

Diploma Thesis

SPECIFICATION LANGUAGE FOR

BINARY PARSER CONSTRUCTION

IN THE CONTEXT OF

SMART CARD PROTOCOL MONITORING

Jürgen Wall

presented to

Prof. Dr. Engels
Department for Database- and Informationsystems

and

Prof. Dr. Kastens
Programming Languages and Compilers

Faculty of
Electrical Engineering, Computer Sciences and Mathematics

University of Paderborn
Warburger Straße 100
D-33095 Paderborn

31.03.2010

Erklärung

Ich versichere, dass ich die vorliegende Arbeit selbstständig und ohne unerlaubte fremde
Hilfe, sowie ohne Benutzung anderer als der angegebenen Quellen angefertigt habe.
Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden sind, sind als
solche gekennzeichnet. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegen.

Paderborn, den 31.03.2010

Jürgen Wall

VII Contents

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Document Structure . 3

2 Foundations 4
2.1 Smart Cards . 5

2.1.1 Protocols . 5
2.1.2 Logical Organization . 7
2.1.3 Smart Card Commands . 8

2.2 Monitoring . 11
2.2.1 Technical Setup . 11
2.2.2 Manual Implementation . 12
2.2.3 Drawbacks . 13

2.3 Aspects of Compiler Theory . 15
2.3.1 Compilation is Translation . 15
2.3.2 Analysis . 16
2.3.3 Lexical Analysis . 16
2.3.4 Syntax Analysis . 18
2.3.5 Semantic Analysis . 24
2.3.6 Synthesis . 26

2.4 Parsing Binary Data . 28
2.4.1 Structural Patterns and Indication 29
2.4.2 A Type System for Binary Parsing 31

2.5 Summary . 35

3 Related Work 36
3.1 PACKETTYPES . 36
3.2 DATASCRIPT . 37
3.3 Parsing Expression Grammar (PEG) 39
3.4 Processing Ad hoc Data Sources (PADS) 39
3.5 binpac . 41
3.6 GAPA . 43
3.7 Summary . 45

4 Design Concept 46
4.1 Requirement Analysis . 46

4.1.1 Language Quality . 47
4.1.2 Compiler Quality . 48
4.1.3 Quality of Generated Parsers 49
4.1.4 External Requirements . 50

4.2 The PBPG Language . 51
4.3 The PBPG Compiler . 54

Contents VIII

4.3.1 Choice of Tools . 54
4.3.2 Front-end . 56
4.3.3 Static Semantic Analysis . 65
4.3.4 Back-end . 66

4.4 Binary Parser Model . 67
4.4.1 Input Memory Model . 67
4.4.2 Language Construct Mapping 68

5 Implementation 73
5.1 Tree Walking with Visitors . 73
5.2 Analysis and Translation of Name References 75

5.2.1 Translation of Name References 77

6 Evaluation 79
6.1 Language Quality . 79
6.2 Compiler Quality . 80
6.3 Quality of Generated Parsers . 81

7 Summary and Future work 82

A Annex 85
A.1 ISO/IEC 7816-4 smart card commands 85
A.2 PBPG Language Specification . 86

A.2.1 Scanner Specification . 86
A.2.2 Parser Specification . 89

A.3 UICC Commands formalized in PBPG syntax 95

Acronyms 97

References 98

1

1 Introduction
The evolution of protocols in communication technologies is a rapid process today.
Driven by standardization efforts, manufacturers of communication devices heavily
rely on computer-aided validation of standard compliance of their products. This ap-
plies in particular to protocol implementations, whose correctness is essential for in-
teroperability. However, due to the volume and complexity of normative documents to
cover the development and maintenance of test software for automated communication
validation is a comprehensive task.

The declarative and often informal specifications of protocol communication pack-
ets and their low-level data structures represent a noticeable hurdle for a manual tran-
scription into an operational protocol analysis implementation. The task requires not
only understanding of the specification document and the technological background,
but also needs reliable low-level programming skills, in particular for the dissection of
structured binary data. This is known to be a time-consuming process and a source of
frequently recurring programming errors.
Hence, in this work we discuss a systematic approach to leverage the construction of
binary data parsers. We present the Paderborn Binary Parser Generator (PBPG), a
formal specification language and its compiler for automatic derivation of operational
parsing code from formalized data structure specifications in PBPG syntax.

Founding on composition of C-like structs, unions and arrays from elementary
data types in combination with semantic constraints PBPG bridges the semantic gap
between the declarative form of data structure specifications and the corresponding
operational parser code.

The generated binary parsers are well suited for the rapid development of protocol
monitoring and analysis applications by avoiding errors of manual implementation and
reducing the amount of development time.

1 Introduction 2

1.1 Motivation

To ensure a high level of interoperability among the multitude of devices, the telecom
industry heavily relies on standards. Being developed and maintained by standardiza-
tion organizations such as ISO, IEC, ETSI and 3GPP, those standards establish a basis
for the development of reliable and interoperable technology.

COMPRION as a test equipment manufacturer provides the hardware and software
for the standard compliance verification of mobile devices. Unlike handset and card
manufacturers, which typically concentrate on coverage of standards relevant to a cer-
tain product, the test equipment manufacturer must gear up for various configurations
of interacting devices, potentially requiring a comprehensive batch of test scenario im-
plementations. In order to keep the test equipment conforming to the latest standard,
frequent updates of legacy system parts must be performed. This applies in particular
to communication monitoring tools.

The purpose of a monitoring application by COMPRION is to display the smart
card-terminal interaction in a human readable way, for the inspection and debugging of
either of the device implementations. To accomplish this, the application must dissect
the binary data stream and extract the embedded information elements. Thereafter the
gained information is presented with textual annotations.

Smart Card

Binary coded
Communication

Monitoring
Application

Terminal

Human-readable
Representation

Figure 1.1: The monitoring application dissects the binary coded data stream into its
constituting elements and generates a readable representation of the data.

For the dissection of raw communication data, the application must implement
parts of the employed communication protocol and the transferred data objects. As
long as the test system and the mobile devices follow the same specification, correct
dissection can be expected. However, due to the evolution in communication standards
and the communicating devices, the test system may become inconsistent with its tes-

3 1.2 Document Structure

tees. This puts particular importance on the actuality of the dissection procedures of
the monitoring application.

Currently, modification and extension of the dissection procedures is done by man-
ually transcribing structure specifications from standard documents to operational pro-
gram logic. However, due to the declarative nature of standard documents, mapping
of the semantics to an imperative programming language is a tedious and error-prone
process. Moreover, handling low-level protocol data by means of a high level pro-
gramming language is sometimes inconvenient, which complicates and retards imple-
mentation and maintenance.

But, considering input and output of a monitoring application as depicted in fig-
ure 1.1 as sentences of two distinct languages, the process of monitoring can be inter-
preted as a translation task. With the machine-oriented language as source and human
readable representation as target language, this problem is fairly well suited to transla-
tion techniques of compiler theory.
Hence, the goals of this thesis were to work out the differences between parsing tex-
tual and binary inputs and to analyze the applicability of the traditional techniques. As
a practical result, the design and development of a declarative specification language
and its compiler for the generation of binary parsers were aimed. Striving for increased
productivity and reliability, not only the quality of binary parsers, but also the quality
of the development process itself were in the focus of this thesis.

1.2 Document Structure
This document is organized as follows. Starting with foundations in clause 2 we intro-
duce basic aspects of smart cards, their internal organization and a typical monitoring
system set-up. After discussing basic notions and techniques of compiler theory, we
focus on processing of binary input and a modification to the analysis model. We
conclude the foundations clause with a theoretical approach to parsing binary data.

In clause 3 we expose related projects in the field of protocol monitoring and anal-
ysis, which have slightly different goals but rely on linguistic approaches. In the sub-
sequent clause 4.1 we work out quality requirements for a reasonable solution in the
context of this work.

Thereafter we present in clause 4 the design of our solution (PBPG), which includes
the language, its compiler and the model of a binary parser. There we focus on the
architecture, concepts and the choices made with regard to the tools employed.

Clause 5 gives then a closer view on some of the interesting aspects and computa-
tional difficulties encountered during the development of PBPG.

Finally, in clause 6 the developed product is evaluated against the stated quality re-
quirements from clause 4.1 and a conclusion along with an outlook is given in clause 7.

2 Foundations 4

2 Foundations
In this section we are going to introduce the reader to the field of smart cards and the
binary communication on the interface between a terminal and a smart card which is
the pivotal subject of our focus. Our aim to utilize compiler construction techniques
for the generation of parsers for the analysis of binary coded communication streams
leads us across a couple of topics and subjects which can fill books on their own. With
a rather selective point of view, we are going to inspect the following topics in the next
clauses.

Starting in clause 2.1 we introduce the smart card with today’s standardized com-
munication protocols and the concept of layered communication. We outline the logi-
cal organization of files on the card and the set of commands used to control the card
connected to a terminal.

Moving on to clause 2.2 we describe the process of monitoring the multi-layer
communication for the purpose of standard compliance verification as performed by
COMPRION. We analyze the manually implemented protocol packet parsing and iden-
tify drawbacks associated with this approach.

In clause 2.3 we review aspects of the compilation process with an emphasis on
analysis. This encloses the individual processing stages and the involved computation
models in association with properties of grammars and languages.

In clause 2.4 we argue about modifications of the parsing process, which become
necessary when applied to binary encoded languages. We try to outline the associated
consequences for the complexity of the analysis and the form of binary structure spec-
ifications. We conclude the section with a short summary.

In each clause we cite the literature used for the very topic instantly at the posi-
tion required. The literature used for the subject area of smart cards consists of the
normative documents and especially the "Smart Card Handbook" by Rankl and Eff-
ing. Major contribution to the topic of compiler theory has been made by "Compilers:
Principles, Techniques, and Tools" alias "The Dragonbook" by Aho, Lam, Sethi and
Ullman [ALSU06], "Übersetzerbau" by Kastens [Kas90] and "Engineering a Com-
piler" by Cooper and Torczon.

5 2.1 Smart Cards

2.1 Smart Cards

Today a large number of different smart cards, developed for distinct purposes exists.
Initially introduced for electronic payment, smart cards gained increasing importance
in mobile communication technology, health care information systems and authenti-
cation. Its success is originated in the presence of a microprocessor1 and the high
memory capacities compared to other chip cards [RE03]. The ability to securely pro-
tect data from unauthorized access and to execute cryptographic algorithms, makes
smart cards especially applicable in security related areas.

Depending on the standard, smart cards of mobile technology are denoted as Sub-
scriber Identity Module (SIM) or as Universal Integrated Circuit Card (UICC). The
former term originates from the GSM standard [ETS95], which is the most widespread
technology today. The second term is introduced by the ETSI TS 102.221 [Eur09]
standard, that supersedes GSM, and defines GSM-based operation as an integrated ap-
plication besides others. We appoint to keep using the general term smart card, since
the ongoing considerations can easily be applied to multiple concrete systems.

Based on these standards the communication protocols of the smart card interface
are shown in the next clause. Thereafter the organization of a smart card and the
defined operations are introduced, providing the foundations for ongoing discussion.

2.1.1 Protocols

The ISO Open System Interconnection (OSI) Basic Reference Model [ISO94] is the
foundation for many communication protocols. It defines communication between two
or more systems by means of a stack of abstraction layers. This modular concept as-
signs every layer a specific function, that can be implemented by one or more concrete
protocols. Each layer employs custom units of interaction, with granularities propor-
tional to the layer number. Units of lower layers encapsulate unit-segments of adjacent
layers above (protocol encapsulation). This makes protocols exchangeable, without
affecting the overall functionality. Therefore, the higher layer protocols can rely on the
protocol stack below without caring about lower level details of connection.
Seven layers in total are defined, though not all of them are applicable to concrete com-
munication systems. This also applies to communication over the smart card interface,
which is presented here. For the complete description of the Basic Reference Model
please refer to its specification document [ISO94].

Compared to the reference model the organization of the smart card communication
model [Eur09] is less complex. The layer stack comprises four layers only2, omitting
the routing facility located at L3, not relevant to this technology. Furthermore, the
layers five to seven are merged to a single application layer.

1The term smart reflects the card’s ability to calculate.
2In literature the transport layer is sometimes merged with data link layer, still being called layer

2, which sums up to three layers in total.

2 Foundations 6

Layer 1 and 2: Let us consider the physical layer first. In most smart cards used
today, according to the contact assignments of ISO 7816-2 [ISOa], only one of eight
available electrical contacts is used for data transmission, whereas other contacts are
reserved for power supply, system reset and other operations. That means, that only
one peer can send data at a time, while the other waits for receipt. From this syn-
chronous transmission the signal-encoded bits are assembled to frames at the data link
layer. Frames hold a single byte of data with additional control bits.

Layer 3: After assembly those frames are passed to protocols of the transport layer
L4. The most prevalent protocols here are the T=0 and T=1 transmission protocols3,
whereas other alternatives [ISOa, ISOb, RE02, RE03] exist. Both of them are capable
of serving the same ISO transport layer [Eur09], though differing in the exact process.
Out of frames, both protocols construct Transfer Protocol Data Units (TPDUs), which
represent segments in terms of the OSI model. To preserve communication quality for
the application layer, retransmission of corrupt and missing TPDUs is managed in this
layer.
Two variants of TPDUs are specified - Command TPDU (C-TPDU) and corresponding
Response TPDU (R-TPDU). The first is emitted by the terminal as a command, while
the latter is emitted by the card in response. Lasting for the entire communication
session, this command-response interplay realizes the master-slave principle, with the
terminal as master.

3The names might seem unusual. They are spoken out "t equals zero" and "t equals one".

Terminal Smart
Card

Electrical contact

L1

L2

L3

L4

L5

L6

L7

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

units

APDU

TPDU

Packets

Frames

Bits Signal measurement,
Frame assembly

Peer-to-Peer Routing,
Packet assembly

Error detection,
Synchronization

APDU assembly,
Quality of Service

Host-toHost
Communication

Data Representation
Encoding, encryption

Message exchange

ISO/IEC 7816-3,
T=0, T=1, T=14,
USB,
SWP,
ETSI TS 102.221

Standards,
Protocols

ISO/IEC 7816-3,
ETSI TS 102.221

ISO/IEC 7816-4,
GSM 11.11,
GSM 11.14,
ETSI TS 31.102,
ETSI TS 102.221
ETSI TS 102.222

Figure 2.1: The smart card communication requires less layers than the OSI reference
model. The omitted layers are grayed out. In the Standards-column specification docu-
ments are referenced, which define protocols for the specific layer.

7 2.1 Smart Cards

Layer 4: Finally, the TPDUs are combined to larger Application Protocol Data Units
(APDUs) of the application layer. C-TPDUs contribute segments of a C-APDU and
R-TPDUs the segments of a R-APDU. At this level, the communication is guided by
the order of messages and the encoding of their payload. This layer serves the appli-
cation logic by transporting application specific data, which encloses control data of
superior protocols and stored file contents. A vast number of specialized data structures
is defined here, which produces the majority of implementation effort for a protocol
monitoring application. Therefore, the application layer is most important for this the-
sis.

Summarizing this clause, the general information to keep in mind is, that com-
munication data is typically transferred in hierarchically constructed units and that for
each layer one or more protocols are defined to accomplish a layer-specific task. Spec-
ifications describe the concrete encoding, the order and meaning of the protocol data
units, i.e. the syntax and semantics of the machine-machine interaction. Since the ap-
plication layer exhibits a rich variety of data structures, it offers the highest application
potential for binary parsers.

2.1.2 Logical Organization

Smart cards exhibit a simple file system, resembling those of common operating sys-
tems. The root denoted as Master File (MF), encloses the entire storage memory of
the card, including all other files and directories. Below the MF three different kinds
of files can be stored, Elementary Files (EFs), Dedicated Files (DFs) and Application
Directory Files (ADFs) as shown in figure 2.2. They are referenced through a two-byte
logical File Identifier (FID). The MF is identified by the unique FID ’3F00’. Except
’FFFF’ - which is reserved for future use - and the MF FID, all 16-Bit values are
available for application use [ISOc], i.e. are standardized accordingly.

MFMF

EF1EF1 DF1DF1

EF2EF2

EFDIREFDIR ADF1ADF1

EF3EF3 DF4DF4DF3DF3

EF5EF5 EF6EF6DF5DF5 EF4EF4

EF3EF3

Figure 2.2: Example of a logical structure, taken from [Eur09].

2 Foundations 8

Elementary File (EF) is a file, which can contain data, but no other files. In its
simplest form its structure is not restricted by the file system and the EF contents are
totally organized by the owning application. This type of EF is denoted as "Trans-
parent". Other available types are "Linear fixed" and "Linear variable", which are file
system handled record lists, with either a fixed or a variable length for each record.
The records of a Linear EF, can be addressed through an absolute record number,
or relatively, by referencing adjacent records of a recently addressed record. Finally,
such lists can be circularly linked, in order to allow looping through the records of a
file. This results in a "Cyclic" file type which allows for convenient handling of large
datasets as used for phone books and schedule lists for example. The structure and
contents of a record are of course not restricted by the file system.

Dedicated File (DF) represents a folder, possibly containing further EFs or DFs. The
DF nesting depth is unrestricted in general, however typical applications do not exceed
a depth of two. To prevent name collisions, DFs can be accessed alternatively by their
"DF name", which is a 1 to 16 bytes long identifier. The "DF name" in combination
with an Application Identifier (AID) of a smart card application, is a globally unique
denotation of directories.

Application Directory File (ADF) is a special form of DF, representing a smart card
application. Applications were introduced by ETSI as a generalizing extension of the
GSM technology. ADFs are supposed to enclose all files required for their execution,
thus allowing to place multiple applications below the MF side by side. A single
Universal Integrated Circuit Card (UICC) may thus integrate applications to access
different communication networks or even financial functionality. ADFs are identified
by their AID, which has for registered applications a globally unique value. The first
access of an ADF is done via the AID, and is typically associated with a user PIN
request. All ADFs on the smart card are listed in a DF called "DFDIR" under the MF.

2.1.3 Smart Card Commands

In clause 2.1.1 we introduced the C-APDU as a command, a terminal can issue to
the card. The specific commands, accepted by the cards can vary, depending on the
implemented standard. Smart cards complying to ISO/IEC 7816-4 [ISOc] provide a
small API for file management, general operation and authentication. Not all cards
have to support all of the commands, or all possible parameter combinations regarding
the ISO/IEC 7816-4.

In the following tables the general formats of the C-APDU and the R-APDU are
shown. Both form containers for the transferred application data enclosed by control
data. The values and parameters of the concrete APDUs are instances of the general
format. Some of the smart card commands will be shown in detail on the next pages.

A C-APDU can have multiple forms differing in the encoding of the body. The
C-APDU header is mandatory and therefore always present. It starts with a command

9 2.1 Smart Cards

Field Length Description Grouping

CLA 1 Class of instruction Header
INS 1 Instruction code
P1 1 Instruction parameter 1
P2 1 Instruction parameter 2

Lc 0 or 1 Number of bytes in the command data field Body Body
Data Lc Command data string
Le 0 or 1 Max. number of data bytes expected in response of

the command

Table 2.1: Contents of a C-APDU specified in ETSI TS 102221 [Eur09].

Case Structure

1 CLA INS P1 P2
2 CLA INS P1 P2 Le
3 CLA INS P1 P2 Lc Data
4 CLA INS P1 P2 Lc Data Le

Table 2.2: Cases of C-APDUs.

class indication and is used for distinguishing the underlying technology4. The sec-
ond field is the instruction code, which indicates what operation the smart card has
to perform. A trailing pair of instruction parameters encodes additional instruction-
dependent information.

In contrast to the command header, the structure of the body is not static and de-
pends on the values encoded in the header. In its simplest form, the body can be empty.
In such a case, the size of the APDU depends on the header size solely. If and only if
the body consists of a single byte, it is to be interpreted as the length of the Response
APDU (R-APDU) the terminal expects from the card. Otherwise, the first byte of body
represents the length of the consecutive data field. If there is one more byte to come
after the data field, it is again to be interpreted as expected response length, though it
might be absent as well.

Code Length Description

Data Lr Response data string
SW1 1 Status byte 1
SW2 1 Status byte 2

Table 2.3: Contents of R-APDU

The format of a R-APDU is somewhat simpler. It contains an optional Data field,
whose length depends on the concrete command and the requested information to be
returned. The succeeding status field is mandatory. It consists of two bytes SW1 and

4GSM commands have different classes than the UICC or CDMA commands

2 Foundations 10

SW2, encoding an execution success indicator. Possible values and their interpreta-
tion depend on the commands, but the value indicating successful execution is always
defined as SW1 = 0x90, SW2 = 0x00.

