheme is required to expose its message space
as PlainText (cf. Section 6.3.1), a single ZpElement is put into one RingElementPlainText
and multiple ZpElement(s) can be concatenated as a MessageBlock (both implement/extend
PlainText respectively). Hence, the Pedersen commitment scheme’s message space is realized
with the classes RingElementPlainText and MessageBlock.
As described in Section 6.3.1, mapToPlainText() needs to be implemented. The method

provides an injective mapping of a byte-array to a MessageBlock containing the same number
of messages as the PedersenCommitmentScheme-instance expects according to its Pedersen-
PublicParameters. Yet, only the first element of the MessageBlock is an injective mapped
RingElementPlainText; all other elements are RingElementPlainText containing the respec-
tive zero element. However this implementation could be improved to find injective mappings
for a larger input space if a more sophisticated approach can be found. Such an approach would
be using all elements of the MessageBlock (instead of only the first) while still guaranteeing
injective mappings for arrays of the same length.

6.3.1.2 HashThenCommit Commitment Scheme

For enabling commitment schemes to handle inputs of arbitrary size and form we use com-
mitment schemes in combination with hashing (cf. Construction 3.29). Following the design
of HashThenSign we therefore implemented a HashThenCommitCommitmentScheme consuming

121

6 Implementation

CommitmentScheme and a HashFunction as input and resulting in a commitment scheme itself.
The HashFunction is required to hash its input into byte[] with a maximum size that is not
larger than the CommitmentScheme’s mapToPlainText() can find injective mappings for.

The HashThenCommitCommitmentScheme implements the CommitmentScheme-interface and
applies a HashFunction in commit() and open() utilizing the encapsulated commitment scheme’s
mapToPlainText() to map the resulting hash to a valid PlainText correlating to the encapsu-
lated commitment scheme. Hence, HashThenCommitCommitmentScheme is a wrapper applying
a HashFunction onto a CommitmentScheme. When using HashThenCommitCommitmentScheme
the HashFunction has to be chosen in such a way that its output is of the correct input size
(in form of a byte[]) for the encapsulated CommitmentScheme. Otherwise mapToPlainText()
of the wrapped CommitmentScheme might not be able to find an injective PlainText.

6.3.2 Arguments of Knowledge
Σ-protocols are three way protocols guaranteeing honest verifier zero-knowledgeness (cf. Sec-
tion 3.8). Thereby, a prover can convince another honest party, called verifier, that he knows a
secret during the interactive protocol execution. Afterwards, it is guaranteed that the verifier
has not learned anything about the secret. The realization of Σ-protocols is described in Sec-
tion 6.3.2.1, the most important Σ-protocol we are using, the generalized Schnorr protocol, is
described in Section 6.3.2.2.
To achive security even against dishonest or concurrently running verifiers, we apply Damgård’s

technique, introduced in Section 3.9. Applying this technique to our created Σ-protocols en-
sures that even a cheating verifier, who is using different distributions to choose the challenge
or interacting with different provers in parallel, does not learn anything about the secret. Our
realization of Damgårds technique is described in Section 6.3.2.3.
To prove knowledge of a secret without an interactive communication, the prover can use

non-interactive arguments (cf. Definition 3.37). By applying the Fiat-Shamir heuristic to a
Σ-protocol, we obtain a non-interactive argument. The realization is explained in Section 6.3.2.4.
We make use of non-interactive arguments to realize the reputation system in Section 6.5.

6.3.2.1 Sigma Protocols

As shown in Section 4.1.3, all protocol primitives can be realized using Σ-protocols. Thus, the
class SigmaProtocol is extended by all protocols that can be instantiated by the zero-knowledge
component, described in Section 6.4. A SigmaProtocol is uniquely describable via an Problem-
Array and PublicParameter. They are publicly known and in combination equivalent to the
problem of a zero-knowledge argument of knowledge defined in Definition 3.36. The realization
of publicly known information is described in Section 6.4.5.
The class diagram of the class SigmaProtocol and the classes extended by SigmaProtocol are

presented in Figure 6.2. The SigmaProtocol inherits methods to generate the announcement,
the challenge and the response from the InteractiveThreeWayAoK, as well as a method to
verify. A correct interactive protocol execution between a prover and a verifier consists of three
messages:

• Announcement

• Challenge

• Response

A prover sends an Announcement, then the verifier replies with a Challenge. The prover cal-
culates a Response for the first two messages (Announcement and Challenge) and sends it to
the verifier. At last the verifier performs verify(), which accepts only for a correct protocol

122

6.3 Building Blocks

StandaloneRepresentable

InteractiveThreeWayAoK

generateAnnouncements() : Announcement[]
chooseChallenge() : Challenge
generateResponses(Challenge) : Response[]
verify(Announcement[] ,Challenge ,Response[]) : boolean

recreateAnnouncement(Representation) : Announcement
recreateChallenge(Representation) : Challenge
createChallengeFromByteArray(byte[]) : Challenge
recreateResponse(Representation) : Response

Recreation

isFulfilled() : boolean
Additional Methods

SpecialHonestVerifierZeroKnowledgeThreeWayAoK

getSimulator() : SpecialHonestVerifierSimulator

SigmaProtocol

problems : Problem[]
witnesses : Witness[]
publicParameters : PublicParameters

setWitnesses() : SigmaProtocol

Figure 6.2: Class diagram of a Σ-protocol

execution. The methods generateAnnouncements() is a realization of the ppt algorithm α of
the Σ-protocol, the method generateResponses(Challenge) realizes the ppt algortihm γ. The
method chooseChallenge() chooses a challenge uniformly at random from the defined challenge
space C.
Additionally, the SigmaProtocol exposes methods to recreate the three protocol messages.

The additional method isFulfilled checks if a given protocol, defined through problem-
description and public parameters, can be fulfilled with the given witnesses. A Witness object
contains a unique name and protocol-specific data. The name needs to be unique in the protocol
context, meaning that two different protocols may have witnesses with the same name. If the
names are unique in the protocol context, an automatic mapping of witnesses to the problem
description is possible, if protocols should be build automatically. This approach is for example
used in the GeneralizedSchnorrProtocolFactory (cf. Section 6.4.2.1).
A method to get a SpecialHonestVerifierSimulator is inherited from the interface Special-

HonestVerifierZeroKnowledgeThreeWayAoK. Since no default implementation for the simula-

123

6 Implementation

tor is given, every concrete implementation is enforced to provide the simulator. Thereby, every
Σ-protocol can be simulated. This fact is used during proof of partial knowledge, described in
Section 6.4.2.3.

Simulation of Σ-protocols Since Σ-protocols have the Special Honest-Verifier Zero-Knowledge
property, there exists a simulator for every Σ-protocol (cf. Definition 3.43). Most implemented
protocols are based on a generalized Schnorr protocol and therefore make use of the class
GeneralizedSchnorrSimulator. The construction for the generalized Schnorr protocol and
the corresponding simulator is given in Section 3.8.1. We have proven that all protocols that
are used in our system are Σ-protocols. To prove the Special Honest-Verifier Zero-Knowledge
property, a construction for a simulator for the Σ-protocols is given. Such a construction is used
as base for the implementation of the simulator.
The SpecialHonestVerifierSimulator gets a challenge for the protocol and outputs an ac-

cepting transcript for the protocol, containing an Announcement-Array, the given Challenge
and a Response-Array. Transcripts will potentially be exchanged between two parties or stored
independently, thus is extends the interface StandaloneRepresentable. Thereby, it is guar-
anteed that the transcript can be restored without additional information. Additionally, the
protocol instance itself is stored in the transcript, since the messages of the protocol can only
be restored using the protocol. Thus, a SigmaProtocol needs to be Standalone-representable
as well.

6.3.2.2 Generalized Schnorr Protocol

To realize Σ-protocols in our system, we are able to use only one protocol implementation,
namely the generalized Schnorr protocol (cf. Section 3.8.1), since all protocols used are based on
generalized Schnorr protocols (cf. Section 4.2.3). The generalized Schnorr protocols corresponds
to proving knowledge of the following equation:

m∧
j=1

Aj =
n∏
i=1

gxii,j

for cyclic groups G1, . . . ,Gm := G of prime order p, witnesses (x1, ..., xn) ∈ Znp and Aj , gi,j ∈ Gj

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.
The class GeneralizedSchnorrProtocol is implemented as a subclass of the abstract class
SigmaProtocol, described in Figure 6.2. A class diagram for the GeneralizedSchnorrProtocol
is given in Figure 6.3.
To simplify the usage of a GeneralizedSchnorrProtocol, the random values, computed during
the announcement phase, are stored in the protocol object as a state. Thereby, the prover does
not need to store the random values outside of the protocol object. In case a user wants to
use specific random values, an array of ZPElements can be passed as input for the method
generateAnnouncements(ZpElement[]). It is not recommended to use this method, except an
overlaying construction enforces the knowledge of the random values.
To create an instance of the GeneralizedSchnorrProtocol it is sufficient to state the problem
equations in a notation that is similar to the Camenisch-Stadler Notation Camenisch and Stadler
[CS97]. The generation of generalized Schnorr protocols using problem equations is described
in Section 6.4.2.1. A single problem equation is represented by an instance of a Generalized-
SchnorrProblem and has the following form:

A =
n∏
i=1

gxii

To check the validity of the represented equation, the class GeneralizedSchnorrProtocol offers
the static method isInvalidProblem(Problem). A problem is valid if it fulfills the following
properties:

124

6.3 Building Blocks

SigmaProtocol

problems : Problem[]
witnesses : Witness[]
publicParameters : PublicParameters

setWitnesses() : SigmaProtocol

StandaloneRepresentable

GeneralizedSchnorrProtocol

Zp.ZpElement[] randomValues

generateAnnouncements(Zp.ZpElement[])
isInvalidProblem(Problem)

Figure 6.3: Class diagram of a generalized Schnorr protocol

• It is an instance of GeneralizedSchnorrProblem

• The left-hand-side of the problem equation that is stored inside the GeneralizedSchnorr-
Problem object is fixed. Therefore, it has either a constant value or a value is assigned to
the variable used.

• The right-hand-side of the problem equation is one product-expression. Each factor of the
product represents an exponentiation-expression.

The problem equations can be represented using ArithExpressions.

6.3.2.3 Damgård’s Technique

Damgård’s technique is a construction used for improvements to Σ-protocols in order to provide
security against concurrent adversaries. The resulting protocol is a “Concurrent black-box zero
knowledge three-way interactive argument of knowledge” (and therefore implements the inter-
face InteractiveThreeWayAoK, cf. Section 6.3.2.1).

The theory part (cf. Section 3.9) defines that Damgård’s technique consumes a Σ-protocol
(cf. Construction 3.42) and a commitment scheme (cf. Definition 3.20). So the goal of our
implementation was to be able to handle any Σ-protocol and commitment scheme. Hence, the
implementation of Damgård’s technique, the class DamgardTechnique, does only work on the
interfaces SigmaProtocol (cf. Section 6.3.2.1) and CommitmentScheme(cf. Section 6.3.1) as
well as their related interfaces. Thus, DamgardTechnique is able to handle any Σ-protocol in
combination with any commitment scheme (being able to handle the Σ-protocol’s announcements
as input) implementing/extending the necessary interfaces. Table 6.3 lists the implemented
classes (implementing interfaces for InteractiveThreeWayAoK).