Based on this knowledge we now explain briefly some of the frequently used com-
mands. In the example we use the GSM technology class byte (0xA0).

SELECT The SELECT command allows to mark a file as the selected file of the file
system. Succeeding READ and WRITE commands are related to this very file. Mostly
the FID of the file to select is stated in the data field of the command body, however,
also absolute and relative paths or DFs names are accepted as arguments. The card’s
response to the SELECT command may contain the file size, access conditions and
proprietary information.

CLA INS P1 P2 Lc Data Le

0xA0 0xA4 0x00 0x00 0x02 File ID 0x00

Table 2.4: Coding of SELECT Command

VERIFY PIN This command compares the PIN entered by the user with the value
stored on the smart card. Such verification is required to restrict access to secured files
and applications. Since the security mechanism allows to maintain multiple PINs, the
parameter P2 accepts a reference to the PIN to compare the user value with. The data
field holds the user entered PIN. In case of successful comparison, the card responds
with a SW1 = 0x90, SW2 = 0x00 and the access to the restricted contents is granted
to the user. In case of failed comparison, the card returns a status of SW1 = 0x63
and SW2 = 0xCX, where X is the number of remaining comparison trials. After three
failed trials the PIN is blocked.

CLA INS P1 P2 Lc Data

0xA0 0x20 0x00 b5..b1: PIN Nummer 0x08 PIN (8 Byte)

Table 2.5: Coding of VERIFY PIN Command

READ BINARY After selecting a "Transparent" file using SELECT, the READ BI-
NARY command allows to read its contents. The card can only perform this operation,
if the PIN associated with the file was verified successfully. If the execution succeeds,
the R-APDU contains file data starting at the offset described in P1 and P2, with the
length of Le bytes.

CLA INS P1 P2 Le

0xA0 0xB0 b7..b1: Offset High Offset Low Length of Response

Table 2.6: Coding of READ BINARY command

11 2.2 Monitoring

UPDATE BINARY After selecting a "Transparent" file using SELECT, the UP-
DATE BINARY command allows to (over)write its contents. Same as for reading,
writing of a file can only be performed after successful authentication. P1 and P2 form
the offset in the file to place the data field value at.

CLA INS P1 P2 Lc Data

0xA0 0xD6 b7..b1: Offset High Offset Low Length of Data Value

Table 2.7: Coding of UPDATE BINARY Command

The complete list of operations standardized by the ISO/IEC 7816-4 consists of
18 commands and can be found in the annex on page 85. For technical details and
further information please refer to the normative document [ISOc] or to the "Smart
Card Handbook" [RE03].

2.2 Monitoring
Since the layered smart card communication is inaccessible to the human in a direct
way, a monitoring application is required to inform the user about the data flow and the
device states. It helps in identifying malfunction of either of two systems and aids the
manufacturers in the development of new products. On the next pages we are going
to present the current approach of monitoring binary communication at COMPRION.
Thereafter we will depict the drawbacks of the current implementation, preparing ar-
guments for the conception of a new approach.

2.2.1 Technical Setup

The test system consists of a tracing hardware device (tracer), a computer system with
Microsoft Windows and the monitoring software installed. The tracer is connected to
the computer via a USB wire, offering interfaces for the connection of a terminal and
a smart card as shown in figure 2.3.

Figure 2.3: Monitoring of smart card communication using a COMPRION monitoring
hardware. The traced data stream is passed to the monitoring application residing on a
computer, where the parsing, monitoring and further analysis are performed.

2 Foundations 12

Figure 2.4: The monitoring application displays parsed contents of the transport layer
and the application layer.

In the tracer hardware processing of the physical layer and the data link layer of the
protocol stack is implemented. The monitoring application on the other hand imple-
ments the transport layer and the application layer, and is therefore responsible for the
assembly of APDUs out of the frame-stream from the hardware. The user is offered
a textual representation of the three digital layers annotated with descriptive terms,
designating the values and data structures. In case of erroneous or unknown data, the
parsing mechanism falls back to a raw-output state and prints the data stream without
further processing. In the screen-shot on the left-hand side of the "Layer 7" window,
the commands in the order of their arrival are listed, whereas in the right pane the de-
tails of a chosen command are printed. The raw view of the APDU is shown in the
"Layer 2" window below.

2.2.2 Manual Implementation

Within the framework of a product, established ten years ago at COMPRION, the
concept for a protocol monitoring implementation has been designed. Providing a
solid basis, this design remained unaltered up to the present, and was used in multiple
succeeding products. It employs components called translators and analyzers, which
embody the manually implemented data dissectors. Although both component types
are designed to work independently, they exhibit a similar parsing front-end. The
former use it for greedily printing all encountered structural elements, while the latter
focus on specific data fields and the sequence of commands, matching those against
stated requirements. They are involved in automated standard compliance tests.

Equipped with a current copy of a specification document, a software developer
at COMPRION has to transcribe structure declarations, order restrictions and sev-

13 2.2 Monitoring

eral informally described constraints, to operational code, that accurately matches the
semantics of the standard. Using C++ the developer has to ensure correct memory
(de)allocation, implement a lot of boundary checks and error handling, accumulating
formatted information for the output, by means of concepts available in C++. Then
the code can be integrated into the monitoring application, offering the necessary input
and output interfaces.

§

Specification
Document

Programmed
Parsing Logic

informal,
declarative

formal,
operational

manual
implementation

Monitoring
Application

C++

Transcription

Figure 2.5: The software developer transcribes aspects from the declarative representa-
tion of the standard to concrete operational code. Implicit or informally described con-
straints have to be formalized and implemented also.

Nowadays the set of supported technologies includes numerous communication
protocols serving a lot of smart card applications. Hence, the amount of realized trans-
lators and analyzers to accomplish this, is quite extensive and still growing steadily.
However, the manual implementation approach suffers some critical deficiencies.

2.2.3 Drawbacks

Upon the decision to introduce a new product, with improved hardware along with
optimized monitoring applications based on Microsoft’s .NET platform, the drawbacks
of the current solution became noticeable. The most outstanding are assembled in the
following list.

Large semantic gap
During transcription the developer not only has to be familiar with the context
of the specification, but also has to rewrite declarative text as imperative code,
while formalizing implicitly assumed or informal descriptions. Spanning this
semantic gap requires experience in both domains and is very likely to be a
source of errors. It also represents a high entry threshold for developers new to
the task.

2 Foundations 14

Hard to maintain
Any code updates enforced by changes in standards, result in cumbersome re-
verse engineering of C++ code to allow modification.
Re-invention of ever recurring concepts
Frequently recurring implementation of boundary checks, value comparisons
and case handling, vary in constants and combination. However, the general
structure of these problems is not targeted. Also, the heavy use of bit- and pointer
arithmetic, which is prone to errors, lacks of a systematic aid. This threatens ro-
bustness and therefore increases testing and bug-fixing effort.
Re-implementation too costly
A comparable reimplementation using another programming language would be
too costly, consuming a lot of time. Moreover, the result would exhibit the same
strong language binding, again restraining further evolution of products.
Lack of portability
The close programming language dependency, combined with the large amount
of existing parsing routines makes it unfeasible to reuse the hard-coded seman-
tics on the new platform.
Inefficient architecture
Translators and analyzers perform the same parsing twice, wasting resources
and increasing the number of potential errors unnecessarily.

Summarizing, we may assert that the development strategy of standard compliant bi-
nary parsers, from specification documents is not sufficiently addressed by the current
solution. A switch in the representation paradigm, the complex details of both domains
and the large amount of similar parsers to handle, make manual implementation an in-
adequate approach. In order to address these issues, we aimed the introduction of a
domain-specific language, which could bridge at least one part of the semantic gap,
that is, mapping code from the declarative to the operational representation. While
the rest of the gap - the specification formalization - would still be performed by the
software developer, the representation switch can be shifted to a compiler.

15 2.3 Aspects of Compiler Theory

2.3 Aspects of Compiler Theory

In this thesis we present PBPG and its language, as a linguistic approach to construc-
tion of binary parsers. The language design, the development of the compiler and the
binary parsers it generates rely heavily on techniques of compiler construction. Hence,
we introduce in this section basic notions of compiler theory, including lexical analy-
sis and the analysis of syntax and static semantics. We mention the theoretical models
and automata used in association with regular expressions and deterministic context
free languages. Thereafter we discuss aspects of semantic analysis and conclude the
section by introducing the basic notions of synthesis. Throughout this section we refer
to a few books [ALSU06, CT03, Kas90, Wir05], which provided the most information
cited. Other sources provided a few additional information.

2.3.1 Compilation is Translation

Communication is always based on at least one language. The form and complexity of
the language is influenced by the context of its use and the characteristics of the com-
munication participants. Languages for machine-machine communication differ from
languages for man-machine interaction. The former typically allow a bidirectional data
exchange on a rather even abstraction level. The latter enables humans to express in-
tentions in terms of a textual or graphical source language, which can be transformed
to a representation suited to the machine, the target language. In this case, where dif-
ferent abstraction levels have to be bridged, compilers can be employed to translate the
meaning from the source to the target language [Wir05].

SynthesisSynthesisAnalysisAnalysis

Intermediate
Representation

Source
Language

Target
Language

front-end back-end

Figure 2.6: The compilation task is subdivided in an analyzing and a synthesizing part.

In the construction of compilers characteristics of both the source and the target
languages are addressed. The analytic part of the compiler, which processes the source
language input, encapsulates the front-end. The synthesizing compiler part in contrast,
which generates the target language code, represents the back-end. In between, an in-
termediate representation constitutes a weak link between the two ends. This division
has practical significance. Making both parts exchangeable, it facilitates the portability
of the compiler.

2 Foundations 16

2.3.2 Analysis

The function of the compiler front-end is accomplished by a series of analysis phases
with increasing abstraction levels. For each of them standard processing techniques
are available. We will discuss them one after the other.

Starting with the lexical analysis of the input data, the Scanner recognizes cohesive
character sequences as symbols of the language and classifies them in terms relevant
for the later syntax analysis. Constantly discarding white-spaces, line-breaks and ir-
relevant delimiters, the symbolic stream is transformed to a token-sequence for the
parser.

Syntax
Analysis
Syntax
Analysis

Lexical
Analysis
Lexical
Analysis

Semantic
Analysis
Semantic
Analysis

Input
string

Token
Stream

Syntax
Tree

Intermediate
Representation

Figure 2.7: The different steps of analysis focus on symbol patterns, the syntax and the
semantics of the input string.

During the syntax analysis, the structure of the token-sequence is matched against
the specified language grammar, and made explicit by incrementally assembling ele-
ments of the syntax tree. In case of successful processing, the input data is proved to
be syntactically well-formed.

Based on the syntax tree, the analysis of static semantics can be done. It encloses
the analysis of identifier dependency relations, type-compatibility, expression evalua-
tion and other compliance with specified rules of the source language.

2.3.3 Lexical Analysis

While the analysis of syntax and static semantics is done by the parser, the lexical
analysis is hidden in the scanner. This decoupling of the scanning task is justified by
mainly three reasons [ALSU06, CT03]:

Syntactical analysis can be considerably simplified if the parser does not have to
handle white-spaces, line breaks and comments, but can specialize on the syntac-
tical structure of the relevant words only. This purifies the grammar specification
and eases the development process of parsers.
Applying techniques specialized to lexical analysis solely, along with efficient
input buffering methods, can improve the overall analysis performance.
Compilers of related or similar programming languages might share a single
scanner implementation while encapsulating their differences in the parser. On
the other hand, there exist languages where the application of distinct scanners
for different regions of the input document simplifies the overall scanning pro-
cess.

17 2.3 Aspects of Compiler Theory

The construction of scanners can be automated to a great extend, requiring just a
little developer intervention. Provided a lexical specification of the source language, a
scanner generator creates an efficient implementation of the scanner for that language.
Hence, the major effort in scanner construction is the correct formulation of the lexical
specification.

The core of generated scanners constitutes an Finite State Automaton (FSA), which
is configured to recognize and classify character sequences according to the specifi-
cation. The patterns to be matched are formulated by means of regular expressions
or other equivalent foundations that FSA can be generated from [Kas90]. The pro-
cess and the algorithms leading to the final FSA implementation can be found in
[CT03, ALSU06].

Regular Expressions

For the specification of character patterns regular expressions can be used. They are
constructed by concatenation, alternation or repetition of sub-expressions. Assuming
that Σ is the set of available symbols, and L(X) and L(Y) are the languages defined by
the regular expressions X and Y , then the table 2.8 specifies the Language L(R) of the
regular expressions R.

R L(R) Description

ε {ε} The set containing the empty word
a {a} The set containing a ∈ Σ

X|Y L(X) ∪ L(Y) Alternation
XY {xy|x ∈ L(X), y ∈ L(Y)} Concatenation
X∗ {ε} ∪ {xy|x ∈ L(X∗), y ∈ L(X)} Repetition (Kleene closure)
(X) X Grouping

Table 2.8: Languages L(R) defined by Regular ExpressionsR, in accordance to [Kas90].
The latter four expressions are sorted in the order of their precedence.

We appoint the alternation-, concatenation- and repetition operators to be left-
associative and their precedence to grow in that very order, being lowest for the al-
ternation operator. Using that definition we now can write patterns like the following
one, forming the language of hexadecimal numbers with the ’0x’ prefix.

HexNr = 0x(0|1|2|3|4|5|7|8|9|a|b|c|d|e|f|A|B|C|D|E|F)

(0|1|2|3|4|5|7|8|9|a|b|c|d|e|f|A|B|C|D|E|F)∗ (1)

Since this looks somewhat awkward, we may want to add some syntactic sugar to the
upper definition, which allows a more compact notation. First we can abbreviate HexNr

by introducing the non-empty repetition X+ = XX∗. This type of repetition is used
very often, and shall therefore get its own operator. Another operator X? = X0 ∪X1

in this context restricts the Kleene repetition to one occurrence at most.

2 Foundations 18

To abbreviate long enumerations of symbol alternatives, as required for the aggrega-
tion of character classes, we can use the bracket notation. Further shortening can be
achieved by exploiting the encoding order of consecutive symbols, writing only the
bounds of a range separated by a hyphen.

HexNr = 0x[012345789abcdefABCDEF]+ (2)
HexNr = 0x[0−9a−fA−F]+ (3)

Sometimes it is more convenient to specify character sets using exclusion. In those
cases, a leading caret symbol within a character class definition denotes a complemen-
tary set, e.g. the set of characters not contained in the pattern.

TextLine = [^\n]∗[\n] (4)

The language of TextLine consists of words terminating with a line-break, with all of
the prior symbols being anything but a line-break. This is denoted by the escape sym-
bol \ followed by n. The same escaping convention applies to the use of all symbols,
which are their selves part of the regular expression notation, i.e. (,), [,], ∗,+, \ and ^.
Further mathematical properties of regular expressions can found in [ALSU06].

2.3.4 Syntax Analysis

The second phase of the analysis concentrates on a higher-level structure of the input.
Whereas lexical analysis performs on word-level, the syntax analysis operates on the
sentence-level. Its primary task is the verification of the token stream from the scanner,
with regard to the language grammar. The results can take on two forms, either the
input complies with the grammar, or not, which makes parsing a classification task,
consisting of two related aspects. The formal definition of a language grammar, and
the corresponding parsing methods.

Context-Free Grammar

From the universe of possible languages, the class of context free languages has the
most importance to language design in computer science. This is due to the character-
istic capability of Context-Free Grammars (CFGs) of creating sufficiently expressive
(complex) syntax for programming languages, which are yet simple enough to allow
efficient parsing. That is in time n3 for an input token sequence on length n [ALSU06].
The set of context-free languages encloses the subset of regular expressions, advanced
by recursion beyond the definition of the Kleene repetition [Wir05], as syntactical ex-
pressive means. This extension, however, requires a more sophisticated model and
techniques for the analysis process, which can not be accomplished by state machines
anymore. After introducing the CFG formally, we will present the two standard tech-
niques of top-down and bottom-up parsing, which cover the subsets LL(k) and LR(k)

of context-free languages. Both of them rely on the push-down automaton model.

19 2.3 Aspects of Compiler Theory

A CFG is a set of generating rewrite rules (productions), which specify the con-
struction of sentences of a language from symbols, forming its syntax. In accordance
to [Kas90] we use the following definition.

Definition 1 A context-free grammarG is determined by a four-tupleG = (T,N, S, P),
where T is the set of terminals, N the set of nonterminals, S ∈ N the start symbol, and
P ⊆ N×V ∗ the set of productions, where V = T ·∪N is the vocabulary of G.

Productions are denoted using →. For a sequence w = uAv of symbols in V and the
production p∈P : A→x, the application of p on w (derivation) is written as uAv⇒uxv.
The incremental derivation using recursive productions, such as A→Aa, is written us-
ing⇒∗, like in A⇒∗aaa. It means that the sentence on the right-hand side is derivable
from the nonterminal on the left. The set of sentences derivable from the start sym-
bol of a grammar G is the language L(G) = {w|w ∈ T ∗ ∧ S ⇒∗ w} of the grammar.
The restriction to a single nonterminal on left-hand side of productions in P makes the
grammar and the language it generates context-free [SK95]. Grammars without this
restriction are context-sensitive.

CFG are typically written using the Backus-Naur Form (BNF) or Extended BNF
(EBNF) as an abbreviating notation. The former allows collections of productions
with the same nonterminal on the left-hand side to be written as one production with
multiple alternatives on the right-hand side. Further shortening is achieved by using
EBNF, which advances BNF by arbitrarily nested regular expressions on the right-hand
side. We summarize these shortcuts in table 2.9.

EBNF EBNF equivalent BNF with Description
alternative X → uY w and

X → u(v)w Y → v grouping
X → u[v]w X → uv?w Y → v|ε optional occurrence
X → us∗w X → u{s}w Y → sY |ε optional repetition
X → us+w X → us...w Y → sY |s repetition
X → u(v‖s)w Y → vsY |v delimited repetition
X → u(v1|v2)w Y → v1|v2 alternative

Table 2.9: EBNF abbreviations for equivalent BNF production pairs, where X,Y ∈ N
u, v, v1, v2, w ∈ V ∗ and s ∈ V , in accordance to [Kas09a]

In figure 2.8 we show a simple grammar Glrwhich defines the language Llr =

L(Glr) = {lnrn|n ∈ N+}. Its sentences consist of an equal number of l and r termi-
nals. Starting with p1 the start symbol S is replaced by the nonterminal M. Then each
derivation using p2 replaces M by itself with enclosing l and r terminals. The incre-
mental derivation adds further terminals within the expression from prior iterations. A
final application of p3 stops the derivation process, yielding a sentence in Llr. This
derivation can be drawn as a tree, the derivation tree or syntax tree.

2 Foundations 20

Glr = {T,N, S, P}
T = {l, r}
N = {S,M}
P = {p1, p2, p3}

p1: S → M
p2: M → l M r
p3: M → lr

Figure 2.8: Grammar Glr for the lan-
guage Llr = {lnrn|n ∈ N+}.

p1

p3

p2

rM

S

lr

l

M

Figure 2.9: Derivation tree for the sen-
tence llrr ∈ Llr.

This example illustrates that a context free language can be defined, which can not
be handled by an FSA, i.e. which is not regular. Although it is describable in terms of
BNF notation {lirj |i, j ∈ N+}, using an FSA we have no means to guarantee a balanced
number (i = j) of both terminals, since FSA cannot count [ALSU06].

Concrete vs. Abstract Grammars

For a language two types of grammars can be given, an abstract and a concrete
grammar. A concrete grammar is unambiguous and specifies delimiters and other ter-
minals, to support the syntactical structure. It defines the concrete syntax of the lan-
guage from the perspective of a programmer. An abstract grammar on the other hand
contains condensed information only, omitting all symbols of no value for the further
analysis. It defines the abstract syntax of the language, which is ambiguous in most
cases. Please consider the following ambiguous expression grammar. Its sentences are
arithmetic expressions written in infix notation.

p1: Expr → Expr Opr Expr
p2: | ident | number
p3: Opr → + | - | × | ÷

In this grammar the same arithmetic expression a − b + c can be constructed by
leftmost, and rightmost derivation of Expr.

a cb

Expr

ident ident

ident

+

Expr

ExprExpr

-

Opr

OprExpr

a cb

Expr

ident ident

ident

+

Expr

ExprExpr

-

Opr

OprExpr

Figure 2.10: Leftmost and rightmost derivation of the same input a− b+ c.

The tree on the left of figure 2.10 groups the input as being right-associative i.e.
a− (b+ c), whereas the tree on the right groups the identifiers in a left-associative way
(a − b) + c, which is semantically unequal. For the concrete syntax tree, derivations

21 2.3 Aspects of Compiler Theory

must be performed unambiguously. Thus, the expression grammar has to be specified
with more structural information.

p1: Expr → Expr AddOpr Term
p2: | Term
p3: Term → Term MulOpr Prod
p4: | Prod

p5: Prod → ident

p6: | number

p7: AddOpr → + | -
p8: MulOpr → × | ÷

The previous right-recursion of Expr is eliminated. Instead, two nonterminals Term
and Prod are introduced, and the terminals of Opr are split into distinct nonterminals
AddOpr and MulOpr. The left-recursive definition of Expr and Term makes the ad-
dition and multiplication operators left-associative. The stepwise operator definitions
introduce an order of precedence, which increases with the depth in a chain of pro-
ductions [Kas09a]. Hence, in this grammar multiplication has higher precedence than
addition. This way schematically constructed grammars disambiguate the derivation
process imprinting associativity and precedence in the concrete syntax.

Parsing Techniques

As aforementioned, parsing CFG is harder than parsing regular expressions. Hence,
a more powerful model has to be employed to do this task. In particular the Pushdown
automaton (PDA) model has exactly the desired quality. It is an FSA advanced by a
stack, whose top element serves as additional input to the transition function, repre-
sented by a table. Parsing an input string is now considered as stepwise derivation of

Tokens

Stack
Transition
Function

read-
write

read
lookahead

sState

$

Figure 2.11: A parser simulates basically a PDA. It employs a stack, whose top element
serves as additional input for the transition function.

the input, depending on the current PDA-state, an input symbol and the top-element
of the stack. Accordingly, successful parsing is not reached by dedicated automaton
states solely, but requires the entire input to be read - indicated by $, and the start
symbol as the final symbol on the stack above $.

There exist two standard ways for parsing context-free languages, top-down and
bottom-up, which concerns the way of constructing the derivation tree. Top-down
parsing builds the tree from the root to the leafs in prefix order, by applying produc-
tions forwards (as they are defined). In contrast, bottom-up parsing assembles the tree

2 Foundations 22

from the leafs upwards, node by node towards the root, by inverse application of pro-
ductions, i.e. by reduction. For a sequence of derivations S⇒w1⇒w2⇒ . . .⇒wn = α

reproducing the input string α, the bottom-up approach calculates wn−1⇒wn before
it calculates wn−2⇒wn−1. This difference in the direction leads to distinct classes of
languages, supported by top-down and bottom-up parsers.

Bottom-up parsers cover the set of LR(k) languages, which is the set of determin-
istic (or unambiguous) context free languages, while top-down parsers support just a
subset LL(k) ⊂ LR(k) of languages [Kas90]. In both cases, the first L denotes the
input processing direction being left-to-right, whereas the second L or R stand for left-
most derivation and rightmost derivation accordingly. The argument k represents the
lookahead boundary. It is the number of tokens beyond the current token position the
parser may peek at in order to deterministically identify the next production. Both
alternatives perform in time O(n) for an input string of length n [ALSU06]. Fortu-
nately for typical programming languages LR(k) or LL(k) grammars with k = 1 can
be designed, offering efficient compilers for them.

1: p1

3

5 3: p3

2

2: p2

4

1

r r

M

S

M

l l

Figure 2.12: Syntax tree after top-down
parsing of the input llrr up to the first r.

1 1: p31

r r

M

S

M

l l

Figure 2.13: Syntax tree as constructed by
a bottom-up parser for the same input llrr.

reduction candidateon stack unprocessedaccepted

Top-Down Parsing

Following the natural structure of a CFG, top-down parsing is a rather intuitive
working principle, and the only viable way to program parsers manually. From the
start-symbol on, a top-down parser creates the root and the nodes of the derivation
tree in a depth-first order. By application of leftmost derivations, it grows the tree
towards the leafs. This is illustrated in figure 2.12. In this situation the nonterminals
S and M of p1 are partially derived (on stack), whereas the terminal l and the second
M have already been accepted by means of p3, during production p2. By reading the
remaining symbol and successfully matching it against the last terminal of p2, the input
will be accepted, i.e. M and S will be removed from the stack, completing the tree
construction.

One way to implement a top-down parser is the recursive descent approach. It is
based on mutually recursive parse functions, each responsible for parsing of one certain

23 2.3 Aspects of Compiler Theory

nonterminal of the grammar. The dependencies of nonterminals are reflected in the
structure of function calls in the implementation, where occurrences of nonterminals
on the right-hand side of productions are mapped to function-calls. Every function
returns a Boolean value indicating the parsing success, which is given if the function
successfully consumes the input according to the definition of the nonterminal. The
overall process is successful if the function of the start symbol finally returns true.
This is shown in the parsing code in figure 2.14 for our language Llr.

1: global token

2: function ACCEPTS
3: token← getNextToken()
4: return AcceptM()

5: function ACCEPTM
6: if token 6= l then
7: return false
8: token← getNextToken()

9: AcceptM();

10: if token 6= r then
11: return false
12: token← getNextToken()

13: return false

Figure 2.14: Exemplary recursive descend parser for the language Llr.

In the simplest case of recursive descent, parsing of valid input alternatives is done
by probing all corresponding functions in an exhaustive trial-and-error manner. In case
of a mismatch, the process has to backtrack to the most recent previous valid state, and
to try other ways to match the input. If the last opportunity fails, the parser must stop
with a meaningful error message.

The amount of performed backtracking before choosing the right production obvi-
ously affects the runtime of the algorithm. Probing alternative ways to match the input
blindly, i.e. based on passed tokens only, is therefore not very efficient. In many cases
the knowledge of one or more tokens beyond the current one (lookahead) unambigu-
ously determines the correct production to choose next, i.e. the correct parse function
to execute. This can push the number of backtracking to zero, defining deterministi-
cally correct steps for each new input symbol.

An implementation of a recursive descent parser can either be direct-coded, as
indicated in figure 2.14, or it can be table-driven. The former type utilizes the runtime
stack of the executing machine as its pushdown automaton to handle parsing states
and perform backtracking implicitly. Such parsers typically perform very fast and are
chosen in case of manual parser implementations. They have the advantage of a simple
architecture, combined with good error detection and correction capabilities [CT03]
along with all the freedom of manual implementation.

2 Foundations 24

The table-driven approach on the other hand, employs an explicit push-down au-
tomaton driven by a lookup-table based transition function. Such parsers are typi-
cally generated by parser construction tools, and perform slower. However, generated
parsers benefit from smaller implementation effort high-level specifications, which re-
duce the development costs and increases robustness.

Bottom-Up Parsing

As indicated in figure 2.13, bottom-up parsing creates the syntax tree from the leafs
towards the root in postfix order. While the input is still processed from left to right,
the application of productions is reversed. This inverse derivation is called reduction
and means the replacement of totally accepted production bodies by their left-hand
sides. The final goal is the reduction of the entire input string to the single start-
state (or goal-state), the root of the derivation tree. Bottom-up parsing allows to use
the more powerful LR(k) grammars, which overcome the limitations associated with
LL(k) grammars, e.g. left-recursion and alternative productions with equal beginnings.
However, due to the complexity of the concrete parsing procedure, the construction
of LR parsers can not be performed by hand practically, but is rather performed by
construction tools.

In order to enlarge the set of supported grammars, to overcome conflict-situations, a
lookahead of k > 0 is required. Additionally, improvements on the parsing techniques
can be done. Today LALR(1) represents the most powerful but still efficient parser
class. It is supported by many parser generators being a standard in compiler construc-
tion. Detailed information about properties and construction of bottom-up parsers can
be found in [Kas90, ALSU06, CT03].

2.3.5 Semantic Analysis

The pure recognition of the input syntax is not enough. Beyond the syntactical struc-
ture there is semantic information an input sentence transports, which has to be checked.
Aspects of the semantic analysis are primarily name analysis with respect to the im-
plemented scope rules and type analysis involving checks of type relations and con-
sistency. Depending on the language and its application domain, semantic analysis is
performed at compile-time (for statically typed languages) or at run-time. The valida-
tion of program’s compliance with semantic rules and constraints of a language is the
last task of the compilers analysis front-end.

The basis for this analysis is the abstract program tree, upon which tree-walking
algorithms calculate values, associated to semantic properties or attributes of gram-
mar symbols. Depending on the size and complexity of a language and its compiler,
semantic analysis may involve automated or manual techniques.

A formal and powerful technique are Attribute Grammar (AG), introduced by Don-
ald E. Knuth in [Knu68]. This method defines a declarative annotation of CFG, to de-
fine semantic relations and constraints between attributes of grammar symbols. From

25 2.3 Aspects of Compiler Theory

the dependencies defined by the attribute relations, the required order of value propa-
gations and computations, forming a tree-walk plan, can be derived automatically.

Alternatively tree-walks can be implemented manually as well. Also, the choice of
the employed parser generator might allow manual implementation only, lacking sup-
port for AG. Regardless of the chosen approach, attribute evaluation requires a good
understanding of the the problem and its complexity though. An overview of the algo-
rithms and further explanations on the systematic construction of attribute evaluators
for AG can be found in [Kas90].

Syntax-directed Translation

Manually implemented semantic analysis requires the prior construction on the
abstract program tree, which is based on the concept of syntax-directed translation
[CT03]. This technique became popular with the advent of the parser generator yacc
(yet another compiler compiler) by S.C. Johnson in the 1970s [LJ09]. Similar to AG
it involves augmentation of grammar productions. However, it is less formal, in that
it accepts arbitrary user-defined code, referred to as semantic actions. These semantic
actions must be provided in the syntax of the language, the parser is constructed in, and
are executed at run-time of the parser, whenever associated productions are applied.
Here we see the grammar for the language (a(, a)∗;), annotated with semantic actions
to accumulate occurrences of a into a list object:

p1: S → A ';'
{

$$ = $1;
}

p2: A → A ',' a
{

$$ = $1; $$.Add($3);
}

p3: | a
{

$$ = CreateList(); $$.Add($1);
}

Assuming that this grammar is designed for a bottom-up parser, the semantic ac-
tions are triggered in the same way, and so shall be read. In p3 we see the instantiation
of the list object using CreateList() upon the first occurrence of a, and its assign-
ment to $$. Then a is added to the list using Add($1). Whenever p2 is applied, for
each further occurrence of the string ',a' the list object is propagated from $1 to $$
with an a added. As soon as ';' causes reduction to the start state, the list object is
again assigned to $$. The symbols $$ and $1, $2, ... represent local references to
objects, associated to the symbols of the production. $$ references the object associ-
ated with the nonterminal on the left-hand side of the production, whereas $1, $2 and
$3 point to objects of symbols in the production body. The code inside the semantic
actions braces {. . . } must be valid in terms of the host language, of the parser imple-
mentation, where it is blindly copied into, by the generator. In our case, this might be
an object-oriented language like C++. Properties and methods of objects programmed
in the context of the host language, represent attributes of associated symbols in the
context of the grammar. Thus, assembly of the abstract program tree, using host lan-
guage functionality, directed by the derivation process, yields a hierarchy of object
instances reflecting abstracted and attributed structure of the input.

2 Foundations 26

Tree walking

Analysis of static semantics requires the program tree as input. This can be done
using mutually recursive validation methods, implemented for each kind of tree node.
Then the validation of the tree is initiated from its root, and performed until all sub-
routines return successfully or raise an error. However, care must be taken to ensure
termination of the whole procedure, avoiding recursion loops.

Depending on the complexity of the rule, the required effort may vary, incorpo-
rating propagation of values top-down and bottom-up. For instance, in order to check
the constraint "defining occurrence before applied occurrences" (def-before-use), as
implemented in C (C scope rules), one tree-pass suffices. However, if the Algol scope
rule is to be checked, which allows applied occurrences prior to a defining occurrence,
within a scope, two tree passes must be done to prove compliance [Kas90]. A first
pass for the registration of defining occurrences, and the second for the validation of
applied occurrences. We illustrate the situation in the following figure.

a c:ab:c

:DefineNode:DefineNode:DefineNode

:ProcNode

Figure 2.15: Abstract program tree for a procedure body with three definitions.

Assuming that the horizontal order of the DefineNode instances reflects the textual
order from the input code, the definition of a, b and c would be accepted as valid,
in terms of the Algol scope rules. However, in terms of C scope rules the applied
occurrence of c during definition of b would evaluate to a rule contradiction.

Validation of typing rules, the correct operator-handling and evaluation of expres-
sions can be performed by the same tree-walking algorithms. A good strategy is to
gather as much information as required during construction of program tree nodes,
and to keep the amount of distinct node types as small as possible, to reduce the ef-
fort during tree-walks. Furthermore, use of dedicated property tables describing types,
structures or values makes a clean parser design, to separate distinct concerns.

2.3.6 Synthesis

As soon as all analysis steps are passed successfully, and the abstract program tree is
created and attributed, the constructive part of compilation may be initiated. Tuning
the intermediate representation of the input, its alignment towards the target system,
and the code generation, are the major tasks of this phase. For low-level, hardware-
related target languages synthesis demands a thorough study of the target machine’s
specification. Its memory management, the set of supported instructions, and charac-
teristic features or restrictions have major impact on the target code synthesized, and
the effort required to implement the back-end of the compiler.

27 2.3 Aspects of Compiler Theory

However, in our project the target code belongs to the high level language C#,
which abstracts from hardware-specific machine characteristics, and which can be re-
lied on to take over a lot of optimization effort. Nevertheless, the target structures,
which our intermediate representation must be mapped to, have to be defined. Also,
the context of the target code execution, including the involved interfaces and data
types must be taken into account.

Disregarding the optimization of the abstract program tree, or the intermediate code
representations, the process of code generation is straight forward. Similar to the tree-
walk based attribute evaluation, the target code can be emitted in a recursive traversal
of the tree.

a1 : NodeA

c1 : NodeC

b1 : NodeB b2 : NodeB

d1 : NodeD

1: a1_prologue
2: b1_prologue (b1_epilogue)
3: b2_prologue
4: c1_prologue (c1_epilogue)
5: d1_prologue (d1_epilogue)
6: b2_epilogue
7: a1_epilogue

Figure 2.16: Structured output code as might be generated by traversing the program
tree on the left. A prefix visit of a node creates associated prologue code, a postfix visit
epilogue code accordingly.

The visited nodes emit predefined code templates parameterized with dynamic con-
tent, which has been gathered during analysis. In order to create enclosing structures,
such as {. . . } in C, or begin-end in Pascal, emission of appropriate code-chunks must
be done during preorder and postorder visits. The overall generated structured output
may then be embedded into an execution framework, connected to the surrounding en-
vironment.

The synthesis phase is discussed in much more detail in several books including
those we referred to throughout this section [ALSU06, CT03, Kas90]. We conclude
the section of traditional compilation methods, footing on processing textual input, and
focus on the less explored field of parsing binary coded data.

2 Foundations 28

2.4 Parsing Binary Data

In clause 2.3.2 we argued that the decoupling of the analysis task into scanning, pars-
ing and semantic analysis is well-grounded, being motivated by benefits in efficiency,
clarity of design, maintenance and extendability. For textual language processing this
cascaded analysis is known to work very well. We show the front-end architecture
from page 16 once more in figure 2.17.

Syntax
Analysis
Syntax
Analysis

Lexical
Analysis
Lexical
Analysis

Semantic
Analysis
Semantic
Analysis

Input
string

Token
Stream

Syntax
Tree

Intermediate
Representation

Figure 2.17: Architecture of the analysis front-end.

In this section we raise the question and try to argue why binary data cannot be
parsed the same way using the same procedures. Therefore, we expose the character-
istic properties of the two types of input and their differences. This will lead to the
conclusion of properties of a binary data parser and its construction.

Granularity and Encoding of Symbols
Textual representation as expected by a traditional lexical analyzer builds on
characters. Depending on the standard used, a single character consumes one
byte (ASCII) or multiples of a byte (Unicode) of memory. In any case, a ho-
mogeneous immutable encoding scheme is imposed on the input data. In con-
trast, the granularity of binary data is not restricted in such a global way. Data
structures of arbitrary formats for arbitrary purposes, enclosing communication,
often define bit-size grained data fields, sometimes spread over byte boundaries
(bit packing).

Explicit vs. Implied Structure
In clause 2.3.3 we introduced the notion of character patterns and character
classes formulated by regular expressions. All textual programming languages
have in common that they take a few major character classes for the construction
of composite patterns: letters, numbers, symbols and white spaces. The latter
two classes have a delimiting property required for localization of tokens and
their boundaries. Since there is no such commonality among binary data repre-
sentations, the absence of dedicated delimiters causes a lack of explicit structure
in the input. The usual notion of a token looses significance. This leads to the
necessity to make implications on structure and values based on the context. As
a result, binary data structures not only can be considered as non-regular but
even non-context-free.

29 2.4 Parsing Binary Data

With these arguments in mind, we may conclude that despite the seemingly marginal
modification of the type of input, the impact on the architecture of the analysis front-
end might be greater than expected. In particular, the new problem faced suggests the
removal of the boundary between the scanner and the parser, so far justified by the
advantage of tokenization. As a result, the new merged analysis step - we might call
dissection is directly coupled to the semantic analysis. Furthermore, the decision on
how to proceed parsing from a certain situation depends on evaluation of gathered con-
text information. This demands the semantic analysis to control the dissection process,
creating a loop between dissection of new data and its semantic evaluation. With these
modifications applied we obtain a system shown in figure 2.18, which reflects a first
model of a binary parser.

DissectionDissection Semantic
Analysis
Semantic
Analysis

Encoded Data
Stream

Data Structure
Instance

Structural Implication
(Patterns expected next in Context)

Structured Data Fields
(Pattern Instances)

Figure 2.18: Architecture of analysis steps as required for binary data structures.

The important consequence of this circular dependency is that in the general case5,
the data beyond the current analysis position cannot be accessed directly, i.e. it cannot
be dissected (or even located) without dissection of all the preceding data.

At this point doubts might emerge that context dependency could impede an effi-
cient function of this model. For a large scale of binary encoded languages this might
probably be the case. However, with regard to the intention of programmers, to use
binary data structures as means to store or transport information between computer
systems in an efficient way, we may expect that reasonable structure specifications
avoid usage of hard-to-decode structures. In the special case of smart card commu-
nication, the protocol specifications are designed for implementation in comparably
simple devices with very limited resources. Hence, a set of simple structural patterns
in combination with indication techniques are used to support fast data processing.

2.4.1 Structural Patterns and Indication

Many programming languages offer syntactical elements to express sequences, alter-
natives and repetitions as data types. They are used to create composite structures by
nesting and are often called structs, unions and arrays. In this context binary data
structures can be imagined as serialized versions of such composite types. Actually,
this is how binary data structures are often treated. Being modeled in terms of structs,
unions and arrays, deserialization is performed by blindly reading in a byte-stream of

5For example, a sequence of variable-length data fields with local length indications.

2 Foundations 30

the size of the composite data structure into an instance of it. However, this works
for structures of constant size only. Furthermore, using only structural description
for serialization introduces ambiguity to the serialized data. That is, the same serial-
ized byte stream might be the result of two different in-memory data representations,
which cannot be deserialized unambiguously by means of structural descriptions only.
Hence, deserialization (or binary parsing) requires a more sophisticated form of a type
description, in order to face ambiguity.

Please consider the definition of the union type U1 in C-like syntax shown below.
Given corresponding serialized data like 10 03 AB CD EF which fits into both alterna-
tives S1 and S2 of the union, deserialization could not unambiguously associate one of
the two struct types to the data.

union U1 {
struct S1 {

byte tag; // 0x10
byte len;
byte[] val;

}
· · ·

· · ·
struct S2 {

byte tag; // 0x20
long val;

}
} // 2 ≤ overall size ≤ 100

Figure 2.19: Definition of a union data type U1 with two struct types S1 and S2 nested.

But, with the additional constraint that valid tag field values are 0x10 for S1 and
0x20 for S2 the byte stream can be unambiguously associated to S1.
This method of tagging is one of a couple of frequently used indication patterns, to
enable and guide deterministic binary parsing. Alongside there are length-, presence-
and location indications which are briefly explained in table 2.10.

Pattern Example Description

Tagging 10 03 AB CD EF An identifying field (tag) associating a certain struc-
ture specification with the subsequent data; here
(10)

Length indication 10 03 AB CD EF A field indicating the length of subsequent length-
variable data structure; here 3 bytes of data follow.