Damgård’s technique basically encapsulates a SigmaProtocol in combination with a Commit-
mentScheme which is required to be able to handle, and thus committing to, the Σ-protocol’s
announcements. A protocol execution of Damgård’s technique according to the definition (cf.
Construction 3.51) works like this:
A prover using DamgardTechnique sends a DamgardAnnouncement (which is a commitment

to the encapsulated SigmaProtocol’s Announcement) to the verifier.
The verifier using DamgardTechnique replies with the Challenge (of the encapsulated Sigma-

Protocol).

125

6 Implementation

Table 6.3: Overview of classes in the implementation of Damgård’s Technique
Class Short description
DamgardTechnique Handling all functionality
DamgardAnnouncement Commitment to the encapsulated Σ-protocol’s announcements
DamgardResponse Container for exchanged messages of the Σ-protocol’s execution

(Encapsulated Σ-protocol’s announcements and response and
the open value for the DamgardAnnouncement)

The prover then calculates the Response (according to the encapsulated SigmaProtocol for
the encapsulated SigmaProtocol’s Announcement) and sends a DamgardResponse containing
the encapsulated SigmaProtocol’s Announcement, the encapsulated SigmaProtocol’s Response
and the OpenValue for the CommitmentValue inside of the DamgardAnnouncement.
The verifier using DamgardTechnique then perform in her verify()-method:

• The CommitmentScheme’s verify() for CommitmentValue inside of the
DamgardAnnouncement, OpenValue and the encapsulated SigmaProtocol’s Announcement
(as original message).

• The SigmaProtocol’s verify() for encapsulated SigmaProtocol’s Announcement,
Challenge and Response.

DamgardTechnique’s verify()-method returns true only if both verify()-methods return
true.

Overall, DamgardTechnique is able to handle any SigmaProtocol and CommitmentScheme
implementing/extending the necessary interfaces by implementing DamgardAnnouncement and
DamgardResponse which implement the interfaces Announcement and Response. They handle
and encapsulate the necessary values and messages to reflect the theoretical construction of
Damgard’s technique, but this only works assuming that the CommitmentScheme is chosen in
such a way that it can handle the SigmaProtocol’s Announcement’s message space and size. An
intuitive way to achieve this is assuming that the input space of the CommitmentScheme is {0, 1}∗.
This can be achieved by using hashing in combination with the CommitmentScheme. As a sim-
plification for this approach we implemented the wrapper HashThenCommitCommitmentScheme
(cf. Section 6.3.1.2) which applies a HashFunction onto the encapsulated CommitmentScheme.
In the concrete implementation used in our library, the wrapper is always applied onto the
PedersenCommitmentScheme (cf. Section 6.3.1.1).

6.3.2.4 Fiat-Shamir Heuristic

The Fiat-Shamir heuristic is a cryptographic construct that transforms a Σ-protocol into a non-
interactive zero-knowledge argument of knowledge (cf. Section 3.10). It becomes non-interactive,
because instead getting a randomly-chosen challenge from the verifier, the prover uses a random
oracle to derive a challenge from the announcements. The returned value is a fixed length bit
string and needs to be transformed into a correct challenge. Since the challenge space C may
differ between several Σ-protocols, every Σ-protocol has the ability to transform a bit string into
an element c form the challenge space C.
Based on Construction 3.55 and following the design conventions in our library, the class

FiatShamirHeuristic implements the general interface NonInteractiveArgument which, con-
ceptually, represents an abstract non-interactive proof of knowledge. This interface provides the
two public methods prove() and verify(). The former method is the one that is used by the

126

6.3 Building Blocks

prover in a non-interactive proof of knowledge, to generate the non-interactive Proof which, later
on, serves as an input to the verify() method on the verifier side. In FiatShamirHeuristic,
the FiatShamirProof (an actual implementation of Proof), returned by the prove() method,
comprises three values: the generated Announcement[], a Challenge self-computed by the
prover and the generated Response[].

The class FiatShamirHeuristic functionally relies on the implementation of the interface
InteractiveThreeWayAoK in order to gain the ability to generate the non-interactive proof and
to verify it. In other words, it delegates the responsibilities of generating the announcements and
responses to a concrete InteractiveThreeWayAoK object which does the actual computation of
those values.
The component also makes use of one concrete implementation of the interfaces HashFunction.

Since random oracles are difficult in practice, we make use of a good cryptographic hash function,
as stated in (cf. chapter 5).

6.3.3 Signature Schemes

Digital signatures are used for assuring authenticity, integrity and non-repudiation. For instance
they allow an issuer to sign the attributes of an user and therefore form a credential, the
cornerstone of our ACS. Our implementations of signature schemes follow the primitives given
by CrACo, we added the Fiat-Shamir signature scheme (cf. Section 6.3.3.1) and extended the
Pointcheval-Sanders signature scheme (cf. Section 6.3.3.2).

6.3.3.1 Fiat-Shamir Signature Scheme

The Fiat-Shamir heuristic can additionally be used as a signature scheme as defined in Con-
struction 3.57. The implementation of the signature scheme is based on the MultiMessage-
SignatureScheme interface and provides the two methods sign() and verify().
To construct a FiatShamirSignatureScheme a ProtocolProvider and a HashFunction are

needed. The ProtocolProvider can generate a Σ-protocol, given an instance of the protocol and
a witness. This is neccessary to ensure that the realization of the signature scheme is stateless.
Since we will use the FiatShamirSignatureScheme only for Generalized Schnorr Protocols, we
only provide a GeneralizedSchnorrProtocolProvider.

The implementation of the signature scheme is based on the theoretical construction Con-
struction 3.57. The realization of sign() makes use of the Fiat-Shamir heuristic, described in
Section 6.3.2.4. During verify(), the signature scheme creates a protocol for the used protocol-
instance to restore the announcement from the proof. The restored announcement is needed to
recreate the challenge, which is equal to the hash of the restored announcement and the message
committed on. Therefore, the announcement and the message are hashed and compared to the
challenge contained in the proof. Only if the hash is equal to the challenge and the proof is
accepted, the verify method returns true.

6.3.3.2 Pointcheval-Sanders Signature Scheme

We use the Pointcheval-Sanders signature scheme in our library, because of its nice properties
allowing the randomization of a Poincheval-Sanders Signature (cf. page 16), thus enabling the
combined usage with the Pedersen commitment scheme (cf. Construction 4.4) for blindly sign-
ing messages and unblinding signatures on blinded messages. The CrACo-library that we use
already provides a working multi-message implementation (called PSSignatureScheme) of the
Pointcheval-Sanders signature scheme which follows our code and design constraints. Hence, we
decided to use this implementation and to extend it where necessary to use the advantages of
the Pointcheval-Sanders signature scheme we need in our library.

127

6 Implementation

Following the definition for the Pointcheval-Sanders signature scheme variation in our theory
part (cf. Section 3.4.1), the public key is adapted to contain: Generator g and group elements
Y1, . . . , Y`, where g ← G1 \ {1} and Yi := gyi for y1, . . . , y` ← Zp for ` ∈ N (number of messages)
and i = 1, . . . , ` (for the complete definition, cf. Construction 3.17).

For using CrACo’s Pointcheval-Sanders signature scheme implementation with our definition
(cf. Section 3.4.1) two classes needed to be extended, those are:

• PSVerificationKey for containing the additional parameters in the public key

• PSSignatureScheme for generating the additional parameters

The reason for extending the public key PSVerificationkey of the PSSignatureScheme
is to store further variables in the PSExtendedVerificationkey allowing the possibility of
a combined usage of the PSExtendedSignatureScheme with the PedersenCommitmentScheme
for being able to blind and unblind messages (“commit” and “open”) before and after sign-
ing them. This is achieved by using the same generator g and group elements Yi in the
PedersenPublicParameters (as generator g and group elements hi, cf. Definition 4.3) as pro-
vided by the PSExtendedSignatureScheme. This allows a user to receive a signature on a
commitment for a message and to then calculate the signature for the ’uncommited’ message
and thereby receiving a signature from a signer for a message without revealing the content of
the plain message to the signer.

In PSSignatureScheme the key pair containing the private and public key is generated with
the method generateKeyPair(). The resulting key pair contains all necessary parameters (G1
and y1, . . . , y`) to generate the additional parameters for the public key’s extension.
Therefore we implemented PSExtendedSignatureScheme extending PSSignatureScheme. In the
extended key pair generation process first the regular key pair is generated. Using this key pair’s
parameters the additional parameters for the extended public key (PSExtendedVerification-
Key) are calculated and a new key pair containing the private key (PSSigningKey) and PS-
ExtendedVerificationKey is returned.

Furthermore we extended the PSExtendedSignatureScheme to provide methods for random-
ization of a Poincheval-Sanders Signature, for blindly signing messages and unblinding signatures
on blinded messages. Those are:

• randomizeExistingSignature()

• blindSign()

• unblindSignature()

The method randomizeExistingSignature() randomizes a signature based on input ran-
domness (cf. Section 3.4.1, 16), blindSign() signs a messages and blinds the resulting signa-
ture (cf. Construction 4.4) and unblindSignature() unblinds a signature which was previously
blinded (cf. Construction 4.4).
An overview of the extended classes is given in Figure 6.4. Note that only overwritten and
additional methods and member variables are included.

6.3.4 Accumulators

Accumulators are introduced for our extension of the ACS (cf. Section 4.3). They can be used
to prove that a value x is part of a set X. Using an accumulator value which is independent

128

6.3 Building Blocks

PSSignatureScheme

...

...

PSExtendedSignatureScheme

create(...) : AccumulatorValue
createWitness(...) : Witness
verify(...) : boolean

PSVerificationKey

...

...

PSExtendedVerificationKey

...
group1ElementG : GroupElement
group1ElementsYi : GroupElement[]

generateKeyPair(int) : SignatureKeyPair<PSSigningKey, PSExtendedVerificationKey>
getVerificationKey(Representation) : PSExtendedVerificationKey
randomizeExistingSignature(PSSignature, Zp.ZpElement) : PSSignature
blindSign(PSSigningKey, PSExtendedVerificationKey, ...) : PSSignature
unblindSignature(PSSignature, Zp.ZpElement) : PSSignature

Figure 6.4: Overview of extensions as class diagram

of the set’s size, this set membership can be proven efficiently (cf. Section 3.12), thus offering
performance advantages.
Similarly to e.g. commitment schemes (cf. Section 6.3.1), we created the following interfaces

representing the theoretical properties of accumulators (cf. Section 3.12) which need to be
implemented by concrete accumulators (like the Nguyen accumulator, cf. Section 6.3.4.1). An
overview of interfaces for accumulators is given in Table 6.4:

Table 6.4: Overview of interfaces for accumulators
Interface Short description
StaticAccumulator Main class for static accumulator
DynamicAccumulator Main class for dynamic accumulator
AccumulatorPublicParameters Encapsulates public parameters
AccumulatorPublicParametersGen Generator for public parameters
AccumulatorValue Encapsulates the accumulator value
AccumulatorIdentity Encapsulates an accumulator identity
Witness Encapsulates a witness for an accumulator identity

It is the same interface as for arguments of knowledge
(cf. Section 6.3.2)

Two interfaces for accumulators are needed as there are two types of accumulators, the static
accumulator (cf. Definition 3.64) and the dynamic accumulator (cf. Section 3.12.2, Defini-
tion 3.66) which extends the static one to be dynamic. Dynamic in this context means that
insertions and deletions of identities i are possible, so the set of accumulated identities can be
changed dynamically including the update of witnesses wj .
The setup() of the accumulator’s public parameters is realized by the AccumulatorPublic-

ParametersGen (following CrACo’s design); all other functionality of an accumulator is provided
in the StaticAccumulator-interface or DynamicAccumulator-interface respectively.
Data types for accumulators are reflected in interfaces as listed in Table 6.5:
The StaticAccumulator-interface provides the following methods (cf. Definition 3.64):

• create() (for AccCreate)

• createWitness() (for WitCreate)

129

6 Implementation

Table 6.5: Overview of interfaces for data types
Interface Theoretical Construct
AccumulatorValue Accumulator value V
AccumulatorIdentity Identity i which can be part of the set
Witness Witness wi for the identity i

• verify() (for Vrfy)

The DynamicAccumulator-interface additionaly provides the following methods (cf. Defini-
tion 3.66):

• insert() (for AccInsert)

• delete() (for AccDelete)

• update() (for WitUpdate)

The AccumulatorPublicParameters contain the universe U of identities and q ∈ N the
upper bound for the number of identities that can be accumulated in the accumulator (cf.
Definition 3.64). We decided to in general return the universe U as a List of elements extending
the AccumulatorIdentity. In this way concrete accumulator implementations can model their
universe relative freely, yet it already can be reflected in the interface.

6.3.4.1 Nguyen Accumulators

In our library we use the Nguyen accumulator (cf. Section 3.12.3) which is a dynamic accu-
mulator (cf. Section 3.12.2). Hence, a NguyenAccumulator has to implement the Dynamic-
Accumulator-interface. The class diagram of the class SigmaProtocol and the classes extended
by SigmaProtocol are presented in Figure 6.5.

As defined in the theory part (cf. Section 3.12.3), the NguyenAccumulator accumulates a
set of Zp.ZpElement(s). Thus, the NguyenAccumulatorIdentity encapsulates and contains a
Zp.ZpElement. This has to be reflected in the universe which is part of the NguyenAccumulator-
PublicParameters. For implementing the AccumulatorPublicParameters-interface there are
two intuitive options to achieve this as the universe is the structure Zp. We chose to use one
NguyenAccumulatorIdentity encapsulating a Zp.ZpElement and its structure Zp and to pro-
vide a convenient method getUniverseStructure() in NguyenAccumulatorPublicParameters
returning the universe-structure as Zp. Thus, adding another class is need necessary as in the
second approach which would be to introduce a new class extending the AccumulatorIdentity
containing the Zp (universe).
The set of NguyenAccumulatorIdentitys are accumulated in the NguyenAccumulatorValue

which is a GroupElement. The NguyenWitness for a NguyenAccumulatorIdentity is a Group-
Element too.

All methods required in the DynamicAccumulator-interface are implemented in the Nguyen-
Accumulator and work as defined in the theory part (cf. Section 3.12.3). In this part modi-
fications for update() are described to compute the updated NguyenAccumulatorValue more
efficiently than using create() for the changed set. Nevertheless, this more efficient compu-
tation for updating the NguyenAccumulatorValue is only defined for the change of a single
element in the accumulated set, not for several. For only using the efficient update() compu-
tation, it would be necessary to track all changes of the accumulated set and the accumulator
value resulting in an enormous overhead in “tracking-infrastructure”.
Thus, we decided to compromise in the update() implementation. In update() we first

check if just a single element in the accumulated set changed. In this case, the updated Nguyen-
AccumulatorValue is computed by using the efficient, private implementation updateInsert()

130

6.4 Zero-Knowledge Component

StandaloneRepresentable

StaticAccumulator
IdentityType extends AccumulatorIdentity

create(...) : AccumulatorValue
createWitness(...) : Witness
verify(...) : boolean

DynamicAccumulator
IdentityType extends AccumulatorIdentity

insert(...) : AccumulatorValue
delete(...) : AccumulatorValue
update(...) : Witness

NguyenAccumulator
NguyenAccumulatorIdentity

pp : NguyenAccumulatorPublicParameters
accumulatorValue : NguyenAccumulatorValue
identitySet : Set<NguyenAccumulatorIdentity>

create(...) : NguyenAccumulatorValue
createWitness(...) : NguyenWitness
verify(...) : boolean
insert(...) : NguyenAccumulatorValue
delete(...) : NguyenAccumulatorValue
update(...) : NguyenWitness
updateInsert(...) : NguyenWitness
updateDelete(...) : NguyenWitness

...
Additional Methods

Figure 6.5: Class diagram of a NguyenAccumulator

(for one inserted element) or updateDelete() (for one deleted element) respectively. If more
than one element in the accumulated set changed, the updated NguyenAccumulatorValue is
computed by using the create() method. In this way we achieve an easy-to-use update()-
method using the modified update computation when possible (and deciding between update-
Insert() and updateDelete() automatically).

Yet, if a “tracking-infrastructure” for changes to the accumulated set would be provided, our
update()-implementation could simply be called iteratively for only using the efficient update
computation.

6.4 Zero-Knowledge Component
The key feature of the ACS is to grant a user anonymous access based on a set of attributes
belonging to the user certified by credentials. This proceeding requires a zero-knowledge proof
(cf. Definition 3.39) to prove possession of a set of attributes, issued by some issuer. The zero-
knowledge proofs are necessary to prove that the issued attributes match a certain policy, while
hiding the concrete attributes and especially the user’s identity. These proofs can be done using
interactive and non-interactive protocols.
While implementing our system from the theoretical constructions given in this document,

some parts have to be extended to be implemented in an understandable and secure manner. Im-

131

6 Implementation

plementation of the interactive protocols were impacted the most by these required extensions.
Implementing Σ-protocol with the same functionality as described in the theoretical constructs
resulted in a hierarchy of protocols, which was required to realize more complex constructions
such as proofs of partial knowledge. This hierarchy offers clean modularity and levels of abstrac-
tion for the implementation.

The Zero-Knowledge Component is responsible for generating all needed protocols. Our goal
is to build a protocol with just the CS notation given, limiting this to only generalized Schnorr
protocols though. It uses two building blocks, one is the GeneralizedSchnorrProtocolFactory
(cf. Section 6.4.2.1) allowing generation of generalized Schnorr protocols from a construction
similar to the Camenisch-Stadler Notation Camenisch and Stadler [CS97]. The second building
block is the general implementation of proofs of partial knowledge, using boolean formulas over
Σ-protocols (cf. Section 6.4.2.3). These two building blocks simplify the generation of complex
protocols and prevent redundant code.
Guaranteeing that every generated protocol is a Σ-protocol is one big advantage of the Zero-

Knowledge Component. Thereby, techniques like the Fiat-Shamir heuristic or Damgård’s tech-
nique (cf. Section 6.3.2.4, Section 6.3.2.3) can easily be applied to create non-interactive AOKs
or strengthen the security properties.

6.4.1 Protocol Overview:

All protocols to prove fulfillment of a predicate (cf. Section 4.1.3) can be build on generalized
Schnorr protocols. A short overview of the methods provided by the GeneralizedSchnorr-
Protocol can be found in Section 6.3.2.1. Since some protocols used require some additional
public information that are computed on the prover’s side in advance (e.g. range proofs in
Section 4.1.3.3), an extension for the Σ-protocols is needed. Additionally, some protocols con-
tain several different generalized Schnorr protocols or a proof of partial knowledge (cf. Sec-
tion 6.4.2.3). In summary, a Σ-protocol may need to handle additional public information or
may contain nested protocols. We came up with a general approach to face both problems
using a “wrapper protocol”, that is shown in Figure 6.6. Important to mention that this general
approach is still a Σ-protocol.
Both parties will generate the Σ-protocols using factories that are introduced in this chapter.
The factories ensure that the same protocol is generated on both sides independently, so no pro-
tocol needs to be exchanged. Thereby, neither the prover needs to trust the verifier to generate
the protocol honestly nor vice versa.
In the first phase, the Initialization, the prover initializes her nested protocols and com-
putes additional information, if needed. They will be send alongside with the announcement.
Additionally, the prover initializes the nested protocols on her side. During the Announcement
phase, the prover collects the announcements of the nested protocols (if existing) and sends
them alongside with the announcement of the “wrapper protocol”. Afterwards, the verifier will
choose a challenge, according to the given distribution, and send it to the prover. At this point
the verifier may not have any information about the public values computed by the prover,
for example if Damgård’s technique (cf. Section 3.9)is applied. This is no problem, since the
challenge is chosen uniformly at random form the set C (cf. Construction 3.42).
Afterwards, in the Response phase, the prover may share the challenge (in case of a proof of

partial knowledge) and forward the challenge to the nested protocols. Finally, the prover collects
all computed responses and sends them to the verifier. The verifier initializes the nested protocols
during verification phase, after extracting the public information from the announcements. In
the end the verifier checks the nested protocols for fulfillment (if needed) and then returns the
result of the verify-method. This extension is used in a more enhanced way during proofs of
partial knowledge (cf. Section 6.4.2.3).

132

6.4 Zero-Knowledge Component

Prover

Prover

Verifier

Verifier

Initialization Phase

opt [additional public values needed]

Compute public values

opt [protocol has nested protocols]

Initialize nested protocols

Announcement Phase

Compute announcements

opt [protocol has nested protocols]

Collect announcements
for nested protocols

Send announcements

Challenge Phase

Choose Challenge

Send Challenge

Response Phase

opt [protocol has nested protocols]

Share challenge and
forward to nested protocols

Collect responses
from nested protocols

Compute responses

send responses

Verification Phase

opt [additional public values needed]

Extract public values
from announcements

opt [protocol has nested protocols]

Initialize nested protocols

Check nested protocols

Check protocol

Figure 6.6: Sequence diagram for a extended Σ-protocol

6.4.2 Building Blocks of the Zero-Knowledge Component
Next, we will introduce the two building blocks used for the Zero-Knowledge Component. Firstly,
we describe how generalized Schnorr protocols are generated. Afterwards, we explain how the
proofs of partial knowledge are realized.

6.4.2.1 Generation of Generalized Schnorr Protocols

The Camenisch-Stadler Notation is an easy and compact way to denote a Σ-protocol. In this
section we will focus on the generation of generalized Schnorr protocols, introduced in Sec-
tion 6.3.2.2, which correspond to proving knowledge of the following equation:

m∧
j=1

Aj =
n∏
i=1

gxii,j

for cyclic groups G1, . . . ,Gm := G of prime order p, witnesses (x1, ..., xn) ∈ Znp and Aj , gi,j ∈ Gj

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

133

6 Implementation

The GeneralizedSchnorrProtocolFactory offers two methods, one for creating a protocol
for a prover and one to create a protocol for a verifier. Both methods will result in equivalent
protocols (without witnesses for the verifier) and can be executed independently. Both methods
are similar, the only difference is the additional input of witnesses fulfilling the problem equations
on the prover site. To generate a complete instance of the GeneralizedSchnorrProtocol,
several elements need to be generated:

• A problem description

• An array of witnesses

• An array of the groups

• A table of group elements used as bases for the exponentiations

• The number of witnesses n

The GeneralizedSchnorrProtocolFactory is given the problem description represented us-
ing an array of ComparisonExpression. It is required that the left hand side of the equations
contains the fixed value Aj and the right hand side the product of the power expressions. These
expressions are first of all checked for correctness, meaning that they in fact are a problem
description for a generalized Schnorr protocol.