Location pointer 10 03 AB CD EF Absolute or relative position indication of certain
data block within a stream. Here AB CD EF might
be a memory address.

Presence indication
(flags)

1 0 0 0 1 0 1 1 A bit-field consisting of flags indicating presence (1)
or absence (0) of certain objective.

Table 2.10: Established indication patterns often used to guide binary parsing.

These patterns are applied whenever the binary representation may become am-
biguous at the time of serialization. Hence, they represent anchor points or switches
guiding the parsing process through the data stream in a meaningful way.

As a result, for the construction of binary parsers means must be offered to model
structural patterns, indication techniques and constraining semantic expressions.

31 2.4 Parsing Binary Data

2.4.2 A Type System for Binary Parsing

The type system proposed in this clause is based on research of groups of people whose
projects we will present in the Related Work section. We outline theoretical aspects of
a type description system with the goal to establish a consistent notion of binary data
type construction and the process of parsing based on this type system.

We start with the definition of the integral data types, commonly known from many
programming languages. The value domain of an integral type can be interpreted as an
ordered language of numeric words, with the maximum value being the upper bound-
ary and 0 assumed as the lower boundary. Hence, the language of a Byte type is
L(Byte) = {0, 1, .., 255}.

Type Bit-size max. Value

bit 1 1

2-bit 2 3

..
7-bit 7 1F

byte 8 FF

short 16 FF FF

int 32 FF FF FF FF

long 64 FF FF FF FF FF FF FF FF

Table 2.11: Generic data types of the proposed type system.

On top of these generic types, composite types can be built by application of struc-
tural patterns, we already introduced in different variants for regular expressions and
the BNF notation. Let X and Y be arbitrary types of the type system, then T is a
composite type defined by the structuring operations in table 2.12.

T L(T) Description

XY {xy|x ∈ L(X), y ∈ L(Y)} sequence
X/Y L(X) ∪ L(Y) prioritized alternative

(X) X grouping
X∗ {ε} ∪ {xy|x ∈ L(X∗), y ∈ L(X)} optional repetition
X+ L(XX∗) non-empty repetition
Xn {x|x ∈ L(X)∗ ∧ |x| = n} constant repetition
Xn..m {x|x ∈

⋃m
i=n L(X)i} bounded repetition

X? L(X0..1) optional occurrence

Table 2.12: Operators for the construction of composite types T from types X and Y .

The language of a composite type T i.e. the set of binary sequences it defines
is enclosed by the structural shape of the type. A concrete word of the type’s value
domain L(T) is an instance =(T) of the type T . Through the structure of composite
type definitions characteristic value domains of versatile forms and sizes (custom data

2 Foundations 32

structures) can be shaped. For example, let A,B,C be byte types, then the type S1 from
figure 2.19 could have the form:

S1 = (A B C) with |C| = =(B)

The set of byte fields defined by S1 encloses the words constructible from the compos-
ite language:

L(S1) = {abc|a, b ∈ L(byte) ∧ c ∈ L(byte)b}

For the convenient and modular type construction an additional relation is required,
the inheritance. We notate inheritance as X 2 Y when the type X inherits from Y . In
order to allow reuse of frequently required structures, inheritance of types along with
refinement of substructure by member overloading, adds further degrees of freedom in
modeling new types. Refinement of substructure would impose additional structural
constraints on otherwise plain data fields. For instance, an inheriting type S′12S1 could
refine the subtype C by assigning further substructure S2 = (byte byte) of constant size
to it:

S′1 = (A B S2) with |S2| = |byte|+ |byte| = 2|byte|

The diagram in figure 2.20 illustrates the construction of data structures by incremen-
tal specialization of types, narrowing the domain of representable instances, towards
concrete data values.

Composite
Type 1

InstanceInstanceInstance

Specialization of
types defines the
instance domain

Classification of concrete
data to possible instances
of types

Generic
Types

Composite
Type 2

Composite
Type 3

InstanceInstanceInstance
InstanceInstanceInstance

Concrete
Data

Instance
Domain

Type
Domain

Arbitrary
Binary Data

Figure 2.20: Modeling data structures by incrementally specializing types. The most
specialized types shape the form, concrete instances of data may take on.

Based on this type system, parsing binary data can be best described as a clas-
sification task. For a given type hierarchy and an input data sequence, a matching
classification of the data to the form and series of expected types is calculated.

Due to the order of the increasing restriction in a hierarchical type definition the
evaluation of a structural constraint match is easily performed. For example, if d is a

33 2.4 Parsing Binary Data

data instance and byte200 2 byte with L(b200) = {0, .., 200}, then if d is an element of
the language L(byte200) it must also be an element of L(byte), because byte200 is more
restrictive than byte. Thus, in an inheritance chain Tn 2 Tn−1 2 · · · 2 T1, a successful
structural match with respect to Tn implies a successful structural match with T1. How-
ever, this holds a particular consequence for the evaluation of matches in alternatives,
similar to the situation in figure 2.20. It may happen that d is compared against two or
more alternative types, where one type is more general than the other. Then in order
to gain most information of the data the comparison must be performed in favor of the
more specialized type, leaving the other as a less-prioritized alternative. We empha-
sized this behavior in the deviated notation of the alternative operator (/ instead of |)
in table 2.12.

An additional complication arises with the introduction of semantic constraints,
enforcing the evaluation of the entire inheritance chain. This is justified by the lack
of order among unrelated semantic constraints. For instance, the constraint CT of an
inherited type T 2 Z stating "the elements of L(T) are odd numbers only" is unrelated
to the constraint CZ : "the values between 10 and 20 are excluded". Thus, from the
presence of a data instance d in L(T) can not be implied that d is element of L(Z).
Hence, to determine if a data instance matches the type Tn including the semantic con-
straints, all semantic constraints CTn , CTn−1 , · · · , CT1

of the types of the inheritance
chain Tn 2 Tn−1 2 · · ·2 T1 must be evaluated with a positive result.

Finally, we present an initial algorithm to show how binary parsing could actually
be done using the type system. Let T be a composite type, CT its semantic constraint
and Evaluate(CT) the constraint evaluation function. Then binary parsing is performed
in a recursive descent manner as shown in the algorithm in figure 2.21.

Its base principle is to recurse into the specified type-structure and it’s substruc-
ture in depth-first order towards the elementary (terminal) data types. Those consume
portions of input data of the corresponding bit-size without further recursing. For each
successfully parsed type in the type-structure the associated semantic constraint is eval-
uated with the potential result to abort further descent, which initiates backtracking.

2 Foundations 34

1: function PARSEBINARYTYPE(T): bool

2: if (T is a sequence) then

3: for (subtypes Ti in T1..Tn = T) do
4: // recurse
5: if (false = ParseBinaryType(Ti)) then
6: return false;

7: else if (T is a union of alternatives) then

8: for (subtypes Ti in T1..Tn = T) do
9: // recurse

10: if (false = ParseBinaryType(Ti)) then
11: Remove Ti from T

12: else
13: break
14: if (T is empty) then
15: return false

16: else if (T is a repetition over element type e) then

17: Let n be the number of repetitions of e in T

18: for i = 1 to n do
19: // recurse
20: if (false = ParseBinaryType(e)) then
21: break
22: Subordinate e to T
23: else

24: // native type - the last option
25: Read |T | Bits from the input into T

26: end if

27: // finally evaluate the semantic constraint
28: Let CT be the semantic constraint of T
29: postConditionResult = Evaluate(CT)

30: return postConditionResult;

Figure 2.21: The idea of the binary parsing algorithm is to recursively descend into the
sub-structure of the type handed in and finally read the required number of bits into the
terminal native types.

35 2.5 Summary

2.5 Summary
In this section we outlined the difference between parsing textual and binary input
which is the lack of explicit structure in the input and the need to imply structure as
indicated by the semantic values in the local context. Parsing techniques from the
compiler theory can be applied to the this task, though with a modified analysis model
controlled by semantic constraints. We proposed a type system for the specification of
data structures in combination with semantic constraints to model frequently recurrent
structural patterns and indication techniques. The system is based on elementary nu-
meric types for composite type construction through sequences, alternatives and rep-
etition. Based on this type system we presented a recursive-descent parsing algorithm
for binary languages.

3 Related Work 36

3 Related Work
Compared to the familiarity of the Internet as communication technology, the knowl-
edge of smart card communication is predominantly ceded to a few experts, concerned
with the development of the associated devices. This reflects in the scientific literature
as well. Most of the encountered projects are located in the domain of textual Inter-
net protocols covering constructive approaches such as specification, verification and
implementation or analytic approaches targeting network security issues. Just a few
publications address binary data parsing. Making no claim on completeness, we re-
view the most relevant publications for our purpose in chronological order. By the end
of the review a summarizing taxonomy of projects and publications will be presented,
classified by the kind of the targeted problem. It will also cover works not further
discussed in the review.

3.1 PACKETTYPES

We start with a work by McCann and Chandra [JS00] which appeared at Bell Labs in
the year 2000, being cited in many latter projects associated with binary data parsing.
McCann and Chandra for the first time suggested a type system for convenient expres-
sion of binary data structures. Its aim is to relieve cumbersome low-level programming
of protocol packet parsing, providing a tool for rapid development of applications for
network monitoring, accounting or security services. The language is oriented on the
C notation of structs, extending it in several ways. From the bit-level on, the language
allows the modular construction of complex type hierarchies of the required granular-
ity. The PacketTypes compiler then generates interfaces and code covering low-level
protocol parsing in C as a partial implementation which is integrated in protocol han-
dling applications. As can be seen from the specification of a packet in listing 3.1, the
definition is split into a declarative part of member field descriptions, which shapes
the set of possible packet instances, and a collection of constraints over the members,
narrowing the instance-set.

PacketTypes was a first thrust into type-based specification of binary data struc-
tures along with semantics in a formal way. It established the strategy of two-phased
modeling: composition and constraining, which exhibits a more powerful expressive-
ness than composition alone. To support layering and encapsulation of protocols, the
language provides operators for refinement and overlaying. These allow new types to
be defined on top of available base structures, with advanced superimposed structure
on member fields.

In analogy to the union operator in C, PacketTypes defines an alternation operator
for fields which may take on a single value among a set of alternatives. In contrast
to our considerations the set of alternatives is expected to be disjunctive. This allows
instant recognition of the correct choice without probing and backtracking, which on
the other hand constraints the set of expressible structures significantly.

37 3.2 DATASCRIPT

IP_PDU := {
nybble version;
nybble ihl;
byte tos;
s h o r t totallength;
s h o r t identification;
b i t morefrags;
b i t dontfrag;
b i t unused;
b i t frag_off[13];
byte ttl;
byte protocol;
s h o r t cksum;
ipaddress src;
ipaddress dest;
ipoptions options;
b y t e s t r i n g payload;

} where {

nybble := b i t[4];
s h o r t := b i t[16];
long := b i t[32];
ipaddress := byte[4];
ipoptions := b y t e s t r i n g;

version#va lue = 0x04;
options#numbytes = ihl#va lue * 4 - 20;
payload#numbytes = totallength#va lue - ihl#va lue * 4;

}

Listing 3.1: A packet specification in PACKETTYPES is split into a composing and a
constraining part [JS00].

One of the deficiencies of PacketTypes is its fixed set of expressible semantic con-
straints, including tagging and length-indication aided by arithmetic expressions. Since
the PacketTypes language is closed to its host language, frequently required operations
such as checksum calculation, packet decryption or custom status reporting have to
be triggered from outside the generated code. Furthermore, the generated code was
lacking any error-handling routines, but had a measured performance of 40% slower
than the hand-written implementation. One reason might be the stalled definition of
the constraints beyond the scope of member field declarations, which suggests the se-
mantic evaluation to be performed after filling the entire type with data at runtime.
For large types, constraint conflicts regarding anterior fields of the type are supposed
to be recognized too late, which makes this strategy inefficient or at least improvable.
Despite these drawbacks PacketTypes made the first important steps towards the defi-
nition of the problem of parsing binary data and provided a good first approach to face
it.

3.2 DATASCRIPT

This work was presented by Godmar Back from the Stanford University at 2002 [Bac02]
and is implemented in Java. DataScript is comparable to PacketTypes in many as-
pects. It adopts parts of the syntax and the two-phased modeling strategy. However,
DataScript refines the definition of semantic constraints by moving them to the very
location they address, i.e. defines them as member field annotations. In addition, reuse
of constraints is enabled with the definition of a parameterized predicate functions,
callable from within semantic constraints of the enclosing scope. Finally, Godmar in-
troduces a forall operator to allow constraining of array elements (e.g. forcing of
numerical order).

3 Related Work 38

Further improvements are made on structural patterns. The tagging- and length-indication
patterns are treated in a more intuitive way, by means of constant-assignment and dy-
namic array allocation as can be seen in listing 3.2. Godmar also introduces support
for the location-indication pattern called labels, which allows parsing of non-sequential
binary files6. Moreover, he adds parameterization to types, to make them more flexi-
ble with regard to certain run-time requirements. The publication defines for instance
a Padding-type, which dynamically changes its size to pad trailing space of memory
blocks with respect to their size and memory alignment.

c o n s t u in t 16 ACC_PUBLIC = 0x0001;
c o n s t u in t 16 ACC_ABSTRACT = 0x0001; // ...

ClassFile {
ui n t32 magic = 0xCAFEBABE;
ui n t16 minor_version = 3;
ui n t16 major_version = 45;
ui n t16 cp_count;
ConstantPoolInfo constant_pool[1..cp_count];

bitmask u in t16 ClassFlags {
ACC_PUBLIC, ACC_FINAL, ACC_ABSTRACT, ACC_INTERFACE, ACC_SUPER

} acc_flags;

ui n t16 this_class :clazz(this_class);
ui n t16 super_class :super_class == 0 || clazz(super_class);
ui n t16 interfaces_count;
{

ui n t16 ifidx : clazz(ifidx);
} interfaces[interfaces_count];

ui n t16 fields_count;
FieldInfo fields[field_count];
ui n t16 methods_count;
MethodInfo methods[methods_count];
ui n t16 attributes_count;
AttributeInfo attributes[attributes_count];

c o n s t r a i n t clazz(ui n t16 x) {constant_pool[x] is cp_class;}
};

Listing 3.2: Excerpt of a Java class specification in DataScript [Bac02].

The proposed big advantage of DataScript is the ability of its compiler, to generate
not only parsing code, but synthesizing code as well, e.g. DataScript-compiled Java
code allows reading and writing Java binary class files. However, more important is
that DataScript adds error-handling to its parsing routines, involving a back-tracking
strategy. Additionally, a weakened kind of the alternatives definition with non-disjoint
value ranges introduces the prioritized choice as means to handle unexpected values in
a fall-back option.
Finally, the language defines an intuitive and simple syntax for base-2 numbers {[01]+b}
making DataScript powerful and convenient enough to express complex structure spec-
ifications.

6.. such as ELF object files. ELF is a standard binary file format for Unix and Unix-like systems.

39 3.3 Parsing Expression Grammar (PEG)

3.3 Parsing Expression Grammar (PEG)
Parsing Expression Grammar (PEG) is referred to as a recognition-based syntactic
foundation by its inventor Bryan Ford, who introduced PEG in [For04] at Massachusetts
Institute of Technology in the year 2004. PEG emphasizes its difference to the gener-
ative system of context-free grammars, by not introducing ambiguity - the reason for
complexity of parsing computer languages. Omitting the distinction between scanning
and parsing PEG address the formulation of lexical and syntactical structures within
the same formal specification language. Its aim to describe consumption of input rather
than its derivation, in combination with the prioritized choice7 makes PEG-based pars-
ing well suited to machine-oriented languages and protocols. Ford defines syntactic
predicates &e and !e specifying expected and unwanted input matches with pars-
ing expressions e and subsequent unconditional backtracking, which forms unbounded
lookahead altogether.
The set of PEG-expressible languages is described to consist of all deterministic LR(k)

languages, including some non-context-free languages. However, unlike CFG depend-
ing on the implementation (recursive descent or packrat), the complexity of either time
or space is known to reach exponential order in the worst case [For04].
To a certain extend PEG seems be a promising approach to parsing binary data. In
particular, it shares two or more aspects, such as the ordered choice and the uni-
fied analysis steps with the approach presented in this thesis. However, it lacks sup-
port for sub-symbol encoding, founding again on character granularity as we outlined
in clause 2.4. Furthermore, its CFG-alike syntax contradicts our functionality- and
usability-requirements being incapable to express the length-indication pattern and
having an inconvenient number notation.

3.4 Processing Ad hoc Data Sources (PADS)
PADS [FG05] has been presented by Kathleen Fisher and Robert Gruber (Google) as a
project at AT&T Labs Research in 2005. Their motivating aim was to provide a toolset
for handling large amounts of ad hoc data, such as web server logs, Internet traffic
captures or wire formats for telecommunication billing systems. Thus, not only binary
data, but also textual and mixed data formats are supported by PADS. In particular a
variable ambient coding is used to instructs the system to interpret the base numeric
types in ASCII, EBCDIC or other customized binary formats.

From its data format specifications a PADS-compiler generates automatically a
tool-library for parsing, manipulating, summarizing of the input data and its export to
standard formats, such as Extensible Markup Language (XML). Being implemented
for application in C, the compiler produces .c- and .h files for compilation by a standard
C compiler. Although oriented on the C style syntax and code generation, PADS is
claimed not to be restricted to C only, but is rather envisioned to be advanced by other
target languages.

7in contrast to the nondeterministic alternative in CFGs

3 Related Work 40

As well as the predecessors PacketTypes and DataScript, the PADS language de-
fines numeric base types and structs, unions and arrays for construction of composite
types. In order to handle textual input syntactical elements for character and string han-
dling, including support for regular expressions are added. Offering additional handy
syntactical shortcuts, such as implicitly typed constants, the PADS language syntax
seems to be strongly oriented on DataScript. Also, the use of parameterized types to
reduce type diversity and to handle dynamic type representation is adopted. We show
a copy of PADS code from the original publication in listing 3.3.

Punion client_t {
Pip ip; /- 135.207.23.32
Phostname host; /- www.research.att.com

};

Punion auth_id_t {
Pchar unauthorized : unauthorized == ’-’;
Pstring(:’ ’:) id;

};

P s t r u c t version_t {
"HTTP/";
Puint8 major; ’.’;
Puint8 minor;

};

Penum method_t {
GET, PUT, POST, HEAD, DELETE, LINK, UNLINK

};

bool chkVersion(version_t v, method_t m) {
i f ((v.major == 1) && (v.minor == 1)) re turn true;
i f ((m == LINK) || (m == UNLINK)) re turn false;
re turn true;

};

P s t r u c t request_t {
’\"’; method_t meth;
’ ’; Pstring(:’ ’:) req_uri;
’ ’; version_t version : chkVersion(version, meth);
’\"’;

};

Ptypedef Puint16_FW(:3:) response_t : response_t x => {100 <= x && x < 600};

Precord P s t r u c t entry_t {
client_t client;

’ ’; auth_id_t remoteID;
’ ’; auth_id_t auth;
" ["; Pdate(:’]’:) date;
"] "; request_t request;
’ ’; response_t response;
’ ’; Puint32 length;

};

Psource Parray clt_t {
entry_t [];

}

Listing 3.3: PADS description for web server log data [FG05].

41 3.5 binpac

PADS was designed with robustness in mind, in that the generated code catches
and processes system errors, syntax- and semantic errors in a systematic way. Dur-
ing parsing, a canonical representation of the data is instantiated along with a parse
descriptor containing recorded errors and their characteristics with a reference to the
instantiated data. Combined with a nonblocking error-recovery mechanism this allows
for application-specific error-management and statistical evaluation.

Another goal of PADS was good performance, which is addressed in a couple of
ways. The generated code implements a recursive descent parser (see clause 2.3.4),
with multiple entry points, such that parsing can be performed at the different granu-
larity levels. Additionally, the evaluation of semantic constraints is made optional, to
help saving run-time costs whenever the evaluation is not required.

All operations realized by the generated code are supported by a shared runtime
library. This library offers file I/O and memory management along with other utility
functions. Despite that the PADS compiler generates an extensive code base from a
data format specification. It is reported that given 68 lines of PADS code, the compiler
produces 1432 lines .h file code and 6471 lines .c file code. The expansion is justified
by extensive error checking and utility functions. The computation time required com-
pared to a manually implemented reference program is reported to have been halved.
Statements about memory consumption are not made.