After the problem equations are fixed, the witnesses are stored in an array. The witnesses are
given as input to the GeneralizedSchnorrProtocolFactory in the form of a mapping from the
unique witness name to their value. The ordering of the witnesses is given by the ordering in
the first problem equation. Witnesses that are not present in the first equation are added at the
end of the witness-array in the same order they can be found in the other equations. Although
the right hand side of a problem equation contains a product expression that is commutative, an
ordering of the witnesses is enforced to ensure a deterministic witness ordering during all gen-
erations. Since the verifier does not know the witnesses, only the unique names of the witnesses
are extracted from the problem equations, the values are left empty.

Finally, the so-called public parameters of the protocol are generated. The groups G1, . . . , Gm
are extracted from the fixed values A1, . . . , Am. The base elements gi are extracted from the
problem-equations and ordered in the same ordering of the witnesses. If a witness is not present
in one equation, the base element is set to the neutral element of the current group. For example,
if a protocol has three witnesses w1, w2 and w3 and the first problem equation is

A = gw1
1 gw2

2

for some A, g1, g2 ∈ G, the problem equation will be used internally as

A = gw1
1 gw2

2 1w3

where 1 is the neutral element of G. This trick allows an easier handling of problem equations
represented as a table of generators and an array of witnesses, since no special cases (e.g. empty
generator) need to be thought of. Note that the problem description is not changed and still
contains the ”minimal” form without any neutral elements as bases of an power-expression.
Finally, the values p and n are computed, p as size of G1 and n as the number of the witnesses
extracted from the problem equations.

134

6.4 Zero-Knowledge Component

6.4.2.2 Secret-Sharing

To be able to apply the proofs of partial knowledge defined in Section 3.11, we first need to
implement the underlying secret-sharing scheme(s). As already highlighted in the aforemen-
tioned section, we followed the approach of Cramer, Damgård, and Schoenmakers [CDS94] and
implemented the semi-smooth secret-sharing scheme of Shamir [Sha79] in such a way that it is
applicable for an inner node of the given ThresholdPolicy as described in Section 6.4.4.1.
The resulting ShamirSecretSharing is therefore a (threshold) secret sharing scheme based

on polynomial interpolation. Share(s) calculates a polynomial P of degree t − 1 (t being the
threshold required for reconstruction) with P (0) = s and outputs a list of shares s1, . . . , sn,
which correspond to points (i, si = P (i)). As a result, any set S of share-receivers with |S| ≥ t
will be able to reconstruct s since Recon tries to reconstruct the polynomial P via polynomial
interpolation and outputs P (0), if successful.
To be able to execute the secret-sharing operations on the whole policy the ThresholdTree-

SecretSharing was implemented which takes a (semi-)smooth secret-sharing scheme, Shamir-
SecretSharing in our case, and applies its operations recursively on each node of the Threshold-
Policy. This approach allows to substitute the actual secret-sharing scheme used, as long as it
is publicly known to all parties involved.

6.4.2.3 Proofs of Partial Knowledge

For a prover to be able to prove arbitrary boolean formulas over her attributes in a zero-
knowledge proof, it is necessary to define a protocol which can prove the fulfillment of threshold
policies without revealing information to the verifier. The concept of threshold policies is de-
scribed in Section 6.4.4.1.
The proof of partial knowledge technique (popk, cf. Construction 3.59) yields a special kind

of Σ-protocol, as defined in Section 3.8, which enables proofs on boolean formulas over the sat-
isfaction of (internal) Σ-protocol(s). The internal secret sharing scheme is the ThresholdTree-
SecretSharing, backed by ShamirSecretSharing, as described in Section 6.4.2.2 The imple-
mentation details of the actual protocols can be found in Figure 6.7
The premise of the shown process is that both parties exchanged the public parameters,

containing the Zp to execute the secret sharing on and the (semi-)smooth secret sharing scheme
(cf. Section 3.6.1) to be used for the threshold secret sharing, as well as the boolean formula
(threshold policy) over the Σ-protocol(s) to be proven.

As defined in Construction 3.59 we denote the components of protocol (Pi,Vi) by (αi, Ci, γi, ψi,Si),
where αi is a ppt computing the announcement, Ci is the finite challenge space, γi is a ppt
computing the responses, ψi is polynomial-time verifiable predicate and Si is the special honest-
verifier zero-knowledge simulator. For simplicity we omit the (xi, wi) ∈ Ri here, as those are in
practice only “known” to the internal protocols and not by the popk protocol instance.
Both parties start with their respective initialization phase. During this both participants

set up the dual structure (cf. Definition 3.31) of the given policy to be proven/verified and
utilize this to set up their threshold secret sharing scheme. The prover additionally collects all
Σ-protocol(s) which can be fulfilled to be able to construct the set of protocols to be simulated
later on.
The actual protocol execution follows the usual three way approach of a Σ-protocol.

1. Announcement (α): The prover first constructs the set of all protocols which need to be
simulated and then constructs the announcement for all protocols based on this set. All
of those protocols get a share assigned after sharing the (arbitrarily chosen) value 1 via
the secret sharing scheme, i. e. ((s1, . . . , sn) ← Share(1). If a protocol is not fulfilled the
transcript ti = (ai, ci, ri)← Si(si) is computed, stored internally in the set T and the tran-
script’s announcements ai will be added to the popk-announcement. Otherwise the pro-

135

6 Implementation

Prover Verifier

SecretSharing

ProverProtocols

ProverProtocols SecretSharing

Prover

Prover

Verifier

Verifier

Initialization Phase

new PoPKProtocol(PoPKPublicParams, ThresholdPolicy)

collectFulfilledProtocols(ThresholdPolicy)

setupSecretSharing()SecretSharing

Announcement Phase

1collectUnqualifiedShares()

loop [for each protocol : protocols]

alt [unqualifiedShares.contains(protocol)]

2 getShare(protocol)

3 share

4 simulate(share)

5 transcript

6 storeTranscript(protocol, transcript)

7 addAnnouncement(transcript.getAnnouncements())

8 generateAnnouncements()

9 protAnnouncements

10 addAnnouncement(protAnnouncements)

11announcements

Challenge Phase

12 generateChallenge

13 challenge

Response Phase

14 completeShares(challenge, unqualifiedShares)

15 completedShareMap

loop [for each protocol : protocols]

alt [fulfilledProtcols.contains(protocol)]

16 protocol.generateResponses(completedShareMap.get(protocol))

17 protResponses

18 addResponse(protResponses, completedShareMap.get(protocol))

19 getTranscript(protocol)

20 addResponse(transcripts.getResponses(), completedShareMap.get(protocol))

21 responses

Figure 6.7: Proof of partial knowledge protocol - prover side

136

6.4 Zero-Knowledge Component

Prover Verifier

Prover

Prover

Verifier

Verifier

VerifierProtocols

VerifierProtocols

SecretSharing

SecretSharing

Verification Phase

collectChallenges(responses)

checkShareConsistency(challenge, challenges)

success

alt [!success]

failure

loop [for each protocol : protocols]

verify(announcement, challenge, response)

success

alt [!success]

failure

success

Figure 6.7: Proof of partial knowledge protocol - verifier side

tocol’s announcements are computed by ai := αi() and added to the popk-announcement.
The collected announcements a := a1, . . . , an are then sent to the verifier.

2. Challenge: The verifier chooses a challenge c uniformly at random from its challenge space
C (the publicly known Zp). This challenge is sent to the prover.

3. Response (γ): The prover uses her secret sharing scheme to complete the shares of the
simulated protocol execution to the given challenge, i. e. ((c1, . . . , cn) ← Complete(c, {cj |
tj ∈ T}). If a protocol is fulfilled add (ri := γi(ai, ci), ci) to the popk-responses. Otherwise
the responses (ri, ci) from the previously simulated transcript ti is added to the popk-
response. The collected responses r = (r1, c1), . . . , (rn, cn) are then sent to the verifier.

4. Verify (ψ): After collecting all (ai, ci, ri)-tuples for all given inner protocols Vi, the verifier
accepts iff
• The shares (c1, . . . , cn) are all consistent with c, i. e. CheckConsistency(c, (c1, . . . , cn)) =

1.
• ∀i = 1, . . . , n : ψi(ai, ci, ri) = 1.

6.4.3 Protocol Overview:
In the construction of the (extended) ACS (cf. Section 4.2.3, Section 4.3.3) one will find several
interactive protocols. The main goal of the Zero-Knowledge Component is to simplify the
generation of these interactive protocols. In the following sections we will explain the realization
of the protocols Join/MJoin, ProveNym/VrfyNym, IssCred/RcvCred and ProveCred/VrfyCred.

6.4.3.1 Join/MJoin

To join the system, the user has to register at the system manager. A theoretical description
of the protocol is given in Section 4.4.1. During this registration, a master credential is issued
to the user which is needed for the ProveCred/VrfyCred (cf. Section 6.4.4.2) later on. The
important thing happening during this interaction is that the system manager stores the user
within her registry, which includes the user public key, the issued master credential and an

137

6 Implementation

additional element τ which is used during the joining. At the end, the user only has to save the
master credential from the system manager to finish the joining.

To use this protocol in combination with a RESTful API as done in the example application,
stateful messages as in interactive protocol executions have to be prevented. Therefore we
provide this protocol in a non-interactive form as well. So instead of using processes for the user
and the system manager, a proof is computed by the user using the Fiat-Shamir heuristic (cf.
Section 6.3.2.4), taking the protocol as input. After verifying this proof, the system manager
provides the master credential and saves the user in her registry.

6.4.3.2 ProveNym/VrfyNym

The ProveNymProtocol encapsulates a GeneralizedSchnorrProtocol for the relation described
in Section 4.2.3. To construct the protocols, it makes use of the GeneralizedSchnorrProtocol-
Factory.

6.4.3.3 IssueCred/RcvCred

To actually receive a credential, the user has to interact with an issuer. A theoretical description
of this protocol is given in Section 4.4.1. The user performs the proof of knowledge given
in Section 4.4.2 with the issuer, using the GeneralizedSchnorrProtocol(Factory). If the
verification is successful, the issuer computes a blinded signature and sends it to the user, who
unblinds it. If the unblinded credential is a valid signature the user saves it alongside the signed
attributes and issuer public key as credential. This whole interaction is encapsulated in processes
for both sides, ensuring that they only have the functionality fitting to their role within this
interaction.
As for all other interactive protocols, our library also provides a non-interactive version realized

with the Fiat-Shamir heuristic (cf. Section 6.3.2.4). The non-interactive version of the protocol
will be used in our example application.

6.4.3.4 ProveCred/VrfyCred

Since the ProveCred/VrfyCred protocol is rather complex, it is described in Section 6.4.4.2.

6.4.4 ProveCred/VrfyCred

To get access to a service, a user need to convince a verifier that his credentials fulfill the service’s
access policy without revealing her attributes or her identity. Therefore we will first describe
how we realized the access policy described by the predicate φ ∈ UΦ and afterwards how we use
it to implement ProveCred/VrfyCred.

6.4.4.1 Policies

The theoretical construction defines predicates in Section 4.1.3 to express properties a user
needs to fulfill to get access to a service. These predicates will form the basis for the constructed
predicate φ ∈ UΦ, which additionally specifies how the access requirements are connected, e. g.
only need one or another attribute.
To accomplish this, we introduce the idea of policies and sub-policies. A sub-policy contains

a boolean formula over predicates, which only relate to a set of attributes issued by exactly one
issuer. Therefore, it contains the ipk and the attribute definitions of that issuer for the issued
credential. All needed information to prove the fulfillment of a sub-policy are stored in the
PolicyInformation object which is constructed by the verifier to describe the requirements for
a prover to fulfill.

138

6.4 Zero-Knowledge Component

Both, policy and sub-policy, are represented by a structure referred to as threshold policy.
A threshold policy is thereby a boolean formula containing AND-, OR- and Threshold-gates
and are handled based on the information contained in their leaves, the so called policy facts.
Following this definition, a policy is a threshold policy over one or more sub-policies, whereby a
sub-policy is a threshold policy over predicates which can be fulfilled with a single credential.
This approach enables us to encapsulate the different stages needed to prove fulfillment of

the verifiers requirement which may require the possession of credentials of several issuers.
Additionally we can use the PolicyInformation to store additional data regarding the threshold
policy which are required to transform the leaves during the protocol executions. A more detailed
explanation of the underlying mechanisms is given in Section 6.4.4.2.
Another problem that needed to be faced during implementation was the selective disclo-

sure. As described in Section 4.2, the user may need to disclose some attribute values dur-
ing ProveCred/VrfyCred. To realize this, the verifier can add these elements to the Policy-
Information. As will be described in Section 6.4.4.2, disclosing attributes changes the protocol
executed during ProveCred, since the disclosed elements need to be transmitted from the prover
to the verifier and are no longer required to be part of the zero-knowledge proof.

6.4.4.2 ProveCred/VrfyCred Implementation

To be able to prove fulfillment of a policy, and therefore of the predicates defined in Section 4.1.3,
we decided to use a hierarchical structure of protocols. These protocols encapsulate each other
and enable “blackbox”-like behavior as well as easier simulation during the proofs of partial
knowledge as described in Section 6.4.2.3. A graphical and hierarchical overview of all used
protocols is given in Figure 6.8. The “root” protocol is the PolicyProvingWithMasterCred-

PolicyProvingWithMasterCredProtocol

PolicyProvingProtocol

SubPolicyProvingProtocol

PredicateProvingProtocol

InequalityProofSetMemberhsipProof RangeProof

«ProofOfPartialKnowledge»
PolicyProvingProtocol

«GeneralizedSchnorrProtocol»
TraceabiltyProof

The PoPK is based on the
boolean formula if the policy

«FixedPoPK»
SubPolicyProvingProtocol

Conjunction of protocols

«ProofOfPartialKnowledge»
PredicateProvingProtocol

Cardinality depends on policy
«GeneralizedSchnorrProtocol»

ProveCred

«WrapperProtocol»
InequalityProof

«WrapperProtocol»
SetMemberhsipProof

«FixedPoPK»
RangeProof

Conjunction of protocols
«GeneralizedSchnorrProtocol»

EqualityProof

«GeneralizedSchnorrProtocol»
innerProtocol

«GeneralizedSchnorrProtocol»
innerProtocol

«GeneralizedSchnorrProtocol»
lowerBoundProof

«GeneralizedSchnorrProtocol»
upperBoundProof

«FixedPoPK»
PolicyProvingWithMasterCredProtocol

Conjunction of protocols

1 1

1 .. n

1 1

0..n0..n 0..n0..n

11 1 1

Figure 6.8: Overview of protocols participating in ProveCred

Protocol or PolicyProvingProtocol. This depends on the fact, whether the proof, that the
user has successfully joined the system is included. As outlined in Section 6.4.5 the generation
of the outermost protocol depends on the exchange of the common input. At this point the
policy is described as threshold policy over sub-policies (c.f. Section 6.4.4.1), so a policy of

139

6 Implementation

which fulfillment can be proven with a single credential of the associated issuer. The common
input for the generation of the PolicyProvingProtocol (with or without the master credential
proof) contains the following elements:

• Defined by the prover:
– The prover’s pseudonym
– Optional: The prover’s randomized master credential

• Defined by the verifier (encapsulated in the PolicyInformation):
– AttributeSpace(s) of the involved issuer(s)
– The actual policy to be proven
– Attributes to be disclosed

Additionally the prover needs to supply her usk, the open-value for her pseudonym and the
credential(s) to be used for proving fulfillment of the policy to the factory generating the protocol.
She does not send any of this information to the verifier, since the values are her witnesses. The
PolicyProvingProtocol contains a proof of partial knowledge as inner protocol as well as a
generalized Schnorr protocol for proving the possession of a valid master credential as described
in ProveCred of the extended ACS defined in Section 4.3. To initialize the proof of partial
knowledge, the policy needs to be transformed to contain Σ-protocol as leaves. Therefore, for
each sub-policy a SubPolicyProvingProtocol is generated and passed to the ProofOfPartial-
Knowledge.
For the prover side, the generation of a SubPolicyProvingProtocol takes the prover’s usk as

well as the credential used to fulfill the sub-policy as input. During its initialization the protocol
will create commitments on each attribute inside the credential and for randomizing the signature
of the given credential. During the announcement phase, the SubPolicyProvingProtocol sends
the onuted commitments on the attributes and the randomized signature. Additionally, the
proof of fulfillment of the policy as well as knowledge of the signature containing the necessary
attributes and the correct usk are send(cf.Section 4.2.3). The proof of fulfillment is delegated to
a proof of partial knowledge. As described in Section 6.4.5 the announcement send to the verifier
contain the announcements of the inner protocol, the information computed by this protocol
and the randomized signature.
To construct the proof of partial knowledge protocol the policy needs to be transformed

again. For each leaf in the tree, defining some predicate over an attribute as described in
Section 4.1.3, the corresponding Σ-protocol is created. The prover adds her available witnesses
and the attributes signed in the credential used to the appropriate protocols.
During the verification phase of the PolicyProvingProtocol the call is delegated to the

inner protocol(s), where the generalized Schnorr protocol, if needed, verifies the validity of the
provided master credential. The proof of partial knowledge also delegates the verify call to its
inner SubPolicyProvingProtocol(s), which is the information contained in the corresponding
announcements and responses to instantiate another proof of partial knowledge over the verifier
protocol(s) for the predicates to be proven. Afterwards the whole hierarchy of protocols is
executed, where each layer’s fulfillment depends on the fulfillment of their respective inner
protocols. If all protocols are successfully verified, the fulfillment of the policy has been proven.

6.4.5 Common Input
The theoretical constructions for the various protocols needed during a (zero-knowledge) proof of
knowledge (cf. Section 3.7, Section 4.1.3) define a set of “publicly known information” (common
input), which is known to both parties prior to the actual protocol execution. In practice we
need to somehow ensure that both parties get access to this common input. We developed two

140

6.5 Reputation System

ways to solve this problem of exchanging “publicly known” information which will be described
in this section.
The first way is a communication step prior to the protocol generation during which the public

information used for generation itself is exchanged. Since communication between (two) parties
is not part of the ACS implementation the actual exchange of information has to be provided by
the consumer of the exposed API. This option is used to generate the PolicyProvingProtocol
described detailed in Section 6.4.4.2.
The second approach works by encapsulating the protocol’s common input inside of the an-

nouncement of the next outer protocol in the hierarchy (cf. Section 6.4.1). It is used in all inner
protocols during ProveCred. This approach enables us to generate the common input during
the announcement phase of the prover side. Afterwards, it is send as part of the protocol’s
announcements, alongside the announcements of the inner protocol(s), as shown in Figure 6.6 .
On the verifier side the common input for the inner protocol is extracted from the announcement
during the verify phase and delegates the corresponding verification to the protocol created from
it. A more detailed explanation of this approach can be found in Section 6.4.1

6.5 Reputation System
The reputation system enables the user to create ratings for the acquired services. It is important
to note that we renamed the ratings to reviews in our library, since the actual rating is a
message and not a rating on a scale, especially because our example application showcasing
these functionalities has the form of an online shop offering items. This is why our reviews
have a specific Item within them, instead of a service description. The user creates reviews via
ReviewTokens which are given to the user once he successfully proves the necessary attributes
for the transaction. A token allows the user to write a single review for the Item. Even if she
successfully requests the Item multiple times, only one review is allowed. If the user attempts
to publish a second review, the verifier will notice this and simply delete the second review. We
achieve this by giving the verifier a link algorithm which can link two reviews from the same
issuer on the same item additionally to being able to verify reviews due to public linkability.
For this implementation, we reuse the existing structures and protocols of the ACS. The result
is that the issuing is almost identical to the issuing of credentials and the rate algorithm also
reuses existing parts of protocols while only slightly extending them.

6.5.1 Ratings/Reviews
Within a ReactReview there are a multitude of elements which need to be stored. Corresponding
to the definition in Section 4.4.2 these are:

• The Item the review is written for

• The actual review message, given as ByteArrayImplementation

• The public key of the SystemManager

• A GroupElement for the linkabilityBasis

• The public key of the ReviewTokenIssuer

• The master credential PSSignature (blinded)

• The ReviewToken PSSignature (blinded)

• The FiatShamirSignature for the review

• Two GroupElements L1 and L2 depending on the linkabilityBasis and the usk

141

6 Implementation

All of these elements except for the message need to be passed to the verifier in order to
create the verifier side of the protocol for the FiatShamirSignatureScheme to verify the review
signature. When this is done, the message can be published on the reputation board.

6.5.2 Reusing the Credential Issuing Structure

When designing the reputation system, we can reuse the existing structures of the ACS. Basically,
the issuing of ReviewTokens is the exact same procedure as issuing credentials. This means that
we can reuse all existing protocols and processes used for the credential issuing and only need
to extend it to not only work with Attributes, but also with Items. The user requests a
ReviewToken on a specific Item, which relates to requesting a credential on a single Attribute.
In order to do this, we need to hash the Item into Zp to get the same structure that was used
for an Attribute. Everything else can then be executed in the exact same way by wrapping
the HashOfItem and the Attribute into a single class Issuable and using this structure in a
designated ReviewTokenIssuer as counterpart for the CredentialIssuer.

6.5.3 Reviewing

If the user got the ReviewToken, she can write the review she wants to publish. This is done
by providing a FiatShamirSignature to the ReviewTokenVerifier. The computation of the
review is similar to the interactive protocol ProveCred/ VrfyCred, but non-interactive. Instead
of the part of the protocol where the pseudonym is proven, the user proves the correct values
for L1 and L2, which lets the verifier make sure that she can link the review to other reviews
by the same user, provided the reviews are on the same Item. L1 contains the public key of the
ReviewTokenIssuer, the Item and the usk together with a random element ζ and L2 contains
the linkability basis together with the same random element ζ. To convert the public key of
the ReviewTokenIssuer and the Item to a GroupElement, we need to provide a hash function
hashing the concatenation of these two elements into G1. This ζ is only known to the user
though. After calculating the FiatShamirSignature, L1 and L2, the user fills the rating with
all other necessary values described in Section 6.5.1.