Based on the work with PADS in the year 2006 Fisher et al. proposed a formal
calculus to argue about properties of data description languages in general [FMW06].
This helped in particular to improve and debug PADS.

3.5 binpac

Being part of Bro8 - a unix-based Network Intrusion Detection System (NIDS) binpac
represents a collaboration between Ruoming Pang (Google), Vern Paxson and Robin
Sommer (International Computer Science Institute) and Larry Peterson (Princeton Uni-
versity). The work was presented in the year 2006 [PPSP06].

The motivation behind binpac was a simplified construction of robust and efficient
semantic analyzers to serve the NIDS framework in real-time recognition of malicious
packets. Overcoming the lack of abstraction in manual protocol parser implementation,
the binpac language and its compiler are related to yacc as being a parser construction
tool.

Binpac defines a specialized language targeting the work with multi-session ap-
plication layer network protocols. It is designed to perform incremental parsing of
multiple concurrent data streams at the same time, distinguishing incoming and out-
going traffic directions. Binpac addresses structural- and indication patterns discussed
in clause 2.4.1. Being similarly expressible as PADS, the binpac language offers a
system of parameterized types for specification of binary data structures. However, it
distinguishes between explicit and implicit type parameters. The information about the

8http://bro-ids.org/

3 Related Work 42

current individual connections and flows is propagated through the type hierarchy as
an implicit type parameter without explicit statement. Another modifiable implicit pa-
rameter is byte-order (or endianess), which allows adjustment to dynamic byte-order
changes at run-time, demanded by some communication standards9. This enables byte-
order independent specification of data structures.

...
e x t er n type BroConn;
e x t er n type HTTP_HeaderInfo;
%header{

// Between %.*{ and %} is embedded C++ header/code
class HTTP_HeaderInfo {

public:
HTTP_HeaderInfo(HTTP_Headers *headers) {

delivery_mode = UNKNOWN_DELIVERY_MODE;
for (int i = 0; i < headers->length(); ++i) {

HTTP_Header *h = (*headers)[i];
if (h->name() == "CONTENT-LENGTH") {

delivery_mode = CONTENT_LENGTH;
content_length = to_int(h->value());

} else if (h->name() == "TRANSFER-ENCODING"
&& has_prefix(h->value(), "CHUNKED")) {
delivery_mode = CHUNKED;

}
}

}
DeliveryMode delivery_mode;
int content_length;

};
%}

c o n n e c t i o n HTTP_Conn(bro_conn: BroConn) {
upflow = HTTP_Flow(true);
downflow = HTTP_Flow(false);

};

f low HTTP_Flow(is_orig: bool) {
f l o w u n i t = HTTP_PDU(is_orig) w i t h c o n t e x t(connect ion , this);

};

type HTTP_PDU(is_orig: bool) = case is_orig of {
true -> request: HTTP_Request;
false -> reply: HTTP_Reply;

};
type HTTP_Request = record {

request: HTTP_RequestLine;
msg: HTTP_Message;

};
type HTTP_Reply = record {

reply: HTTP_ReplyLine;
msg: HTTP_Message;

};
...

Listing 3.4: Excerpt of a HTTP parser in binpac [PPSP06].

Finally, there exists an interesting and powerful feature in binpac. In analogy to
yacc binpac allows embedding of C++ code blocks, as an interface to interact with the
host language. By declaration of external types a binding to existing implementations

9such as DCE/RPC: "Distributed Computing Environment / Remote Procedure Calls"

43 3.6 GAPA

can be established, merging the powerful expressiveness of a general purpose language
with the compactness and simplicity of the declarative data format grammar. This
facility puts binpac clearly beyond the other works, enabling encapsulation of the entire
required functionality within one code file with the option to reuse existing parser code
(hand-written or generated) if necessary.

Compared with manual reference implementations the generated code sizes are
reported to amount just 35-50% lines of code while performing about 17% faster with
a comparable memory consumption. Offering a robust performance binpac-generated
parsers process the HTTP protocol at a throughput of 298 Mbps.

3.6 GAPA

The final project in our review emerged at Microsoft Research in cooperation with
IEEE, the Carnegie Mellon University and UC Berkley in 2007. In [BBW+07] Borisov
et al. presented GAPA - a Generic Application-Level Protocol Analyzer and its Lan-
guage, which culminated in the Forefront Threat Management Gateway (TMG)10 -
a Windows-based implementation of a NIDS.
GAPA shares with binpac the same goal of application-level protocol analysis. How-
ever, Borisov et al. took a different approach to achieve this. In contrast to binpac,
GAPA was intended for usage in end-point firewalls rather than network gateways.
The main aspects targeted by GAPA were safety, real-time analysis and rapid devel-
opment of efficient analyzers. Hence, the only acceptable way of realization for the
authors was the use of a memory-safe language for interpretation at run-time rather
than compilation. As a result, the language had to provide all the necessary elements
required for complete protocol description and specification of analysis procedures,
without need of external data processing logic.

In GAPA a protocol specification is segmented into parts with respect to distinct
concerns they address. For structure specification in the grammar section it uses BNF-
like rewrite rules augmented by an internal C-like script language.
This script language provides enough expressiveness to perform frequently required
computations, however it is rather restricted to avoid self-caused run-time errors and
efficiency issues. It is strictly typed, performs bounds checks on array access and has
no dynamic memory allocation. Furthermore, the only loop constructs it provides is a
for-each-loop which can not be nested.

The analysis process is controlled by a state-machine simulation specified in the
corresponding segment. Tuples of states and possible traffic directions designate scrip-
ted handlers. After parsing the corresponding data by means of a recursive descent
parser the associated handler is triggered to determine a succeeding state. This explicit
state machine modeling gives GAPA the expressive power to realize rather complex
interaction scenarios.
Although claimed to support binary data structures, the GAPA language seems to be

10http://www.microsoft.com/forefront/threat-management-gateway/en/us/default.aspx

3 Related Work 44

designed in favor of textual protocol specification. Borisov et al. incorporate syntax
directed parsing we described in clause 2.3.5 to implement handling of indication pat-
terns for the purpose of parsing binary data. Additionally, support for k-bit integers,
dynamic array notation and structural patterns realized in BNF are offered.
We show the HTTP specification written in GAPA in listing 3.5.

p r o t o c o l HTTPProtocol {
t r a n s p o r t = (80/TCP);

/* Session variables */
int32 content_length = 0;
bool chunked = false;
bool keep_alive = false;

/* message format specification
in BNF-like format */
grammar {
WS = "[\t]+";
CRLF = "\r\n";
%%
HTTP_message -> Request | Response;
Request -> RequestLine HeadersBody;
Response -> ResponseLine HeadersBody;
HeadersBody ->

{
chunked = false;
keep_alive = false;
content_length = 0;

}
Headers CRLF

{
/*message_body’s type is resolved
(:=) at runtime based on
Transfer-Encoding */
if (chunked)
message_body := ChunkedBody;

else
message_body := NormalBody;

}
message_body:?;

Headers -> GeneralHeader Headers|;
GeneralHeader->

name:"[A-Za-z0-9-]+" ":"
value:"[ˆ\r\n]*" CRLF
{
if (name == "Content-Length"){
content_length=strtol(value,10);

}else if (name == "Transfer-Encoding"
&& value == "chunked") {
/* slight simplification */
chunked = true;

...

...
} else if (name == "Connection"

&& value == "keep-alive") {
keep_alive = true;

}
};

NormalBody ->
bodypart: byte[content_length]
{
/* "send": sending "bodypart" to
the upper layer (e.g., RPC)
for further parsing */
send(bodypart);

};
[...]

};// Grammar

state-machine httpMachine
{
(S_Request,IN) -> H_Request;
(S_Response,OUT) -> H_Response;
initial_state = S_Request;
final_state = S_Final;

};

/* Always expect a response after a request */
handler H_Request (HTTP_message){
int headerCount = 0;

/* visitor syntax */
@GeneralHeader->{

print("header name = %v\n", name);
headerCount++;

}
print(’’Total number of headers: %v\n’’,

headerCount);

re turn S_Response;
};

handler H_Response(HTTP_message){
if (keep_alive){

re turn S_Request;
} else {

re turn S_Final;
}

};
}; // protocol

Listing 3.5: HTTP specification in GAPA language [BBW+07].

45 3.7 Summary

3.7 Summary
Covering the past decade the construction of binary parsers from domain-specific lan-
guages has been explored in a couple of research projects in collaboration between
scientists and the IT-industry. The results discussed here share the idea of using types
known from general purpose programming languages for description of data structures
with extensions allowing definition of semantic constraints. The approach to use a do-
main specific language to improve the development of binary parsers has led to posi-
tive results not only in terms of time and efficiency, but also in terms of quality. We
conclude this section with a short listing of encountered approaches related to formal
specifications and communication protocols.

Protocol Design
LOTOS: Specification language for protocol design and verification.

SDL: Specification and Description Language for communication modeling.

ASN.1: Abstract Syntax Notation One for high-level structure representation.

Promela++: Formal language for construction of correct and efficient protocols.

Implementation
StateCharts: FSA-based programming of communication protocols and systems.

Esterel: FSA-based programming of communication protocols and systems.

Prolac: Language for modular implementation of networking protocols.

APG: An ABNF parser generator.

RTAG: Real-Time Asynchronous Grammars for specifying protocols.

PADS/ML: A functional data description language.

Parsing and Analysis
PacketTypes: Type system for networking packet specification.

PEG: Parsing Expression Grammar.

binpac: Application protocol parser generator (part of Bro).

GAPA: Application protocol parser generator (part of Microsoft Forefront TMG).

Zebu: Application protocol parser generator.

Parsing and Manipulation
DataScript: Type system for parsing and manipulation of binary data.

PADS: Framework for construction of ad hoc data management tools.

DFDL: XML-based Data Format Description Language.

Protocol Recognition
Discoverer: Automatic Protocol Reverse Engineering tool (Microsoft)

PADS: Framework for construction of ad hoc data management tools.

4 Design Concept 46

4 Design Concept
Starting with a thorough analysis of requirements to be stated on the language, its
compiler and the generated binary parsers, we outline important aspects to be consid-
ered in the project realization. In the subsequent clauses 4.2 through 4.4 we present the
solution-design which aims to cover the stated requirements enclosing the design of the
language, the compiler architecture and the model of binary parsers to be generated by
the compiler.

4.1 Requirement Analysis
In this section we are going to inspect and outline the requirements of a system for
construction of binary parsers as to define quality directives for its implementation.
Some of the requirements were mentioned directly or indirectly during the previous
clauses. Nevertheless, they will be stated here explicitly once more along with other
requirements unmentioned earlier. We remind the reader of the conclusion made with
regard to the transcription problem in clause 2.2.3 on page 13, to support the developer
in bridging the declarative and operational representations of specification code. With
the insights from the previous clauses the concept to achieve this can be sketched. The
new approach in figure 4.1 involves a declarative domain specific language for the
specification of data structures. These serve then the compiler as blueprints for the
automated construction of binary parsers.

§

Specification
Document

Transcribed
Specification
in DSL Syntax

Generated
Parsing Logic

informal,
declarative

formal,
declarative

formal,
operational

manual
formalization

automated
translation

DSL
Compiler

Monitoring
Application

DSL C#

Figure 4.1: By means of the declarative specification language the developer can easily
transcribe specifications to formal declarative code. From this formalized specification
the compiler then generates C# code of a binary parser for the specified data structures.
C# is an external requirement specified in clause 4.1.4.

Within this concept three parts, the specification language, the compiler and the
generated binary parsers contribute to the overall quality and the successful application
of the concept. Each of these integral parts has its characteristic objectives whose

47 4.1 Requirement Analysis

quality requirements must be identified. We formulate the requirements with regard
to the quality characteristics of ISO 9126-1 through 9126-4 quality model, which are
subdivided into internal, external and in-use quality characteristics [ISO01, ISO03a,
ISO03b, ISO04].

4.1.1 Language Quality

The requirements on the aspired specification language are primarily based on external-
and in-use quality characteristics. Since the language is nothing more than a form
of information representation, the internal quality is achieved solely by its compiler.
We identified the characteristics of usability, maintainability and functionality to con-
tribute most to the language quality.

Functionality (Expressiveness, Accuracy, Suitability)

To enable concise transcription the language must have the capability to express all
necessary forms and sizes of structural patterns, values and value ranges used in speci-
fication documents. It must provide syntactical means to augment the defined structure
with semantic constraints as to enable modeling of indication patterns and other cus-
tom semantic relations. Furthermore, a convenient notation of binary numbers11, must
be provided as naturally as is done with octal, decimal and hexadecimal numbers in
common languages. Hence, complex symbol escaping patterns must be avoided.

Usability (Understandability, Convenience)

To help programmers new to the transcription task to use the language, commonly
known syntactical elements from other programming languages shall be reused as far
as possible. An easy to read but yet compact notation as presented in figure 2.19,
resembles the tabular representation from standard documents we showed in the defi-
nition of an APDU in table 2.1. Thus, it is assumed to leverage transcription, making
it a rewrite of tables in C like syntax.
The language shall foster reuse of definitions for extension and modification through
modularity, as to minimize redundancy and code size.
To avoid an artificially imposed spatial order on named data structures, which possibly
contradicts the order of definitions in the standard document, the implementation of
the Algol scope rule is expected to be a clear advantage12.

Maintainability (Analyzability, Changeability)

In [FG05] Fisher et al. understand the specification code as a living documentation,
which not only serves as input for the compiler, but also as a readable, formal document
which is subject to changes. This suggests inclusion of syntactic elements for meta-
information embedding, such as references to standard documents, version numbers

11Protocol specifications make heavy use of it.
12We explained the rule in clause 2.3.5

4 Design Concept 48

and other arbitrary data, to allow identification and comparison of compiled binary
parsers. Furthermore, the attachment of meta-information to specified data structures
could be used to pretty-print parsed data in terms of the normative document, which
also aids in localization of faults in the code (debugging).

4.1.2 Compiler Quality

The quality characteristics of the compiler regard nearly all aspects of software qual-
ity. The universal characteristics of any compiler include correctness, efficiency, code
efficiency, user support and robustness as stated in [Kas09b]. In our case, the compiler
plays the role of a parser generator, which synthesizes high-level language code. This
relieves its implementation ceding low-level code optimization and linking to the C#
compiler.

Functionality (Correctness)

Correctness of compilation is the consistent translation of a program from the
source language to the target language without modifications of the specified mean-
ing. For correctly specified source code the compiler must produce target code which
exhibits exactly the very properties and behavior specified in the source code. No cor-
rect specification may cause errors, and every incorrect specification must produce at
least one error during compilation [Kas90].

Reliability (Robustness, User Support)

In case of incorrect input, detailed informative messages must be reported to the
user, helping to locate and to identify the exact position and possible causes of the
fault in terms of the source code file. Ideally the compiler does not crash under any
circumstances.

Efficiency (Time and Memory Consumption)

Using established construction tools for the development of the compiler, its imple-
mentation is expected to be efficient enough in terms of time and memory consumption
for execution on every common Windows-based computer system today. No extra re-
sources shall be required.

Maintainability

Compiler construction is a well-investigated and well-understood area, for which
appropriate architectural patterns have evolved over time. A consistent separation of
compiler modules for distinct concerns leads to a clear understanding of functionality,
enhancing the maintainability and extendability. Standardized methods and a reason-
able compiler architecture are essential for this work to achieve the goal and provide a
compiler of good quality.

49 4.1 Requirement Analysis

Portability (Retargeting)

Since the front-end of the compiler is to be generated from the language specifica-
tion, the choice of the construction tool and the form of specification has a great impact
on the portability of the constructed compiler. At the moment, the only demanded plat-
form to run at is Microsoft Windows XP or higher, which must be supported by the
generators.

4.1.3 Quality of Generated Parsers

The binary parsers generated by the compiler are thought to be running as integral parts
of monitoring applications. Hence, major in-use quality characteristics are associated
to the overall performance of the generated parsers.

Functionality (Process-oriented Parsing)

Parsing data for the purpose of monitoring raises the importance of the process
quality above the quality of a certain parsed data packet. That is, for a large set of
communication packets and the steadily growing number of data structures, support
for parsing the entire set completely is an ideal aim, which, however, can hardly be
reached. This is a weakened requirement compared to the demanded total correctness
of a typical compiler front-end. The continuity of the parsing process itself is much
more important. It has to be aligned towards constant data streaming, including ap-
propriate configuration of the input- and output buffers (pipes and filters architecture).
The system must be capable to parse data excerpts partially, suspending upon absence
of input without blocking the entire application, and resuming on arrival of new input
data.

Reliability (Robustness)

A related property required in the implementation is fault tolerance and robustness.
Not only the resistance to malformed, lost or unknown input data, but the reasonable
statement on the exact error location and its probable reasons is essential for debugging
the testees of the monitoring system. The application must safely recover to a normal
operation, whenever inconsistencies occur.

Efficiency (Online Performance)

Finally, the parsing is expected to be performed online, hence a good performance
level is aspired. Especially in case of invalid data the recovery time is assumed to
achieve critical values. However, a normal operation can be performed in real-time as
known from the current manual implementation.

4 Design Concept 50

4.1.4 External Requirements

Implementation Language

One external requirement from COMPRION is that the implementation of binary
parsers has to be based on C#. The reason is the transcendental use of the Microsoft
.NET Platform and C# in all new products.

License

Another requirement concerns the potential commercial use of the outcome of this
thesis. It prohibits employment of tools or source code published under license agree-
ments which enforce publication of the product internals.

Now that the important requirements of a good solution have been identified, we are
going to focus on the actual design developed with regard to these requirements.

51 4.2 The PBPG Language

4.2 The PBPG Language
The Paderborn Binary Parser Generator language syntax of is mainly oriented on
DATASCRIPT, allowing convenient definition of types and their semantic constraints.
The pivotal syntactic structure is the type definition, which has the form NewType

BaseType, where NewType is a defining occurrence and BaseType an applied oc-
currence of the type names. The name resolution follows the Algol scope rules. We
discuss the major aspects of the language syntax in the following paragraphs. The
entire specification can be found in the Annex A.2.

Primitive Types The built-in primitive data types provide the atomic units for the
construction of composite types. In order to address the requirement of bit-level
structure-modeling, we define not only the common numeric types BYTE, SHORT,
INT, LONG, but also the sub-byte types BITx1, BITx2, ... , BITx7. Together with
the composition elements these should suffice to describe data of arbitrary granularity.
The convenient notation of numbers consists of decimal, binary, octal and hexadeci-
mal forms, where the latter three use the short prefixes #, 0 and $. For example, the
decimal number 12 could also be written as #1100, 014 or $C.

Composite Types In analogy to the discussed languages of the previous section the
construction of composite types is achieved by definition of structs, unions and arrays.
Aiming for simplicity and compactness of notation we chose braces {..} for structs,
angle brackets <..> for unions and brackets [..] for arrays. They are used much like
in C, however the leading keywords struct and union are omitted. In the figure 4.2 we
show the declaration of a composite type in terms of PBPG.

U1 <
Alt1 {

tag $0F;
data INT;

};
Alt2 {

tag $FF;
data BYTE;

};
Alt3 {

tag BYTE;
data BYTE[4];

};
>;

Figure 4.2: PBPG composite type specification incorporating struct, union and array
declaration.

Whereas the notion of structs and unions is straight forward, the concept of arrays
as designed for PBPG requires explanation. An array in PBPG is defined as a repeti-
tion of the array-element type, restricted by range boundaries or a semantic constraint.

4 Design Concept 52

This realizes not only the repetition operations from table 2.12, but also introduces the
notion of a conditional array as a consequent application of the binary parser model
we concluded in figure 2.18. In particular array definitions in PBPG can take on the
following forms, where n,m represent integer values and the constraint c a Boolean
expression as explained in the following clause.

A1 ElementType[n..m] bounded
A2 ElementType[n..] left-bounded
A3 ElementType[m] constant
A4 ElementType[] optional
A5 ElementType[:c] conditional

At run-time these arrays consume input as long as the boundary conditions are not
violated or the stated semantic condition holds respectively. In case of A1, this means
if less than n elements have been successfully parsed, i.e. one element did not match
the expected element type, the entire array has to be regarded as not matching. On the
other hand after m successful iterations parsing of the subsequent type within the type
structure is automatically started.