6.5.4 Verifying and Linking

The verification algorithm checks if the signature is a valid signature for the Item provided in the
review. This is done by computing the verifier side of the protocol used for the computation of the
FiatShamirSignature during the reviewing and then using the FiatShamirSignatureScheme
with that protocol to verify the signature. Again, this is similar to the ProveCred/ VrfyCred
protocol, but instead of doing it interactive it is non-interactive.
The linking algorithm however is a completely new algorithm since it was not needed for

credentials. This algorithm works because of the linkability basis from the system manager and
the two extra elements L1 and L2, which he can use to link two reviews (cf. Section 4.4.2). In a
more sophisticated appplication, the ReviewVerifier would run the link algorithm every time
a new review is going to be published on the reputation board. She would then check if the new
review and any of the other reviews for the same Item are from the same user and delete the
new one if this is the case.

6.6 API
For simplifying the usage of the credential system, the acs module exposes the features of the
ACRS in an object-oriented API (Application Programming Interface). This is the layer in
the architecture which an application which consumes the library should develop against. Each
actor of the system is represented by an interface, namely being:

142

6.6 API

• User

• Issuer

• ReviewTokenIssuer

• SystemManager

• Verifier

• ReviewVerifier

However, being only interfaces they do not implement any of the actual logic. Therefore,
the ACRS, as described in this document, is implemented by classes prefixed with a “React”
followed by the actor name. For example, the class ReactUser implements the generic interface
User for the described system. This extra interface layer decouples the API from the actual
ACRS construction and allows exchanging the construction without changing the API usage.
Since the full details of the classes and their methods are given in the JavaDoc documentation,

this section only gives an introduction into the API and outlines the most important use-cases.

6.6.1 Setup

Before any actor can be created, the public parameters of the system need to be generated. This
task is handled by the ReactPublicParametersFactory class. The create() method of that
class will generate the billinear map, the pseudonym public parameters and the required hashing
functionality for hashing arbitrary values into the respective groups. Usually this function will
be called once by a trusted party and the resulting ReactPublicParameters are serialized in
order to be shared with the individual actors of the system.

6.6.2 Actor creation

Assuming the availability of the public parameters, the actors of the system can be generated.
As they have varying dependencies on others, a short introduction is given for creating each of
the actors.

6.6.2.1 System Manager

The system manager does not depend on the information of any other actors. Thus, the only
information required for its creation is the public parameter object:

1 SystemManager systemManager = new ReactSystemManager (pp);

The systemManager object then offers methods for handling join requests and retrieving the
public key of registered users. Since the object internally holds a registry containing the joined
users, the object will need to be serialized and restored if the consuming application is restarted.

6.6.2.2 Issuer

In order to initiate an Issuer actor, first the attributes issuable by the issuer need to be
determined:

1 final List < AttributeDefinition > attributeDefinitions =
2 Arrays . asList (
3 new StringAttributeDefinition (" country ", "") ,
4 new BigIntegerAttributeDefinition (
5 "age", BigInteger .ONE , BigInteger . valueOf (200))
6);

143

6 Implementation

The above code will create a list consisting of the two attributes country and age, where
country has no value restriction and age is restricted to a value between 1 and 200.
The creation of the issuer then happens using the public parameters and the attribute-

Definitions:
1 Issuer <Attributes , PSCredential > issuer =
2 new ReactCredentialIssuer (pp , attributeDefinitions);

6.6.2.3 ReviewTokenIssuer

Since the ReviewTokenIssuer fundamentally functions the same as an Issuer where the at-
tribute space is a single review token, the class constructor does not require any attribute
information:

1 Issuer <HashOfItem , ReactRepresentableReviewToken >
2 reviewTokenIssuer = new ReactReviewTokenIssuer (pp);

6.6.2.4 User

Creating a User also requires to register this User at the SystemManager. This requires an
invocation of the createNonInteractiveJoinRequest() method on the User and an invocation
of nonInteractiveJoinVerification on the SystemManager:

1 ReactUser user = new ReactUser (pp);
2
3 final ReactNonInteractiveJoinRequest joinRequest =
4 user. createNonInteractiveJoinRequest (
5 systemManager . getPublicIdentity ()
6);
7 ReactJoinResponse joinResponse =
8 systemManager . nonInteractiveJoinVerification (joinRequest);
9 user. finishRegistration (joinResponse);

In this example, the systemManager is directly known by the code which also created the
user. In a real-world scenario, this usually will not be the case since the systemManager is
likely to be a self-contained service. In that case, the code which initializes the User object then
needs the value of systemManager.getPublicIdentity() and can invoke the join verification
using a remote service call.
After the basic setup of the user is done, it is possible to create pseudonyms:

1 Identity identity = user. createIdentity ();

Here, the Identity class represents the shareable pseudonym, as well as the secret open value.
When requesting or proving credentials such an identity object has to be passed in order to
determine under which pseudonym the proofs should be executed.

6.6.2.5 CredentialVerifier

The CredentialVerifier only requires the public parameters and the system manager public
identity:

1 CredentialVerifier verifier = new ReactCredentialVerifier (
2 pp , systemManager . getPublicIdentity ()
3);

The public identity of the system manager is required for verifying policies which mandate
that the user registered on the system manager and transmitted the necessary data in order to
perform the open operation. The open is of course done by the systemManager and not the
Verifier itself, but the Verifier has to check the provided policy proof whether it would allow
the open operation.

144

6.6 API

6.6.2.6 ReactReviewVerifier

The ReactReviewVerifier additionally requires the public identity of the reviewTokenIssuer:
1 ReviewVerifier reviewVerifier = new ReactReviewVerifier (
2 pp ,
3 systemManager . getPublicIdentity (),
4 reviewTokenIssuer . getPublicIdentity ()
5);

The information about the reviewTokenIssuer is required at construction time because,
unlike the credential verification, there is no additional policy information being passed for
verifying reviews. In the credential verification case, this policy information data includes the
public identities of the involved issuers and thus is not required to be known at construction
time.
The ReviewVerifier still requires the system manager public identity since it includes the

parameters for performing linking checks between two reviews.

6.6.3 Actor interaction
After the actors got instantiated, they are usually running in different processes or even entirely
different machines. This makes serialization of the objects to transmit mandatory. The PBC
library provides the required features for this:

1 final JSONConverter converter = new JSONConverter ();
2
3 // serialize
4 final String json = converter . serialize (
5 new RepresentableRepresentation (< object to serialize >));
6
7 // deserialize
8 Representation representation = converter . deserialize (json);
9 StandaloneRepresentable object =

10 (StandaloneRepresentable) representation .repr ()
11 . recreateRepresentable ();

Since all the objects which need to be transited as part of invoking the library are derived
from the StandaloneRepresentable class, the above code snippet should be enough to handle
all the serialization requirements for invoking the API. However, for simplicity serialization will
be left out in the following examples and it is assumed that the code has direct access to all the
actor instances.
Futhermore, only the “non-interactive” variant of issuing and proving credentials is introduced

here. The library also supports interactive variants which do not utilize the Fiat-Shamir heuris-
ticSection 6.3.2.4 but require an additional interaction in order to query the challenge of the
issuer or verifier. Details for the interactive variants are given in the JavaDoc of the respective
methods.

6.6.3.1 Issuing of credentials

The process of issuing credentials for attributes requires the two actors ReactUser and React-
CredentialIssuer who execute the algorithms IssCred and RcvCred as described in Construc-
tion 4.25. Due to user centric control in the credential system, the process needs to be initiated
by the user. She has to pick the set of requested attribute values and creates a credential request
for the issuer under a specific pseudonym identity:

1 final StringAttributeDefinition countryDef =
2 (StringAttributeDefinition) issuer . getPublicIdentity ()
3 . getAttributeSpace ().get (" age ");

145

6 Implementation

4
5 final BigIntegerAttributeDefinition ageDef =
6 (BigIntegerAttributeDefinition) issuer . getPublicIdentity ()
7 . getAttributeSpace ().get (" age ");
8
9 AttributeNameValuePair country =

10 countryDef . createAttribute (" Germany ");
11
12 AttributeNameValuePair age =
13 ageDef . createAttribute (BigInteger . valueOf (20));
14
15 attributes = new Attributes (
16 new AttributeNameValuePair []{ country , age}
17);
18
19 final ReactCredentialNonInteractiveResponseHandler
20 credentialResponseHandler =
21 reactUser . createNonInteractiveIssueCredentialRequest (
22 issuer . getPublicIdentity (),
23 identity , attributes);

Since the issue process requires the user to hold state until the answer of the issuer arrives,
the createNonInteractiveIssueCredentialRequest returns a ResponseHandler. This object
contains the necessary information for unblinding the credential issued by the issuer and thus
needs to be available at the time the issue response is received:

1 final ReactCredentialIssueResponse
2 nonInteractiveCredentialResponse =
3 issuer . issueNonInteractively (
4 credentialResponseHandler . getRequest ()
5);
6 reactUser . receiveCredentialNonInteractively (
7 credentialResponseHandler ,
8 nonInteractiveCredentialResponse);

The newly issued credential is now registered within the user and can be used in order to
fulfill policies which require a credential containing attributes issued by this issuer. Since each
issuer is only able to issue credentials for a single attribute space, the user can maintain a simple
mapping between the attribute space and the issued credential.
The code example, as it is, currently allows the user to create credentials with arbitrary

attribute values. In a real system, the application layer of the issuer side needs to check that
the client only requested permissable attributes before forwarding the credential request to the
actual issuer.issueNonInteractively() call.

6.6.3.2 Proving of credentials

In order to use the newly acquired credentials for proving the fulfillment of a policy, a Policy-
Information object has to be created. For this a fluent api3 is shipped as part of the library:

1 policyInformation =
2 policy (pp). forIssuer (issuer . getPublicIdentity ())
3 . attribute (" age "). isInRange (18, 200)
4 . attribute (" country "). isInSet (" Germany ", "USA ")
5 .build ();

The resulting policyInformation object can then be used by the user in order to create a
proof for the given policy:

3https://martinfowler.com/bliki/FluentInterface.html

146

https://martinfowler.com/bliki/FluentInterface.html

6.6 API

1 final NonInteractivePolicyProof proof =
2 reactUser . createNonInteractivePolicyProof (
3 reactIdentity ,
4 policyInformation ,
5 verifier . getIdentity ()
6);

Notable here is the referencing of a verifier as part of the proof. This makes sure that the
created proof is only positively verified by the pinned verifier. Chapter 5 can be consulted
for the security background on this.
The verifier side can then verify the proof together with the policyInformation:

1 VerificationResult verificationResult =
verifier . verifyNonInteractiveProof (proof , policyInformation);

2 if (verificationResult . isVerify ()) {
3 // perform application dependent logic
4 }

The verificationResult, given that the verification was successful, also contains information
about the used pseudonym and information for system manager, namely being the blinded
master credential. Especially the pseudonym can be interesting to query by the application
layer in order to provide services which are linked to other requests under the same pseudonym.

6.6.3.3 Reviewing of items

In order to be able to issue reviews for an item, the user first has to request a review token from
a review token issuer. This process is very similar to the credential request procedure:

1 final ReactReviewTokenNonInteractiveResponseHandler
2 reviewTokenResponseHandler =
3 reactUser . createNonInteractiveIssueReviewTokenRequest (
4 reviewTokenIssuer . getPublicIdentity (),
5 identity , "Game of Thrones ". getBytes ()
6);
7
8 final ReactReviewTokenIssueResponse
9 nonInteractiveReviewTokenResponse =

10 reviewTokenIssuer . issueNonInteractively (
11 reviewTokenResponseHandler . getRequest ()
12);
13
14 reactUser . receiveReviewTokenNonInteractively (
15 reviewTokenResponseHandler ,
16 nonInteractiveReviewTokenResponse
17);

The main notable difference is, that instead of attributes an arbitrary review subject has to
be passed as a byte array. This byte array has to represent the specific item which is supposed
to be rated. The review token will only be valid for that item. Again, checks for whether the
user is actually allowed to request this review token are left out here for brevity but need to
be handled by the application layer. In real scenarios the token issuing could, for example, be
combined with a verifier which first checks for a fulfillment of a policy before issuing a review
token.
After the review token is registered, the user is able to issue a review:

1 Review review = reactUser . createReview (
2 "5 of 5 stars !". getBytes (),
3 reviewTokenIssuer . getPublicIdentity (),
4 "Game of Thrones ". getBytes ()
5);

147

6 Implementation

This review object can then be shared with other parties of the application. The React-
RepresentableReview can be a helpful utility for simplifying the serialization and deserialization
process. However, details for this class are left out here and can be found in the JavaDoc.

6.6.3.4 Verification of reviews

Created reviews can be verified under two different aspects. One being that the reviewer had the
necessary review token for issuing a review, the other that one reviewer did not author multiple
reviews under the same review token.
The first verification is handled by the verify() method of the reviewVerifier:

1 boolean isValid = reviewVerifier . verify (review);

The usage should be clear, a true implies a valid review, false an invalid one.
Checking for multiple reviews under the same token has to be done by a pairwise compare of

reviews:
1 boolean sameUser =
2 reviewVerifier . areFromSameUser (review1 , review2);

If the two compared reviews are authored by the same reviewer under the same review token
the method would return true. Thus, checking for duplicate reviews in lists has to be done by
comparing each combination of reviews with each other.

6.7 Example Application
As part of the practical work, we also developed a simple demo application which conceptually
serves as a mean of proving a wide range of technical concepts and features of our library. The
application represents a basic shop system where different types of customers can sell, buy and
rate custom products.

The following sub-sections provide an overview of the example application, showing the pri-
mary use cases from a user perspective and discussing its architecture.

6.7.1 Architecture

We chose microservice architecture to be the application architectural style. In real-world sce-
narios, any role in our system (issuer, verifier, shop owner, etc.) will probably reside in a separate
entity (service). Figure 6.9 gives an overview of the example application architecture.
The following illustration shows the implemented micro-services and their main role in the

example application:

System Manager Service This service hosts one instance of the ReactSystemManager. The
service exposes ReactSystemManager.nonInteractiveJoinVerification() API to the /join
end-point, which enables clients to perform non-interactive join to the system.

Base Credential Issuing Service This service embodies one ReactCredentialIssuer object.
That issuer has the following attribute definitions in her the attributes space: birth-date, country,
body-size and legal-entity. This service is used to issue a credential upon a given set of values
for those defined attributes.

Shop Hosting Credential Issuing Service Another ReactCredentialIssuer object resides in
this service. The owner of a credential, issued by this issuer, is granted to host new shop items
to the shop system.

148

6.7 Example Application

System Manager

Service

Buy

Service

Review Repository
Service

Shop Item
Repository

Service

Base Credential
Issuing
Service

Item Hosting
Credential

Service

API
Gateway

Service Discovery

Frontend

/issue

/issue

/list
/store
/getById

/join

/item/{id}

/list
/store

Figure 6.9: The micro-service architecture of the example application

149

6 Implementation

Review Repository Service The review repository service can be seen as a storage object for
the product reviews. It offers two public API end-points; /store and /list. As the names
indicate, the former is used to store a new review for a product while the latter is used to fetch
one existing product reviews.

Buy Service The buy service has two main entities; one ReactCredentialVerifier instance
and one ReactReviewTokenIssuer instance. It allows buyers to buy a certain product depending
on the NonInteractivePolicyProof object they send along with the buying request. The
buying request also contains one instance of ReactNonInteractiveReviewTokenRequest. The
buying verifier verifies the sent proof against the product policy. After a successful verification
process, the service computes a ReactReviewTokenIssueResponse object using the review token
request via the review token issuer and sends it back to the buyer.

Shop Item Repository Service This service represents the product management component
in our shop system. Through this service, clients can fetch all hosted products as well as a
single product with a particular ID. Additionally, service clients with a valid product hosting
credential can use the /store public API for hosting a new product. The service contains a
different instance of the ReactCredentialVerifier which is mainly responsible for validating
the proof that is sent along with the product hosting request.

6.7.2 Use Cases

Before we start discussing the main scenarios, a good point to highlight is that one instance
of ReactPublicParameters object is common and shared among all parties (components and
services) involved in the example application.

6.7.2.1 Initialization

When the application is first started, a new instance of ReactUser is created. The initialization
phase comprises three steps:

1. Setting up the user

2. Issuing a base credential

3. Listing shop products

User Setup The frontend application communicates with the System Manager Service via its
Rest API for joining the system by sending a join request. When the join succeeds, an initial
pseudonym is created and stored by the ReactUser.

Issuing The Base Credential After the user setup, the frontend application prompts a modal
dialog to the user containing an input form for some specific attribute values4 upon which the
user wants to have a credential (cf. Figure 6.10). When the user clicks the register button, the
client creates a NonInteractiveIssuableRequest with the chosen attribute values and sends
it to the Base Credential Issuing Service to retrieve and store the first credential.

Listing Shop Products As part of the initialization, the shop frontend also communicates
with The Shop Item Repository Service via its REST API to fetch the information of all hosted
products and lists them in the main product list view.

4In this case, the values conform to the attribute space of the issuer from which the user wants to issue a
credential

150

6.7 Example Application

Figure 6.10: Issuing a base credential form

Figure 6.11: The main window in the example application after a successful initialization

After a successful initialization, the user is redirected to a new window with a list of all hosted
products as shown in Figure 6.11.

6.7.2.2 Pseudonym Creation and Product Hosting Credentials Issuing

The product list window populates all available shop products along with options to create new
pseudonyms, host new products in the shop and request a credential for products hosting as
shown in Figure 6.12.
On the top right corner of the main window view, the user can click on the pseudonym

switcher button. As a result, a pop-up window with all available pseudonyms appears (Fig-
ure 6.12). In the window, the user can create new pseudonyms, as a result of pushing the
“Create Pseudonym” button, and delete already existing Pseudonyms. The user can select one
of the available pseudonyms in the list to attach it in the process of issuing a “shop item hosting”
credential which happens after clicking on the register button.

151

6 Implementation

Figure 6.12: Pseudonym switcher pop-up view

Figure 6.13: View for creating new product listings

152

6.7 Example Application

Figure 6.14: View for buying and rating products

6.7.2.3 Hosting A New Product

When the shop item hosting credential is obtained, the user can start hosting new shop items on
the shop system. Figure 6.13 shows this product creation form. Using the form, user can input
the product information (name, description, ...) along with the buying policy information values
(age, country, ...). Clicking the “Create” button, the client app constructs a new proof which
confirms the client ability to host new shop items. In other words, it proves the possession of a
valid shop hosting credential. Then it sends the new product information along with the proof
object to the Shop Item Repository Service where the shop hosting credential verifier resides.

6.7.2.4 Buying and Rating A Product

When the user clicks on one of the products in the products list, she navigates to the product
details view. There, the customer can buy and, later on, rate that product (cf. Figure 6.14).
Based on the buying credential she obtained from the Base Credential Issuing Service, the buyer
constructs the proof along with a review token request and sends them as a buying request to
the Buy Service. In response, the buyer receives a review token to be used, later on, in the
product rating. The review token is unblinded and stored by ReactUser.

153

7 Conclusion

In this document, we have given a theoretical construction for a combination of an anonymous
credential system and a reputation system.
This combination offers anonymous access control while also providing a rating mechanism.

Within the system, we allow almost arbitrary predicates as access policy by using concatenations
of different policies and various different proof mechanics such as range proofs and proofs of
partial knowledge.
Additionally, we also provide documentation and guidelines how to use the library implement-

ing this system. This library can then be used for any application using anonymous credentials
for access control while our guidelines ensure the security of the application.
The library was developed in a generic way by using interfaces throughout the whole project,

separating our specific implementation from general concepts. As a consequence, consuming our
library is not coupled with the explicit constructions we are using. Only the zero-knowledge
component exclusively supports generalized Schnorr protocols and would need a substantial
expansion to support other protocols as well. However, supporting all forms of generalized
Schnorr protocols leaves the zero-knowledge component with a huge set of problems that can
be solved and is sufficient for our system. This is illustrated by the different compositions of
policies that we are able to use (cf. Section 6.4.4.1).
There are still functionalities which are not fully integrated in the construction or the imple-

mentation. This includes revocation of users, revocation of credentials as well as editability and
deletability of ratings. While they are not integrated, at least the revocation is mentioned in
Section 4.5. Therefore this would be a good point to start an extension of our current system.

155

Bibliography

[AAS16] Hiroaki Anada, Seiko Arita, and Kouichi Sakurai. Proof of Knowledge on Mono-
tone Predicates and its Application to Attribute-Based Identifications and Signatures.
Cryptology ePrint Archive, Report 2016/483. http://eprint.iacr.org/2016/483.
2016.

[Ate+05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
Practical Group Signatures without Random Oracles. Cryptology ePrint Archive,
Report 2005/385. http://eprint.iacr.org/2005/385. 2005.

[BC93] Amos Beimel and Benny Chor. “Universally Ideal Secret Sharing Schemes (Pre-
liminary Version)”. In: Advances in Cryptology – CRYPTO’92. Ed. by Ernest F.
Brickell. Vol. 740. Lecture Notes in Computer Science. Springer, Heidelberg, August
1993, pp. 183–195.

[BN06] Mihir Bellare and Gregory Neven. “Multi-signatures in the plain public-Key model
and a general forking lemma”. In: ACM CCS 06: 13th Conference on Computer and
Communications Security. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati. ACM Press, October 2006, pp. 390–399.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols”. In: ACM CCS 93: 1st Conference on Computer and
Communications Security. Ed. by V. Ashby. ACM Press, November 1993, pp. 62–73.

[BL90] Josh Cohen Benaloh and Jerry Leichter. “Generalized Secret Sharing and Monotone
Functions”. In: Advances in Cryptology – CRYPTO’88. Ed. by Shafi Goldwasser.
Vol. 403. Lecture Notes in Computer Science. Springer, Heidelberg, August 1990,
pp. 27–35.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. “How Not to Prove Your-
self: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios”. In: Advances in
Cryptology – ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako. Vol. 7658.
Lecture Notes in Computer Science. Springer, Heidelberg, December 2012, pp. 626–
643. doi: 10.1007/978-3-642-34961-4_38.

[Bic+10] Patrik Bichsel, Jan Camenisch, Gregory Neven, Nigel P. Smart, and Bogdan Warin-
schi. “Get Shorty via Group Signatures without Encryption”. In: SCN 10: 7th Inter-
national Conference on Security in Communication Networks. Ed. by Juan A. Garay
and Roberto De Prisco. Vol. 6280. Lecture Notes in Computer Science. Springer, Hei-
delberg, September 2010, pp. 381–398.