The definition of arrays requires careful handling and the knowledge of the conse-
quences during parsing. It is obvious that for some structure specifications ambiguity
can be created. For example:

ambiguous {
list BYTE[0..3];
term 255;

};

For the input 255 255 255 there exist multiple correct assignments of input bytes
to the fields list and term. At this point we refer to the argumentation in clause 2.4
where we pointed out that the specified data structures are to be processed by com-
parably simple devices and that the parsing process has to be guided by the semantic
constraints as to be deterministic. This means that no correct (or correctly interpreted)
specification document does employ such data structures because of the ambiguity.
Nevertheless, in this very example we can show, that by using an additional type we
can disambiguate the structure specification:

unambiguous {
list NonTerm[0..3];
term 255;

};

NonTerm BYTE: NonTerm != 255;

At the moment, the user has to pay attention to such situations. They might indicate
an inconsistency with the standard document or even a problem within the document
itself. However, in the future automatic recognition of ambiguity might become part
of the compiler implementation.

53 4.2 The PBPG Language

Constraints The definition of a type may be padded with a Boolean expression
headed by a colon - the semantic constraint (or post-parsing condition) of the type.
Right after reading in the data for the defined type this condition evaluates the clas-
sification success. Operands of the expression can be the members of types defined
prior to the textual location of the constraint, inside the type definition scope. In or-
der to allow more sophisticated computations, externally defined code can be accessed
through a function call as well. The signature of the called functions has to be com-
patible with the operators of the semantic constraint expression, as to be translatable
to a correct host-language representation. In the next example, the called function
Checksum(data) must have the expected LONG return type, whereas the next func-
tion PostValidation(data, len) must have a Boolean return type. Furthermore,
the definition of both functions must be accessible in the scope of their applied occur-
rences in the translated representation.

DataChunk {
len BYTE: 0 < len;
data BYTE[len];
cs LONG: cs == Checksum(data);

}: PostValidation(data, len);

Using constraints in conditional arrays, constructs such as null-terminated strings
or padding fields can be modeled. The meaning of such a semantic constraint is that
of a parsing condition13. As long as it holds, the array is continued to be parsed,
otherwise the process stops, yielding an array of those elements only that fulfill the
parse-condition. Here the symbol @ serves as a reference to the currently parsed value
to be assigned to the array element.

ntChars byte[:@!=0] null-terminated string
padding byte[:@==$FF] padding

13In contrast to the post-parsing condition the parsing condition is checked not only once but for
each of the array elements.

4 Design Concept 54

4.3 The PBPG Compiler

For the proposed specification language the PBPG has been developed, whose name
was motivated by the generating tools used for its construction with regard to the cen-
tral aim to generate binary parsers. On the next pages we depict the semi-generated
architecture of PBPG. From the construction tools on we focus on design aspects and
the stages of compilation from analysis to synthesis.

4.3.1 Choice of Tools

For the construction of the compiler front-end several construction tools came into
question. Among a great number of generators such as ANTLR, yacc, Bison, CO-
CO/R and integrated compiler construction systems including ELI14, GENTLE and
COCKTAIL15 the choice fell on the generators GPLEX and GPPG which turned out
be very suited to the set of requirements of this project.

Gardens Point Scanner Generator (GPLEX) and Gardens Point Parser Generator
(GPPG) originated at Queensland University of Technology as contributions to the
generators MPLEX and MPPG of the Visual Studio Managed Babel distribution by
Microsoft. Developed by Wayne Kelly and John Gough GPLEX and GPPG form a
collaborative pair of tools for construction of LALR(1) parsers and their scanners. The
tools are .NET based versions of LEX and yacc which gained particular importance
on many Unix systems as standard tools for compiler construction. Being developed
entirely in C# GPLEX and GPPG are total re-implementations of their conceptual
predecessors and are released in open source form under "Free-BSD" style license
arrangements. Both generators produce C#-based automata implementations designed
to work together. However, also a successful combination of generated code with
handwritten scanners and parsers and those generated by COCO/R is reported16.
We summarize the advantages of GPLEX and GPPG in the following list:

State of the art technique: Support for LALR(1) parsers.
Reliability: The generators are certain to be tested thoroughly by Microsoft.
Single development environment Implemented in the same language (C#) as
the binary parsers are demanded to be.
Code reuse: License arrangements allow free reuse of source code for commer-
cial purposes.
Ease of use: Generators can easily be integrated into the build process of Visual
Studio.

14An integrated Toolset for Compiler Construction. Eli is being developed and maintained by re-
searchers from the University of Paderborn, University of Colorado (USA) and the Macquarie Univer-
sity (Australia). Eli is freely available at http://eli-project.sourceforge.net

15GENTLE and COCKTAIL emerged in the late eighties at the GMD Lab at University of Karlsruhe
and are now independent compiler construction systems. Please refer to http://gentle.compilertools.net/
and http://www.cocolab.com/

16Freely available at http://gplex.codeplex.com/ and http://gppg.codeplex.com/

55 4.3 The PBPG Compiler

However, there exist drawbacks in the choice of the generators too.

No Attribute Grammar: There is no support of attribution in grammars pro-
vided by systems like ELI.
Analysis-only solution: Implementation of static semantics analysis and code
synthesis are totally ceded to the developer.

These drawbacks have to be overcome during implementation, meaning that more ef-
fort has be to spent on the manual realization.

4 Design Concept 56

4.3.2 Front-end

The analysis front-end of the PBPG compiler can be described best as an integration
of parts from three distinct sources. First, the automata for the lexical and syntactical
analysis are generated from grammar specifications. Hence, their internal architecture
and the interconnection are dictated by the generators. Second, the generic parts like
the error-handling mechanism and the input-buffer implementation have been adopted
from the GPPG generator source code. The third part finalizing the architecture is most
project specific and developed from scratch. It manages the construction of the abstract
syntax tree and its analysis with regard to static semantics. We show the logical view
of the entire front-end in figure 4.3.

Lexical
Analysis
Lexical

Analysis

Lexical
Errors

ParserScanner

Error handlerError handler

EnvironmentEnvironment

Syntax
Errors

Semantic
Errors

Identifiers Bindings

Semantic
Analysis

Semantic
Analysis

Reference

Tokens Syntax
Analysis

Tree
construction

Tree
valid
Tree

Input
BufferBuffer Location

PBPG Compiler Front-end

Keys

SymboltableSymboltable

Figure 4.3: Logical view of the analysis front-end of PBPG. The parser employs a Sym-
boltable and an Environment module for name handling, whereas all compiler parts attach
to a common Error handler for emission of errors, warnings and status information.

This model shows three noteworthy design aspects. First, all stages of compilation
including the back-end not shown here refer to the same error handler which is the
central module to collect, store and log errors, warnings and other status information
throughout the entire application.
Second, each token from the scanner is associated with a location reference pointing to
the position and length of the token’s character sequence in terms of the input buffer.
Thus, any output message regarding the input document can be expressed based on the
original wording and exact textual position.
Third, during syntax analysis the encountered identifiers are stored in a symbol table
along with their defining- or applied occurrence indication, which yields a unique nu-
meric key representing the identifier. In the subsequent name analysis these keys are
used for the construction of scopes, name binding and the verification of correct ap-
plied occurrences.
Starting with the architecture of the generated core elements and the interface between
the scanner and the parser we are going to focus on details of this model.

57 4.3 The PBPG Compiler

The Generated Core

In order to establish a functional, yet loose coupling between the scanner and the
parser, a sort of decorator design pattern realizes the scanner-parser interface as shown
in figure 4.4.

TValue
TSpan

AbstractScanner

+ yylval: TValue

+ yyerror(string, object[]) : void
+ yylex() : int

«property»
+ yylloc() : TSpan

TValue:ValueType
TSpan:LexSpan

ScanBase

«property»
+ yylloc() : TSpan

«partial»
Scanner

+ yylex() : int

Generated by GPPG
with generic type parameters
set to LexSpan and
ValueType

Scanner implementation
generated by GPLEX

Generic class defined
in the ShiftReduceParser
class all generated parsers
derive from.

TValue
TSpan

ShiftReduceParser

currentLocationSpan: TSpan
currentSemanticValue: TValue

+ ShiftReduceParser(AbstractScanner<TValue,TSpan>) : void
+ DoAction(int) : void
+ Initialize() : void
+ Parse() : bool
+ ReportError() : void

«partial»

TValue:ValueType
TSpan:LexSpan

Parser

+ DoAction(int) : void
+ Initialize() : void

«partial»
Parser

+ Parser(Scanner, string) : void

LexSpan

ValueType

Manually implemented part of
parser code.

«partial»
Scanner

- yyhdlr: ErrorHandler

+ Scanner(Stream, ErrorHandler) : void
+ yyerror(string, object[]) : void

Manually implemented part of
scanner code.

1

scanner

1

Figure 4.4: The scanner-parser interface is realized using the decorator design pattern.
GPPG generates the parser automaton and the abstract ScanBase class to derive from in
the scanner implementation for this parser.

The definition of the class AbstractScanner and the implementation of the invariant
parser automaton ShiftReduceParser is provided by the GPPG implementation. Both
are defined as templates (or generics in C# terminology). From the grammar file GPPG
creates the derived partial17 Parser class which contains the state table and the semantic
actions for the ShiftReduceParser to operate on. Moreover, it generates the abstract
ScanBase class - the skeleton for deriving scanners and a ValueType structure, which

17C# allows the implementations of classes, interfaces and structs to be split into multiple parts which
collectively define the one entity. The separation in a generated and a manual part is very practical as it
enables use of the editing support like syntax highlight and error hinting of the C# code editor. In class
diagrams we represent the partial modifier as a stereotype.

4 Design Concept 58

serves as a broker for values passed from the scanner to the parser. It is assigned to
TValue in the deriving classes. The location reference type LexSpan is not generated,
but must be provided by the actually used input buffer implementation. However, since
this part of code as well as the ErrorHandler class are already available in the GPPG’s
own codebase it was integrated into the code of PBPG. Finally, the GPLEX-generated
scanners as ScanBase descendands are endowed with an additional manually defined
constructor in the other (partial) Scanner class which is required for assignment of an
ErrorHandler instance and the input stream object.

The Scanner Specification

The GPLEX-generated scanner implements a table-driven FSA. Like LEX-based
scanners this class offers the function yylex() to be called by the parser on demand of
the next token, and yyerror(..) for the emission of errors to the common error handler.
The members yylloc() and yylval are of the types LexSpan and ValueType. For each
recognized token yylloc() designates the corresponding text span in the input, whereas
yylval designates the token’s semantic value. In the following figure an excerpt of the
scanner specification is shown, which clarifies the usage of yylval and yylloc().

//== DEFINITIONS SECTION ====================================
DecDig [0-9]
OctDig [0-7]HexDig [0-9a-fA-F]
...

Bin #[0,1]+ // # prefix
Oct 0{OctDig}+ // 0 prefix
Dec {DecDig}+
Hex ${HexDig}+ // $ prefix
...

%% //== RULES SECTION =======================================
{Bin} {yylval.iVal = ParseNum(yytext.Substring(1), 2);

return (int)Tokens.INTEGER;}

{Hex} {yylval.iVal = ParseNum(yytext.Substring(1), 16);
return (int)Tokens.INTEGER;}

...

// Scanner epilog
%{

yylloc = new LexSpan(tokLin, tokCol, tokELin, tokECol,
tokPos, tokEPos, buffer);

%}
%% //== USER CODE ===
// located in the partial class

Figure 4.5: Excerpt of the PBPG scanner specification.

59 4.3 The PBPG Compiler

The specification file is divided into three sections. In the "Definitions" section reg-
ular expression based character classes and patterns are defined. Using these patterns
in the "Rules" section an ordered list of token definitions is stated. The definitions on
the left are augmented by semantic actions enclosed in braces. These represent C#
code blocks which are copied into the generated implementation of the FSA. At run-
time the semantic actions are executed whenever the associated token is recognized.
Each semantic action returns a number identifying the token. For certain tokens, like
integer or string literals it might be necessary to define the token’s semantic value. In
the definition of the Bin and Hex tokens this requires a string-to-integer translation,
according to the right base. The parser can then access the translated numeric value
through yylval. At the bottom of the "Rules" section another code block contains the
assignment of a LexSpan object to the yylloc field. At any time the currently matched
text span is computed and written to yylloc for the use by the parser. The last section
may contain further arbitrary user code to be copied into the scanner implementation.
However, we do not make use of it due to availability of partial class definition. De-
tailed information about the structure of the input document and its mapping to the
scanner code can be found in the GPLEX documentation [Gou09a].

The Parser Specification

The GPPG grammar specification exhibits the same yacc-style sectioning as the
scanner specification. The generator produces a table-driven LALR(1) parser, whose
functionality is spread over the class hierarchy as shown in figure 4.4. Its invariant
code resides in the ShiftReduceParser class, whereas the grammar-specific tables and
semantic actions are maintained in the concrete Parser class of the GPPG output.

The first section of the specification document enumerates the tokens used in the
subsequent rules section. By means of %union it defines the ValueType structure from
our class diagram in figure 4.4 as the TValue generic type parameter. This structure
specifies variables to hold the semantic values of tokens provided by the scanner, and
of the nonterminals evaluated in their semantic actions. The variables are bound to
the grammar symbols by means of %token and %type, as can be seen in the example
figure 4.6. The start symbol of the grammar is designated by %start.

In analogy to the semantic actions of the scanner specification and the described
syntax-directed translation in figure 2.3.5 C#-based code blocks can be associated to
every production. Again, copied into the generated parser code these semantic ac-
tions are prepared to be triggered during parsing whenever the associated production
is applied. Using the symbols $$ and the numerated versions $1, $2, ... the assigned
semantic values of the left-hand side nonterminal or the others to the right of ’:’ can be
addressed. The symbols @$ and @1, @2, ... represent textual locations of the production
symbols, i.e. their LexSpan instances which are created at the bottom of the scanner
specification. In both cases ($n and @n), the number n refers to n-th symbol to the
right of ’:’, whereas $$ and @$ refer to the single left-hand side production symbol.

Due to the nature of bottom-up parsing the semantic values of the right-hand side

4 Design Concept 60

symbols of the production are available at the time of reduction. They can contribute
to the definition of the production’s left-hand side symbol value. As can be seen in the
example the final reduction performed creates the root UnitNode of the syntax tree
constructed through semantic actions during the reduction process.

Same as for the scanner specification the user-code section remains empty, due to
a more comfortable definition of partial classes. In figure 4.6 we present a selective
excerpt of the PBPG language grammar, showing the most interesting aspects of a
GPPG specification. The entire document is located in the annex in clause A.2.2.
Further information and detailed descriptions on GPPG specifications can be found in
[Gou09b].

61 4.3 The PBPG Compiler

//== DEFINITIONS SECTION ====================================
%YYLTYPE LexSpan
...

%union {
public long iVal;
...
public AstNode node;
public TypeNode typeNode;

}

% token <iVal> INTEGER "Integer value"
% l e f t <tkn> BIPIPE "||" // left-associative operator
% r i g h t <tkn> EXCL "!" // right-associative operator
...
% type <typeNode> TypeDecl Scheme
% type <node> Unit UnitHdr

% s t a r t Unit

%% //== RULES SECTION =======================================
Unit : UnitHdr Includes Imports TypeDecls {

$$ = new UnitNode($1 as IdentNode); // root of AST
($$ as UnitNode).AddTypeDecls($4);
spec.Add($$);}

;
...
TypeDecl : IDENT Scheme Repetition Constraint SEMI {

$ = new TypeNode(@1, $2 as TypeNode, // type
$3 as RepetitionNode);

$$.SetIdent(new IdentNode(@1, true));
$$.SetConstr($4 as ConstraintNode);}

;
...
Expr : OpLogicOR {$$ = $1;}

;
OpLogicOR : OpLogicOR BIPIPE OpLogicAND {

$$ = new ExprNode(@2,$2,$1,$3);}
| OpLogicAND {$$ = $1;}
;

...
%% //== USER CODE ===
// located in the partial class

Figure 4.6: Excerpt of the PBPG language grammar specification.

4 Design Concept 62

Syntax Tree Construction

Controlled by the bottom-up parsing process the construction of the syntax tree is a
rather simple process. For each production application object instances are created to
store and represent the relevant parsed information, subordinating the previously cre-
ated object instances. The central data structure to implement such tree construction
defines a tree node and associations to a parent and child nodes. From this ancestor
for each syntactical element of the PBPG language specialized derivatives with ade-
quate internal organization are defined. The following table outlines the most relevant
syntactical elements and their C# classes, all of which are descendants of the common
AstNode class. A complete list of node classes of the PBPG parser can be found in
the class diagram in figure 4.8.

Syntactical Element Content Dedicated C# class

Specification document A list of globally defined data struc-
tures and normative meta-information

Specification

Type definition The kind of substructure, i.e. struct,
union, array or plain

TypeNode

Semantic Constraints A Boolean expression ConstraintNode

Array description Element-type and element repetition
information

RepetitionNode

Expressions Arithmetic and Boolean expressions
from semantic constraints and array
definitions

ExprNode

Type references Type inheritance information TypeRefNode

Native Types Occupied Bit sizes NativeTypeNode

Identifiers Type names for name analysis IdentNode,
QIdentNode

Constants Occupied Bit size and value IntNode,
BoolNode

Given this palette of nodes classes an abstract syntax tree as depicted in Figure 4.7
could be constructed during parsing the following exemplary input.

unit MySpec;

aUnion <
aValue1 BYTE;
aStruct {

aRef arrType;
aValue2 BYTE: aValue2 > 0;

};
>;
arrType BYTE[10];

63 4.3 The PBPG Compiler

:Specification

:TypeNode

:TypeNode

:TypeNode

:TypeNode

:TypeNode

:TypeNode

baseType :
TypeRefNode

:ConstraintNode

:ExprNode:RepetitionNode

aUnion

MySpec

aStruct

aValue1

aValue2

:ExprNode

elementType :
NativeTypeNode

:NativeTypeNode

:IdentNode

:IdentNode

:IdentNode

:IdentNode

:IdentNode

arrType

:IntNode 10

:IdentNode

aRef

:IdentNode arrType

:IdentNode

:NativeTypeNode >

:IntNode

aValue2:IdentNode

0

8 Bit

8 Bit

8 Bit

Figure 4.7: The information of the input document is condensed in the object tree of
specialized node-class objects. Such trees can obviously grow quite large.

An important aspect in this tree construction procedure is that the encountered
identifiers and their application (definition or use) may already be stored in the symbol
table, such that the subsequent name analysis can operate on identifier keys rather than
on the identifiers. By definition of the PBPG language the only possible defining oc-
currence of an identifier is the left-hand side identifier of type definition. This regards
every IdentNode instance being child of a TypeNode. Every other occurrence can only
represent an applied occurrence. Along with the actual text span the identifier is stored
in the symbol table without any further analysis for the moment. For the key calcula-
tion a generic Dictionary<string, int> class is employed, such that for each new input
string not part of the dictionary a new unique integer value is assigned and stored in the
dictionary. For input strings contained in the dictionary the associated stored number
is returned. As a result, two different occurrences of the same textual string yield the
same key.

Another Dictionary<int, IdentInfo> is maintained to capture and count every in-
stantiated IdentInfo, such that each new instance is endowed with its own symbol num-
ber for later access.

We present all the data structures involved in the construction of the abstract syntax
tree and their correlation in the class diagram figure 4.8.

4 Design Concept 64

A
stN

o
d

e

~

span: LexS
pan

~

scope: S
cope

~

A
dd(A

stN
ode) : void

+

G
etInfo() : string

+

T
oS

tring() : string

S
p

ecificatio
n

+

G
etInfo() : string

T
yp

eN
o

d
e

~

ident: IdentN
ode

~

repetition: R
epetitionN

ode
~

constraint: C

onstraintN
ode

~

m
inB

its: uint
~

m

axB
its: int

+

G
etInfo() : string

+

T
oS

tring() : string
+

G

etT
ypeN

am
e() : string

T
yp

eR
efN

o
d

e

+

G
etInfo() : string

S
ch

em
eN

o
d

e

«enum
eration»

K
in

d

N

O
N

E

C
O

N
S

T
A

N
T

P

LA
IN

S

T
R

U
C

T

U
N

IO
N

A

R
R

A
Y

«enum
eration»

A
rran

g
em

en
t

S

T
R

U
C

T

U
N

IO
N

N
ativeT

yp
eN

o
d

e

~

kind: K
ind =

 plain
~

m

inB
its: uint =

 (uint) kind
~

m

axB
its: int =

 (uint) kind

+

G
etT

ypeN
am

e() : string

«enum
eration»

D
ataT

yp
e

B

IT
 =

 1

B
IT

x2 =
 2

B

IT
x3 =

 3

B
IT

x4 =
 4

B

IT
x5 =

 5

B
IT

x6 =
 6

B

Y
T

E
 =

 8

S
H

O
R

T
 =

 16

IN
T

 =
 32

LO

N
G

 =
 64

E
xp

rN
o

d
e

~

L: A
stN

ode
~

R

: A
stN

ode
~

opr: int

~

value: object

+

G
etInfo() : string

B
o

o
lN

o
d

e

-
type: E

xprT
ype =

 B
O

O
L

+

G
etInfo() : string

«enum
eration»

E
xp

rT
yp

e

N

O
N

E

IN
T

E
G

E
R

B

O
O

L

In
tN

o
d

e

~

type: E
xprT

ype =
 IN

T
E

G
E

R
~

requiredB

its: uint
~

assignedB

its: uint

+

G
etInfo() : string

+

B
ytesR

equired() : uint
+

T

oLong() : long
+

T

oB
yteA

rray() : byte[]

R
ep

etitio
n

N
o

d
e

+

G
etInfo() : string

«enum
eration»

R
ep

etitio
n

T
yp

e

N

O
N

E

O
P

T
IO

N
A

L

LE
F

T
B

O
U

N
D

E
D

R

IG
H

T
B

O
U

N
D

E
D

B

O
U

N
D

E
D

C

O
N

D
IT

IO
N

A
L

C
o

n
strain

tN
o

d
e

+

G
etInfo() : string

F
u

n
C

allN
o

d
e

+

G
etInfo() : string

A
rrayR

efN
o

d
e

+

G
etInfo() : string

Id
en

tN
o

d
e

~

sym
K

ey: int

+

G
etInfo() : string

Id
en

tIn
fo

~

scope: S
cope

~

IdentInfo(S
ym

Info, S
cope) : void

S
ym

T
ab

le

-
sym

bols: D
ictionary<

int, S
ym

Info>
-

nam
eC

lasses: D
ictionary<

string, int>

~

N
ew

S
ym

bol(A
stN

ode, S
ym

Info) : int
~

G

etS
ym

bol(int) : S
ym

Info

S
ym

In
fo

~

node: A
stN

ode
~

nam

eC
lass: int

«enum
eration»

S
ym

T
yp

e

N

O
N

E

D
E

F

U
S

E

Q
Id

en
tN

o
d

e

Id
en

tL
istN

o
d

e

E
xp

rL
istN

o
d

e

S
elfR

efN
o

d
e

S
co

p
e

~

nam
eC

lasses: D
ictionary<

int, IdentInfo>
~

scopeC

reatorN
ode: A

stN
ode

~

B
indIdent(S

ym
Info, IdentInfo*) : bool

~

G
etLocalB

inding(int, IdentInfo*) : bool
~

G

etB
inding(int, IdentInfo*) : int

~

G
etC

reatorN
ode() : A

stN
ode

+
kind

+
nodes 0..*

+
parent

+
type

+
dataT

ype

+
arrangem

ent

«instantiate»

type

+
baseT

ype
0..1

+
superS

cope 0..1

«use»
+

sym
T

able

+
info

+
type

+
refS

copes 0..*

+
scope

1

+
creatorN

ode 1

«use,instantiate»

+
sym

Info

+
scope

Figure
4.8:

C
lasses

involved
in

the
construction

ofthe
syntax

tree.
The

descendants
ofthe

A
stN

ode
are

depicted
w

ith
a

darker
background.

65 4.3 The PBPG Compiler

4.3.3 Static Semantic Analysis

As soon as the last node of the syntax tree is created, the analysis of static seman-
tics may be started. For the PBPG language, the main objective in this phase is the
construction of a scope hierarchy for name binding and name analysis with regard to
this scope hierarchy. Other objectives such as type analysis can also be performed in
this phase, however, only to a certain degree, that is, for types of constant structure
and size. Because the actually instantiated structure of the types generally depends on
runtime values, type analysis in PBPG relates to dynamic semantics and must be done
by the binary parsers at runtime. We will focus on that later on.

As explained in clause 2.3.5 the verification of the Algol scope rules requires a
two-pass tree traversal: One pass to process all the defining occurrences, and a sec-
ond one to analyze the applied occurrences. To create an environment of scopes to
hold bindings of type definitions, a tree structure is very useful. Based on the Scope
class from figure 4.8, every TypeNode is associated with a new scope, during the first
depth-first traversal of the syntax tree. This scope is then used to bind all the subtype
definitions. Performed recursively from the root node on, this yields a scope-tree as in
figure 4.9.

Global Scope

SpecifiationSpecifiation

def Adef A def Bdef B def Cdef C

Scope of A

def Ddef D def Edef E def Fdef F

Scope of B

def Gdef G

Scope of C

def Hdef H def Idef I

Constraint on EConstraint on E

Scope of E

Use A.FUse A.F

use Cuse Cuse Cuse C

Scope of G Scope of I

Constraint on CConstraint on C

Inheritance

reference

Inheritance

Figure 4.9: Every type definition creates a new scope within its smallest enclosing scope.
Being performed recursively for all types yields the scope-tree.

In the second depth-first traversal, the applied occurrences of type names must be
verified to comply with the scope rule. With regard to the illustrated scope-tree, this
rule can be formulated in the following way: The applied occurrence of an identifier is
valid whenever it refers to a binding in the local scope or in one of the scopes on the

4 Design Concept 66

path towards the root, whereas the nearest binding counts. For the scope-tree above,
this means that within the scope of E the names A through F are known, but not the
names G, H, I. These may be accessed only by means of qualified identifiers starting
with the identifier of the accessible types, i.e. B.G and C.H, C.I. Together with the
possibility for type inheritance - which involves jumps through the scope-tree - the
name analysis of qualified identifiers is not a trivial task. Hence, the algorithm to
perform this is dedicated the own clause 5.2.

An additional traversal of the syntax tree is used to propagate and aggregate bit-
sizes of constant composite types and type checks in expressions, ensuring type com-
patibility with applied operators18.

4.3.4 Back-end

After successfully passing the analysis steps, the abstract syntax tree is considered to
be valid. Since no optimization steps are performed at this moment, the code synthesis
represents the last operation in the compilation process. However, future work might
introduce optimizations in this phase.

The technical aspect of code synthesis is a matter of streaming textual output into
a file. In PBPG, a dedicated CodeGenerator class takes care of this task. By traversing
the syntax tree once, all the necessary code blocks can be generated and emitted to the
output as explained in clause 2.3.6.

However, there exists a difficulty in mapping applied occurrences of type names
to correct variable references in terms of correct output program code. The algorithm
to do that determines the path from the location of the applied occurrence to the exact
scope the referenced identifier is bound to and creates a qualified name representing
a reference within the object hierarchy of the generated binary parser. But prior to
explain this algorithm in the Implementation clause, the architectural model of the
binary parsers will be presented first.

18For optimization reasons these calculations can also be shifted to the second pass as well.

67 4.4 Binary Parser Model

4.4 Binary Parser Model
The most interesting and focal part of the design concept is probably the architecture of
the binary parsers synthesized by the compiler. Being developed totally from scratch,
the binary parser model realizes a form of recursive descent parser we introduced in
the foundations. Thus, in analogy to our initial algorithm in figure 2.21, it inherits
the idea of mutually recursive parse-function calls to parse sequences, alternatives,
repetitions and plain integer values, guided by semantic constraints. Furthermore, the
model targets the demand to store the parsed input data in a way such that calculations
and further analysis can be performed on it. This regards not only semantic constraint
evaluation, but also potential off-line analysis at a later time.

Putting everything together, we can outline that the realized parsing concept is
based on a semantic-directed, recursive descent procedure with integrated type instan-
tiation whose final output is a data-object-tree - a syntax tree of binary structures rep-
resenting the input data.

The remaining questions to answer in order to obtain a functional binary parser are:

How are the PBPG language constructs, i.e. the types, their structure and the
semantic constraints mapped to constructs available in C# and how are those
interconnected?
And, how can the input be read bitwise?

In the following clauses these questions are answered, though in reversed order.

4.4.1 Input Memory Model

The PBPG-generated binary parsers make heavy use of bitwise input reading. This
required functionality is offered by a BitReader class, which implements a wrapper for
the byte-oriented abstract class Stream which is part of the C#-framework. BitReader
allows to read bit strings of arbitrary length, independent from the actual data source
implementation derived from Stream.

Internally, an input buffer decouples frequent reading accesses by the BitReader
from potentially slower read procedures of the Stream object handed in. This buffer
is provided by another C#-framework class called BufferedStream. We depict this
configuration and the views of the input data in figure 4.10 and figure 4.11.

The core procedure ReadBits(int nBits) of the BitReader relies on an internally
maintained bit offset and the most recent byte value. It assures that whenever multi-
byte sequences have to be read or bit strings exceeding the number of remaining bits
of the recent byte, appropriate chunks of data are fetched from the input buffer. The
partitioned data is written to a byte field and returned to the caller.

To allow rewinding the input after mismatching structural patterns during pars-
ing, BitReader offers a Seek method which controls not only the input offset of the
BufferedStream object, but also the internal bit offset within the current byte.

4 Design Concept 68

BitReader

- nBitsConsumed: int
- input: BufferedStream
- currentByte: int

+ BitReader(Stream) : void
+ Seek(long, SeekOrigin) : long
+ ReadBits(int, byte[]*) : uint
+ BitPosition() : long

BufferedStream

+ BufferedStream(Stream) : void
+ Seek(long, SeekOrigin) : long
+ Read(byte[], int, int) : void
+ ReadByte() : int
+ Write(byte[], int, int) : void
+ WriteByte(byte) : void

Stream

+ Seek(long, SeekOrigin) : long
+ Read(byte[], int, int) : void
+ ReadByte() : int
+ Write(byte[], int, int) : void
+ WriteByte(byte) : void

«instantiate»

«use»

Figure 4.10: The configuration of the input memory model ensures a decoupling of the
potentially slower Stream object by means of an intermediate BufferStream.

The process of partitioning the input byte stream with regard to the structure spec-
ification and the different views of the data are shown in the picture 4.11.

Bi-4

Bi Bi+1

Buffered Stream

BitReader's view

Specified Structure

ReadBits(uint nBits)

ReadByte()

Bi-3 Bi-2 Bi+2 Bi+3 Bi+4 Bi+5Bi-1

Partioned Output ≥1 Byte per BitString

Remaining Bits
of current Byte

Figure 4.11: The views of the input data and its mapping to the bit-grained data structures.

Although not part of the requirements stated for PBPG, the tasks of the BitReader
could enclose handling of endianess, i.e. the byte order within multi-byte data chunks.
It is not yet part of the current implementation, however future work might require dy-
namic changes of endianess during interpretation of integers. Therefore, an additional
parameter would control how the data is written to the output byte field, straight or in
reversed order.

4.4.2 Language Construct Mapping

The generated C# code reflects the type hierarchy of the PBPG structure specification
based on the central MetaType class. This class serves as a parameterized descriptor for
the data type it represents, storing its bit-size, name and the data gained from parsing.
Furthermore, it defines the primitive (non-recursive) parsing method to read raw bit
strings of the stored size by means of the BitReader. Using MetaType, binary parsers
for the native data types can be created by correct parameterization of the constructor.

69 4.4 Binary Parser Model

On top of these terminal binary parsers, composite types are defined by nesting.
Thus, PBPG structs, unions, and arrays define their subtypes (or element types respec-
tively) as nested classes, preparing variable declarations of those classes as members of
the composite type, which is presented in figure 4.12. The parsing method then takes
care of calling the parsing methods of the subclass-objects, which are only instantiated
at this point in time (lazy instantiation). This allows to handle recursive type defini-
tions. In contrast, eager instantiation would try to create all required objects through
recursive constructor-calls, before the objects are actually required. This would ob-
viously result in a non-terminating instantiation recursion for type definitions like the
following:

TLV { tag 55; len BYTE; data TLV; };

Semantic constraints are translated to Boolean PostParseCondition methods of the
corresponding classes. They formulate the semantic constraints in terms of expres-
sions over runtime MetaType objects to be evaluated right after execution of the local
parsing method. Its result dictates the parsing success of its containing class. In case of
conditional arrays, the semantic constraints are translated to ParseCondition methods,
which are evaluated on every iteration of element parsing. As long as the ParseCondi-
tion returns true, the array accumulates new parsed elements. As soon as the condition
evaluates negative, the process stops. Please consider the tables 4.13 and 4.14 for a
source code view of the language construct mapping.

The parsing process continues as long all recursive calls return positive, otherwise
backtracking is performed in an exhaustive manner. A successful ending then yields a
tree of MetaType objects filled with the input data. In case of running out of alternatives
during back-tracking a partially instantiated object tree remains for error reporting and
the root parsing method returns false.

TreeNode

T:MetaType

MetaType

+ name: string
+ currentBitPos: long
+ numBits: int
+ data: byte[]
+ bitReader: BitReader

+ MetaType(MetaType, string, Kind, int) : void
+ Parse() : bool
+ PreParseCondition() : bool
+ ParseCondition() : bool
+ PostParseCondition() : bool

«property»
+ Nodes() : List<T>

«enumeration»
Kind

 NONE
 PLAIN
 STRUCT
 UNION
 ARRAY

NativeType

+ NativeType(MetaType, string) : void
+ Parse() : bool
+ PreParseCondition() : bool
+ ParseCondition() : bool
+ PostParseCondition() : bool

SubType1

+ SubType1(MetaType, string) : void
+ Parse() : bool
+ PreParseCondition() : bool
+ ParseCondition() : bool
+ PostParseCondition() : bool

CompositeType

+ CompositeType(MetaType, string) : void
+ Parse() : bool
+ PreParseCondition() : bool
+ ParseCondition() : bool
+ PostParseCondition() : bool

SubType2

+ SubType2(MetaType, string) : void
+ Parse() : bool
+ PreParseCondition() : bool
+ ParseCondition() : bool
+ PostParseCondition() : bool

+kind

+items 0..*

+parent 0..1

Figure 4.12: PBPG types are translated to direct or indirect descendants of the MetaType
class. Lazy instantiation of these classes during parsing allows recursive type definitions.

4 Design Concept 70

PBPG construct C# representation

NewType BaseType; class NewType: BaseType{
...

};

StructType
{

SubType1 SHORT;
SubType2
<

SubType2a StructType;
SubType2b INT;

>;
};

class StructType: MetaType
{

...
class SubType1: MetaType
{...}

class SubType2: MetaType
{

...
class SubType2a: StructType
{...}
class SubType2b: MetaType
{...}

}
}

NewType
{

a INT :a>255;
};

class NewType: MetaType
{

NewType(): base(STRUCT,0) {...};

a m_a;

bool Parse() {
m_a = new SubType(...);
return a.Parse();

}

class a: MetaType
{

a(): base(PLAIN,32){...};

bool Parse() {
return (base.Parse() &&

PostParseCondition());
}

bool PostParseCondition() {
return this>255;

}
}

}

Table 4.13: PBPG specification and corresponding generated C# code. To avoid name
collisions between PBPG types and reserved words in C# we use "m_" as a prefix for
member field names.

71 4.4 Binary Parser Model

PBPG construct C# representation

Str BYTE[:@!=0]; class Str: MetaType
{

Str(): base(ARRAY,0) {...}

List<MetaType> m_StrElements;
...
bool Parse() {

m_StrElements = new List<MetaType>();
MetaType newElement;
do {

newElement = new MetaType(PLAIN,8);
if (!newElement.Parse())

return false;

m_StrElements.Add(newElement);
}
while(ParseCondition(newElement));

return PostParseCondition();
}

bool ParseCondition(MetaType element){
return (element != 0);

}
...

}

IntType INT; class IntType: MetaType
{

...
bool Parse() {

currentBitPos =
bitReader.BitPosition;

if (0 == bitReader.ReadBits(
maxBits, out data))

{
bitReader.Seek(currentBitPos,

SeekOrigin.Begin);
return false;

}
return PostParseCondition();

}
...

}

Table 4.14: PBPG specification and corresponding generated C# code. To avoid name
collisions between PBPG types and reserved words in C# we use "m_" as a prefix for
member field names.

4 Design Concept 72

The outcome of successful binary parsing is again an object tree comparable in
style with the syntax-tree from figure 4.7 we obtained by parsing specifications. How-
ever, this tree consists of MetaType objects representing the successfully consumed
input data. Based on this tree, convenient data export or further analysis in subsequent
steps can be performed. In the next section, the implemented generic method for tree-
processing is presented. It provides an initial opportunity to dump the tree to an XML
file.

73

5 Implementation

This section focuses on some noteworthy realization details in the PBPG. It covers
the generic and modular concept of tree construction along with visitor-based tree-
walkers and the implementation of name analysis, dealing with qualified identifiers
and inheritance. Finally, the translation of PBPG name references to correct C# object-
names in the binary parser class hierarchy is explained.

5.1 Tree Walking with Visitors

The PBPG compiler, the binary parser model and most parsers in general have in com-
mon that they create object trees during parsing for post-processing. In this thesis this
commonality is addressed in a generic and modular way. For a better separation of the
tree node implementation, the specific analysis code and the tree walking algorithm, a
variant of visitor design pattern is employed. The design pattern helps in decoupling
those three concerns, such that clean development of each individual part is achieved.
Furthermore, it improves extendability of all parts.

T

TreeNode

«property»
+ Nodes() : List<T>

T:AstNode

AstNode

+ span: LexSpan
+ scope: Scope

+ Add(AstNode) : void
+ GetInfo() : string
+ ToString() : string

«property»
+ Nodes() : List<T>

T:MetaType

MetaType

+ name: string
+ currentBitPos: long
+ numBits: int
+ data: byte[]
+ bitReader: BitReader

+ MetaType(MetaType, string, Kind, int) : void
+ Parse() : bool
+ PreParseCondition() : bool
+ ParseCondition() : bool
+ PostParseCondition() : bool

«property»
+ Nodes() : List<T>

+nodes
0..*

+parent
1

+items
0..*

+parent
1

Figure 5.1: Both the AstNode class of the PBPG compiler and the MetaType class of
the binary parser model implement the Nodes property from the abstract generic class
TreeNode they derive from.

First of all, to be traversable by the algorithm, the representatives of the tree nodes,
i.e. the AstNode and the MetaType classes implement the Nodes-property from the
abstract generic TreeNode class as in figure 5.1. This establishes a generic way to
access sub nodes of a tree node.

5 Implementation 74

In the second step, the specific analysis code is encapsulated in the tree analyzer
classes ASTAnalyzer and MetaTypeAnalyzer. These inherit from the generic Tree-
Walker class the capability to traverse trees of the specific node type passed in as the
generic type parameter.

T:TreeNode<T>

TreeWalker

+ Traverse(T, NodeVisitor<T>, bool) : bool
Traverse_PRE_POST(T, NodeVisitor<T>, int) : bool
Traverse_PRE_IN_POST(T, NodeVisitor<T>, int) : bool

«C# delegate»

T

NodeVisitor

+ NodeVisitor(T, VisitOrder, int) : bool

«enumeration»
VisitOrder

 PREORDER
 INORDER
 POSTORDER

T:AstNode

ASTAnalyzer

~ spec: Specification
~ handler: ErrorHandler

+ AstAnalyzer(ErrorHandler, Specification) : void
+ CheckDefBeforeUse() : bool
+ ProcessAttribution() : bool
+ PrintToXml() : void

«method»
XmlPrintVisitor

+ XmlPrintVisitor(AstNode, VisitOrder, int) : bool

«method»
AttributeProcessor

+ AttributeProcessor(AstNode, VisitOrder, int) : bool

«method»
IdentDefChecker

+ IdentDefChecker(AstNode, VisitOrder, int) : bool

«method»
IdentUseChecker

+ IdentUseChecker(AstNode, VisitOrder, int) : bool

T:MetaType

MetaTypeAnalyzer

+ PrintToXml(MetaType, Stream) : void

«method»
XmlPrintVisitor

+ XmlPrintVisitor(MetaType, VisitOrder, int) : bool

Ordinary class methods with
NodeVisitor-compatible signature

Figure 5.2: ASTAnalyzer and MetaTypeAnalyzer provide the analyzing visitor methods to
be called by the generic TreeWalker implementation during tree traversal.

The actual tree-walking procedure resides in the TreeWalker class itself, whose
current implementation performs a depth-first recursive visiting of nodes in pre-order,
in-order and post-order. Whereas the analysis code resides in methods of the specific
ASTAnalyzer and MetaTypeAnalyzer, it can be applied on nodes during tree traver-
sal, by passing the methods as a parameter to the inherited Traverse operation. Such
method passing is enabled by the C#-specific construct delegate. It is a method type
which defines a method signature as a reference for other (compatible) methods. In the
example above, all visitor methods realize the signature of the NodeVisitor delegate
type, and thus can be relayed as parameters to the Traverse method.