[Bla97] Kelly Black. “Classroom note: Putting constraints in optimization for first-year cal-
culus students”. In: SIAM review 39.2 (1997), pp. 310–312.

[BB17] Johannes Blömer and Jan Bobolz. “Delegatable Attribute-based Anonymous Cre-
dentials from Dynamically Malleable Signatures”. Unpublished paper as of 14.03.18.
2017.

[BJK15] Johannes Blömer, Jakob Juhnke, and Christina Kolb. “Anonymous and Publicly
Linkable Reputation Systems”. In: FC 2015: 19th International Conference on Fi-
nancial Cryptography and Data Security. Ed. by Rainer Böhme and Tatsuaki Okamoto.
Vol. 8975. Lecture Notes in Computer Science. Springer, Heidelberg, January 2015,
pp. 478–488. doi: 10.1007/978-3-662-47854-7_29.

157

http://eprint.iacr.org/2016/483
http://eprint.iacr.org/2005/385
http://dx.doi.org/10.1007/978-3-642-34961-4_38
http://dx.doi.org/10.1007/978-3-662-47854-7_29

Bibliography

[Bon98] Dan Boneh. “The decision Diffie-Hellman problem”. In: Third Algorithmic Number
Theory Symposium (ANTS). Vol. 1423. Lecture Notes in Computer Science. Invited
paper. Springer, Heidelberg, 1998.

[BB04] Dan Boneh and Xavier Boyen. “Short Signatures Without Random Oracles”. In:
Advances in Cryptology – EUROCRYPT 2004. Ed. by Christian Cachin and Jan
Camenisch. Vol. 3027. Lecture Notes in Computer Science. Springer, Heidelberg,
May 2004, pp. 56–73.

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. “Efficient Protocols for Set Mem-
bership and Range Proofs”. In: Advances in Cryptology – ASIACRYPT 2008. Ed. by
Josef Pieprzyk. Vol. 5350. Lecture Notes in Computer Science. Springer, Heidelberg,
December 2008, pp. 234–252.

[CL01] Jan Camenisch and Anna Lysyanskaya. “An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation”. In: Advances in
Cryptology – EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. Lecture Notes
in Computer Science. Springer, Heidelberg, May 2001, pp. 93–118.

[CL03] Jan Camenisch and Anna Lysyanskaya. “A Signature Scheme with Efficient Proto-
cols”. In: SCN 02: 3rd International Conference on Security in Communication Net-
works. Ed. by Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano. Vol. 2576.
Lecture Notes in Computer Science. Springer, Heidelberg, September 2003, pp. 268–
289.

[CL04] Jan Camenisch and Anna Lysyanskaya. “Signature Schemes and Anonymous Cre-
dentials from Bilinear Maps”. In: Advances in Cryptology – CRYPTO 2004. Ed. by
Matthew Franklin. Vol. 3152. Lecture Notes in Computer Science. Springer, Heidel-
berg, August 2004, pp. 56–72.

[CS03] Jan Camenisch and Victor Shoup. “Practical Verifiable Encryption and Decryption
of Discrete Logarithms”. In: Advances in Cryptology – CRYPTO 2003. Ed. by Dan
Boneh. Vol. 2729. Lecture Notes in Computer Science. Springer, Heidelberg, August
2003, pp. 126–144.

[CS97] Jan Camenisch and Markus Stadler. “Efficient Group Signature Schemes for Large
Groups (Extended Abstract)”. In: Advances in Cryptology – CRYPTO’97. Ed. by
Burton S. Kaliski Jr. Vol. 1294. Lecture Notes in Computer Science. Springer, Hei-
delberg, August 1997, pp. 410–424.

[CLs10] Rafik Chaabouni, Helger Lipmaa, and abhi shelat. “Additive Combinatorics and Dis-
crete Logarithm Based Range Protocols”. In: ACISP 10: 15th Australasian Confer-
ence on Information Security and Privacy. Ed. by Ron Steinfeld and Philip Hawkes.
Vol. 6168. Lecture Notes in Computer Science. Springer, Heidelberg, July 2010,
pp. 336–351.

[CL06] Melissa Chase and Anna Lysyanskaya. “On Signatures of Knowledge”. In: Advances
in Cryptology – CRYPTO 2006. Ed. by Cynthia Dwork. Vol. 4117. Lecture Notes in
Computer Science. Springer, Heidelberg, August 2006, pp. 78–96.

[CK93] Benny Chor and Eyal Kushilevitz. “Secret Sharing Over Infinite Domains”. In: Jour-
nal of Cryptology 6.2 (1993), pp. 87–95.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Partial Knowl-
edge and Simplified Design of Witness Hiding Protocols”. In: Advances in Cryptology
– CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. Lecture Notes in Computer Science.
Springer, Heidelberg, August 1994, pp. 174–187.

[Dam10] Ivan Damgård. “On Σ-protocols”. http://www.cs.au.dk/~ivan/Sigma.pdf. 2010.

158

http://www.cs.au.dk/~ivan/Sigma.pdf

Bibliography

[FS90a] Uriel Feige and Adi Shamir. “Witness Indistinguishable and Witness Hiding Proto-
cols”. In: 22nd Annual ACM Symposium on Theory of Computing. ACM Press, May
1990, pp. 416–426.

[FS90b] Uriel Feige and Adi Shamir. “Zero Knowledge Proofs of Knowledge in Two Rounds”.
In: Advances in Cryptology – CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. Lecture
Notes in Computer Science. Springer, Heidelberg, August 1990, pp. 526–544.

[FS87] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems”. In: Advances in Cryptology – CRYPTO’86. Ed.
by Andrew M. Odlyzko. Vol. 263. Lecture Notes in Computer Science. Springer,
Heidelberg, August 1987, pp. 186–194.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. “Pairings for cryp-
tographers”. In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121. doi:
10.1016/j.dam.2007.12.010.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Vol. 1. Cambridge, UK:
Cambridge University Press, 2001, pp. xix + 372.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme
Secure Against Adaptive Chosen-message Attacks”. In: SIAM Journal on Computing
17.2 (April 1988), pp. 281–308.

[Gün90] Christoph G. Günther. “An Identity-Based Key-Exchange Protocol”. In: Advances
in Cryptology – EUROCRYPT’89. Ed. by Jean-Jacques Quisquater and Joos Van-
dewalle. Vol. 434. Lecture Notes in Computer Science. Springer, Heidelberg, April
1990, pp. 29–37.

[LLX07] Jiangtao Li, Ninghui Li, and Rui Xue. “Universal Accumulators with Efficient Non-
membership Proofs”. In: ACNS 07: 5th International Conference on Applied Cryp-
tography and Network Security. Ed. by Jonathan Katz and Moti Yung. Vol. 4521.
Lecture Notes in Computer Science. Springer, Heidelberg, June 2007, pp. 253–269.

[Ngu05] Lan Nguyen. “Accumulators from Bilinear Pairings and Applications”. In: Topics
in Cryptology – CT-RSA 2005. Ed. by Alfred Menezes. Vol. 3376. Lecture Notes in
Computer Science. Springer, Heidelberg, February 2005, pp. 275–292.

[PM04] Andreas Pashalidis and Chris J. Mitchell. “A Security Model for Anonymous Cre-
dential Systems”. In: Information Security Management, Education and Privacy.
Ed. by Yves Deswarte, Frédéric Cuppens, Sushil Jajodia, and Lingyu Wang. Boston,
MA: Springer US, 2004, pp. 183–199.

[Ped92] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable
Secret Sharing”. In: Advances in Cryptology – CRYPTO’91. Ed. by Joan Feigen-
baum. Vol. 576. Lecture Notes in Computer Science. Springer, Heidelberg, August
1992, pp. 129–140.

[PS15] David Pointcheval and Olivier Sanders. Short Randomizable Signatures. Cryptology
ePrint Archive, Report 2015/525. http://eprint.iacr.org/2015/525. 2015.

[PS16] David Pointcheval and Olivier Sanders. “Short Randomizable Signatures”. In: Topics
in Cryptology – CT-RSA 2016. Ed. by Kazue Sako. Vol. 9610. Lecture Notes in
Computer Science. Springer, Heidelberg, February 2016, pp. 111–126. doi: 10.1007/
978-3-319-29485-8_7.

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature Schemes”. In:
Advances in Cryptology – EUROCRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070.
Lecture Notes in Computer Science. Springer, Heidelberg, May 1996, pp. 387–398.

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In: Journal
of Cryptology 4.3 (1991), pp. 161–174.

159

http://dx.doi.org/10.1016/j.dam.2007.12.010
http://eprint.iacr.org/2015/525
http://dx.doi.org/10.1007/978-3-319-29485-8_7
http://dx.doi.org/10.1007/978-3-319-29485-8_7

Bibliography

[Sch01] Berry Schoenmakers. “Some efficient zeroknowledge proof techniques”. Slides pre-
sented at the International Workshop on Cryptographic Protocols. March 2001.

[Sch05] Berry Schoenmakers. “Interval proofs revisited”. Slides presented at the International
Workshop on Frontiers in Electronic Elections. September 2005.

[15] Secure Hash Standard (SHS). National Institute of Standards and Technology, NIST
FIPS PUB 180, U.S. Department of Commerce. 2015.

[Sha79] Adi Shamir. “How to Share a Secret”. In: Communications of the Association for
Computing Machinery 22.11 (November 1979), pp. 612–613.

[WYY05] XiaoyunWang, Yiqun Lisa Yin, and Hongbo Yu. “Finding Collisions in the Full SHA-
1”. In: Advances in Cryptology – CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621.
Lecture Notes in Computer Science. Springer, Heidelberg, August 2005, pp. 17–36.

[Zho+16] Zhe Zhou, Tao Zhang, Sherman S. M. Chow, Yupeng Zhang, and Kehuan Zhang. “Ef-
ficient Authenticated Multi-Pattern Matching”. In: ASIACCS 16: 11th ACM Sym-
posium on Information, Computer and Communications Security. Ed. by Xiaofeng
Chen, XiaoFeng Wang, and Xinyi Huang. ACM Press, May 2016, pp. 593–604.

160

	1 Introduction
	I Theory Documentation
	2 Notation
	3 Building Blocks
	3.1 Bilinear Groups
	3.2 Computational Assumptions
	3.3 Hash Functions
	3.4 Digital Signatures
	3.5 Commitment Schemes
	3.6 Secret-Sharing Schemes
	3.7 Zero-Knowledge Arguments of Knowledge
	3.8 -Protocols
	3.9 Damgård's Technique
	3.10 Fiat-Shamir Heuristic
	3.11 Proofs of Partial Knowledge
	3.12 Accumulators

	4 Anonymous Credential and Reputation System
	4.1 Preliminaries
	4.2 Basic Anonymous Credential System
	4.3 Extended Anonymous Credential System
	4.4 Attribute-Based Anonymous Credential and Reputation System
	4.5 Further Extensions

	II Practical Realization
	5 From Theory to Practice
	6 Implementation
	6.1 Introduction
	6.2 Architecture
	6.3 Building Blocks
	6.4 Zero-Knowledge Component
	6.5 Reputation System
	6.6 API
	6.7 Example Application

	7 Conclusion
	Bibliography