75 5.2 Analysis and Translation of Name References

For better visibility we artificially exposed the visitor methods realizing name analysis,
attribute propagation and tree-dumping to XML.

5.2 Analysis and Translation of Name References
As mentioned in clause 4.3.3, the verification of correctly applied occurrences of quali-
fied identifiers in combination with inheritance forms a challenging problem, requiring
searches within the abstract syntax tree and the scope tree. Please consider the follow-
ing PBPG specification, which defines the composite types A and B.

A {
a BYTE;
b {

c BYTE;
d BYTE;

};
};

B {
a A;
b BYTE[a.b.c]; //correct
c BYTE;

}: a.c != 0; //incorrect

The array type b in B refers to substructure b.c of the local type a, which is
a descendant of A. Additionally, the semantic constraint of B refers to the inherited
substructure of a. For such constructs verification of applied occurrences requires a
combination of tree-traversal and jumps through the syntax-tree whenever inheritance
occurs.
The algorithm FindBinding verifies the applied occurrences such that inheritance of
types is covered. Given an initial scope and the qualified identifier qid = id (. id)∗ to
find the binding for, FindBinding performs the following steps:

From the initial scope, traverse the scope-tree towards the root

1. If there is no scope the first identifier id of qid is bound to, then the applied
occurrence is incorrect.

2. otherwise, repeat for the subsequent identifiers id
a) Check first if there exists a local binding for id
b) If not, consider inheritance and jump to the scope of the ancestor type

to find the binding there.

If the above iteration failed at some id of qid, the applied occurrence is consid-
ered incorrect.

We next present the pseudocode of FindBinding in figure 5.3 and the helper functions
it builds on.

5 Implementation 76

Helper Function Description

SubId(qid) Returns a subsequence omitting the first id or null,
Example: SubId(a.b.c) yields b.c

GetLocalBinding(scope, id) Returns the TypeNode associated to id, if id is bound
to scope

GetBinding(scope, id) Returns the TypeNode associated to id, if id is bound
to any scope on the path towards the root.

BaseTypeId(typeNode) Identifier of the type’s ancestor.
SubScope(typeNode) The scope created by typeNode

1: function FINDBINDING(scope, qid): Type

2: // try to find a binding through the scope tree
3: TypeNode currentType← GetBinding(scope, qid);

4: if (null 6= currentType) then
5: subId← SubId(qid);

6: // iterate through the elements of id
7: while (null 6= subId ∧ null 6= currentType) do

8: // is there a local binding?
9: TypeNode t← GetLocalBinding(scope, subId);

10: if (null 6= t) then
11: currentType← t;

12: else
13: // probably the type is inherited
14: TypeNode baseType← GetBinding(scope, BaseTypeId(currentType));
15: if (null 6= baseType) then

16: // then the name of the base type must be known
17: currentType← GetLocalBinding(SubScope(baseType),subId);

18: // prepare for next iteration
19: subId← SubId(subId);

20: // is there a binding?
21: if (null = currentType) then
22: Print("qid is unknown in the current context");

23: return currentType;

Figure 5.3: Pseudocode of FindBinding for the verification of applied occurrences in
PBPG specifications.

77 5.2 Analysis and Translation of Name References

5.2.1 Translation of Name References

For the generated code, the referenced type names from the input specification docu-
ment must be translated to valid object names in the context of the binary parser class
hierarchy. For example, an applied occurrence "a.b.c" as used on page 75 must be
translated to "parent.m_a.m_b.m_c" 19 to be a valid reference of the runtime object
m_c in the context of the class definition of b.

In general, four cases must be distinguished when translating names referenced
from within the scope of some arbitrary type t. In the examples below some external
boolean function f is applied to the type denoted by its parameter.

1. The name represents an ancestor of t in the type hierarchy
A {

a BYTE;
B {

t BYTE: f(A);
};

};

translated to: parent.parent

2. The name represents a child of an ancestor of t
A {

a BYTE;
B {

t BYTE: f(a);
};

};

translated to: parent.parent.m_a

3. The name represents t itself
t BYTE: f(t); translated to: this

4. The name represents a child of t
t {

c BYTE;
}: f(c); translated to: this.m_t

For name translations on behalf of code synthesis the CodeGenerator class main-
tains an internal TranslateNameReference procedure, where the positive outcome of
prior applied occurrence verification is a necessary pre-condition for correct results20.

19parent refers to the superior runtime MetaType object defined by the enclosing class. See class-
diagram in figure 4.12 and the class-nesting concept in table 4.13.

20disregarding that compilation is discontinued on analysis-errors anyway

5 Implementation 78

In analogy to FindBinding, the TranslateNameReference procedure traverses the
syntax tree towards the root, however not aiming verification of correctness, but rather
in search of the relative path to the actual binding. Please consider that the search
is required to obtain the ascending part of the path only, which covers the first three
cases from the previous page. The last case represents a descent in the object hierarchy
which consists of the actual names of the subtypes already provided by the qualified
identifier. In this case, no search is required.

Given an initial scope and the identifier id to translate, the algorithm performs the
following steps:

1. If the type node which created the initial scope is named id,
print "this" and terminate.

2. otherwise print "parent" and switch to the superior scope

a) If the type node which created the scope is named id, terminate.
b) If a sub node of the type node is named id,

print ".m_id" and terminate.
c) If the type node represents a derived type,

switch to scope of the base type and proceed with 2.a)
d) proceed with 2.

Finally, every id in qid except the first is printed with a ".m_" prefix, completing
the translated name reference.

79

6 Evaluation
In clause 4.1, we outlined quality requirements to be stated on the designed specifica-
tion language, its compiler and the generated binary parsers. Based on those require-
ments, we are now going to evaluate the outcome of the project in the same order.

6.1 Language Quality

Functionality (Expressiveness, Accuracy, Suitability)
The PBPG language design covers the structural patterns sequence, alternative and

various forms of repetitions frequently used in binary communication protocols. Pro-
viding elementary numeric types of common bit sizes 8, 16, 32, 64 and all bit sizes
below the byte-level (1 - 7 bit), the language directly addresses the demand of mod-
eling bit-grained data structures. Accordingly, it allows statement of binary numbers
by means of a single # prefix, which is as simple as for octal and hexadecimal num-
bers with the prefixes 0 and $. Finally, the language supports annotation of types
with semantic constraints in terms of a boolean expression over specified structure
elements and the opportunity to call externally implemented functions for complex
evaluations (e.g. checksum validation). By means of semantic constraints tagging,
length-indication and other indication patterns can be modeled in a simple and intu-
itive way.

Usability (Understandability, Convenience)
As the language syntax is oriented on the C notation of structs, a clean program-

ming style supports spatial emphasis of the specified hierarchies by means of nesting
and indentation. Reusing common symbols for structuring and expression operators,
the language supports learning and convenience of its user. PBPG narrows the seman-
tic gap we illustrated in figure 4.1 such that the manual part of transcription is reduced
to formalization only. Although heavy daily use has to prove it, we think that using
PBPG for binary parser construction is much more attractive compared to the manual
implementation.

Maintainability (Analyzability, Changeability)
The PBPG language is simple and has a small number of syntactic elements, such

that the specification documents are easy to read and understand. Since the language
encourages reuse of data structures, changes to the specification can be done with less
effort compared to a manual implementation. Also, the declarative form of the spec-
ification is a clear advantage for changeability. For example, a change in the length
of a field might cause a cascaded shifting of all subsequent fields. In manual imple-
mentations, this is certain to cause a lot of effort. Although planned, there are no
syntactic elements for embedding meta-information, such as references to the norma-
tive document or version information at the moment. However, neither the design nor
the implementation impede this extension to be introduced as soon as possible.

6 Evaluation 80

6.2 Compiler Quality
Functionality (Correctness)

For correctly specified data structures, the current implementation produces cor-
rect, compilable and functional output code. However, there are situations where a
verification of correctness cannot be proven. For example, the existence of an exter-
nally defined function used in a semantic constraint can not be verified at the moment.
But since the C# compiler does recognize missing references, such errors can be found
very quickly. Although construction of test cases for every possible configuration of
language constructs can hardly be realized, confidence in the correctness of the com-
piler can be increased by incrementally adding new test case files to the test suite of
the compiler. To the best of our belief, no correct specification cause errors, and most
of the incorrect specification produce an error in the output. One of the exceptions
is the detection of indirect cyclic inheritance, which is not yet covered by the current
analysis of static semantics and is not reported as an error.

Reliability (Robustness, User Support)

At the moment, a couple of language constructs are not implemented completely.
In particular, analysis of static semantics has to be completed in many ways. However,
the architecture is prepared for the extension of analysis without significant effort, as
the error-processing infrastructure is ready, and the error messages can be emitted with
reference to the input document location.

Efficiency (Time and Memory Consumption)

The compilation of the PBPG specification file listed in A.3, which specifies UICC
instructions of the ETSI TS 102 221 standard, took 87 milliseconds and consumed
about 8488 KBytes memory. The test system utilized an Intel Core2 Quad CPU running
at 2.83GHz with 4096 MBytes RAM. Although further optimizations of the process are
likely to occur in the future, these results are already satisfying.

Maintainability

The architecture of the compiler clearly separates distinct concerns. This is achieved
through effective application of design patterns. The compiler combines the generated
automata, the error processing module adopted from the construction tools, and the
remaining modules discussed in a way such that each of them can be modified or re-
placed with adequate effort.

Portability (Retargeting)

As the generator tools GPLEX and GPPG are compatible to LEX and yacc/Bison
to a great extend, retargeting of the generated scanner and parser to C or C++ might
be achieved with little effort. However, porting the other parts of the compiler from

81 6.3 Quality of Generated Parsers

C# to C would require more work, due to substantial differences in memory handling
and language features. Actually, porting the compiler to Java which exhibits similar
concepts as C# is probably more easy.

6.3 Quality of Generated Parsers
Functionality (Process-oriented Parsing)

At the moment, this requirement is barely addressed in the binary parser architec-
ture. However, modeling data structures in an adequate way can provide the desired be-
havior. As we hinted by the end of clause 2.4.2 in the context of the prioritized choice,
modeling ordered alternatives with decreasing restrictions forms a good strategy to
handle unexpected input. We discussed this strategy in clause 3.2 as well. Moreover,
if applied on the basis of protocol packets (APDUs) which have a guaranteed ending,
every new packet forms a recovery point for a new parsing attempt.

Reliability (Robustness)

Compared to the manual implementation of binary parsers, the space for individ-
ual programming errors is dramatically narrowed. Being systematically constructed,
the dissection procedures are certain to found a stable process with little potential for
undiscovered errors. However, care must be taken that memory consumption of the
entire process is under control, which might form a problem for large data structures
consisting of many bit-sized fields.

At the moment, parsing failure is not reported to the user. However, the concept of
a parse descriptor as presented in PADS in clause 3.4 hints a promising direction for
further development.

Efficiency (Online Performance)

After generating the binary parsers from the PBPG specification file from A.3,
parsing of a 7 MByte large input file was performed. The file consisted of a repetition
of 3 correctly encoded APDU byte strings. The measurements showed that the process
finished after about 380 seconds and consumed over 170 MByte of memory prior to
completion. These values show that a lot of optimizations in the generated code has to
be done to reach acceptable ranges. Although not suited for real life application at the
moment, we expect much better results soon.

7 Summary and Future work 82

7 Summary and Future work

In this thesis, we presented the problem of parsing binary data for the purpose of mon-
itoring and analyzing of the communication over the smart card interface as required
at COMPRION. Aiming relief of the manual specification transcription required to
produce operational parsing logic from informal declarative standard documents we
developed the Paderborn Binary Parser Generator - A domain specific language and its
compiler for the construction of binary parsers. After highlighting the foundations of
smart cards, the protocol monitoring task and aspects of compiler theory we discussed
the characteristic differences between textual and binary data with respect to parsing.
We showed how the lack of explicit structure in binary inputs is compensated by indi-
cation patterns, which guide the parsing process by means of context information. This
led us to a modified analysis model incorporating a merge of the lexical and syntacti-
cal analysis and a back coupling of the semantic analysis. After proposing a system of
types for the realization of a modeling language, we presented the design of the declar-
ative PBPG language and its compiler. We outlined major aspects of the architecture
and the difficulties faced during implementation on the background of requirements
we found to be important for a high quality result.

Although the concept appeared to solve the problem well and many of the stated
requirements have been fulfilled, a lot of conceptual work is remaining for the future.
The list of tasks to be faced as soon as possible includes amongst other things the
following objectives.

1. Static semantic analysis does not recognize cyclic inheritance in PBPG types.
This verification has to be added in order to ensure seamless compilation of
generated C# code. Furthermore, the verification of expressions with regard to
type compatibility has to be faced.

2. The currently supported form of array definition we listed in clause 4.2 is constant
i.e. ArrType ElementType[m]. Support of conditional and bounded ar-
rays will provide the aspired convenience in modeling. Especially the con-
ditional array definition is a powerful and demanded construct to reflect con-
straints over repetitions incorporating internal order or terminal symbols, e.g.
null-terminated strings. Moreover, the automated recognition of ambiguity as
outlined in clause 4.2 should be considered.

3. Implementation of an inclusion system for reuse of existing PBPG specification
files and an opportunity to bind to existing generated binary parsers.

4. Inclusion of meta-information such as normative document references and orig-
inal names (which sometimes consist of multiple words) into the specification
document.

5. At the moment, the generated binary parser code is not optimized, which means
that unnecessary methods and declarations exist, e.g. every class in the MetaType
class hierarchy implements its own PostParseCondition method, even if no se-
mantic constraint is assigned to the corresponding PBPG type. This enlarges

83

the source code files unnecessarily and is uncertain to be optimized by the C#
compiler under all circumstances.

6. In accordance to PADS in clause 3.4 and binpac in clause 3.5 the parameteriza-
tion of types might be worth considering, as it offers an additional dimension of
modularity to structure specifications and has potentially a similar importance
as templates in Java or generics in C#. However, the realization might probably
bring significant modifications to the overall compiler architecture.

7. On the long run, we can imagine that formalized structure specifications can
be used to analyze consistency of the informal normative documents in order
to unveil incorrect formulations by means of automated semantic analysis. In-
consistent statements from informal descriptions might become detectable after
formalization, or even immediately obvious during the formalization process.

7 Summary and Future work 84

85

A Annex
In this section we assembled specification listings mentioned in the document.

A.1 ISO/IEC 7816-4 smart card commands
ERASE BINARY

VERIFY

MANAGE CHANNEL

EXTERNAL AUTHENTICATE

GET CHALLENGE

INTERNAL AUTHENTICATE

SELECT FILE

READ BINARY

READ RECORD(S)

GET RESPONSE

ENVELOPE

GET DATA

WRITE BINARY

WRITE RECORD

UPDATE BINARY

PUT DATA

UPDATE DATA

APPEND RECORD

A Annex 86

A.2 PBPG Language Specification
A.2.1 and A.2.2 contain copies of the language specification files used for the con-
struction of the PBPG Scanner and Parser.

A.2.1 Scanner Specification

The listing specifies the PBPG scanner specification for the scanner generator GPLEX.
//===
//== DEFINITIONS SECTION ==
//===

%us ing PBPG.Parser;

%namespace PBPG.Lexers

%op t ion stack, verbose, summary, noEmbedBuffers out:Scanner.cs
% v i s i b i l i t y internal

eol (\r\n?|\n)
NonWh [^ \t\r\n]
Space [\t]
DecDig [0-9]
OctDig [0-7]
HexDig [0-9a-fA-F]

NonLE [^\r\n]
EscChr \\{NonLE}

Ident [a-zA-Z_][a-zA-Z0-9_]*
Bin #[0,1]+
Oct 0{OctDig}+
Dec {DecDig}+
Hex ${HexDig}+

StrChr [^\\\"\a\b\f\n\r\t\v\0]
ChrChr [^\\’\a\b\f\n\r\t\v\0]

SLC \/\/ // Single Line Comment
MLC_ \/* // Start of Multi Line Comment
_MLC *\/ // End of MultiLine Commnet
Line [^\n\r]* // Anything but Line End
NonStar ([^*]|*[^\/])* // Anything but */

StrLit \"({StrChr}|{EscChr})*\"
ChrLit \’({ChrChr}|{EscChr})*\’

//===
%% //== RULES SECTION ===
//===

{eol} {/* SKIP */}
{SLC}{Line} {/* SKIP */}
{MLC_}{NonStar}{_MLC} {/* SKIP */}

{StrLit} {yylval.sString = yytext; return (int)Tokens.STRLIT;}
{ChrLit} {yylval.sString = yytext; return (int)Tokens.CHRLIT;}

".." {return (int)Tokens.BIDOT;}
"." {return (int)Tokens.DOT;}
"," {return (int)Tokens.COMMA;}
";"+ {return (int)Tokens.SEMI;}

87 A.2 PBPG Language Specification

":" {return (int)Tokens.COLON;}
"?" {return (int)Tokens.QUESTION;}
"@@" {return (int)Tokens.BIATSIGN;}
"@" {return (int)Tokens.ATSIGN;}
"^" {yylval.tkn = Tokens.CARET; return (int)yylval.tkn;}
"||" {yylval.tkn = Tokens.BIPIPE; return (int)yylval.tkn;}
"|" {yylval.tkn = Tokens.PIPE; return (int)yylval.tkn;}
"&&" {yylval.tkn = Tokens.BIAMP; return (int)yylval.tkn;}
"&" {yylval.tkn = Tokens.AMP; return (int)yylval.tkn;}
"==" {yylval.tkn = Tokens.EQ; return (int)yylval.tkn;}
"!=" {yylval.tkn = Tokens.NEQ; return (int)yylval.tkn;}
"!" {yylval.tkn = Tokens.EXCL; return (int)yylval.tkn;}
"<<" {yylval.tkn = Tokens.BILT; return (int)yylval.tkn;}
"<=" {yylval.tkn = Tokens.LTE; return (int)yylval.tkn;}
"<" {yylval.tkn = Tokens.LT; return (int)yylval.tkn;}
">>" {yylval.tkn = Tokens.BIGT; return (int)yylval.tkn;}
">=" {yylval.tkn = Tokens.GTE; return (int)yylval.tkn;}
">" {yylval.tkn = Tokens.GT; return (int)yylval.tkn;}
"++" {Error(10, TokenSpan()); return (int)Tokens.TOKERR;}
"+" {yylval.tkn = Tokens.PLUS; return (int)yylval.tkn;}
"--" {Error(10, TokenSpan()); return (int)Tokens.TOKERR;}
"-" {yylval.tkn = Tokens.MINUS; return (int)yylval.tkn;}
"*" {yylval.tkn = Tokens.STAR; return (int)yylval.tkn;}
"/" {yylval.tkn = Tokens.SLASH; return (int)yylval.tkn;}
"%" {yylval.tkn = Tokens.PC; return (int)yylval.tkn;}

"(" {return (int)Tokens.LPAREN;}
")" {return (int)Tokens.RPAREN;}
"[" {return (int)Tokens.LBRACK;}
"]" {return (int)Tokens.RBRACK;}
"{" {return (int)Tokens.LBRACE;}
"}" {return (int)Tokens.RBRACE;}

{Ident} {
yylval.sIdent = yytext;
return (int)GetKeyword(yytext);

}

{Bin} {
yylval.iVal = ParseNum(yytext.Substring(1), 2);
return (int)Tokens.INTEGER;

}

{Oct} {
char peek = (char)Peek();

if(peek != ’8’ && peek!=’9’)
{

yylval.iVal = ParseNum(yytext.Substring(1), 8);
return (int)Tokens.INTEGER;

}
}

{Dec} {
yylval.iVal = ParseNum(yytext, 10);
return (int)Tokens.INTEGER;

}
{Hex} {

yylval.iVal = ParseNum(yytext.Substring(1), 16);
return (int)Tokens.INTEGER;

}

<*>{NonWh} {Error(1, TokenSpan()); } /* Unknown symbol in this context */

<<EOF>> {return (int)Tokens.EOF;}

A Annex 88

%{
// Scanner epilog
yylloc = new LexSpan(tokLin, tokCol, tokELin, tokECol, tokPos, tokEPos, buffer);

%}

//===
%% // == USER-CODE SECTION empty ==
//===

89 A.2 PBPG Language Specification

A.2.2 Parser Specification

The listing specifies the PBPG language grammar for the parser generator GPPG.

//===
//== DEFINITIONS SECTION ==
//===

%output=Parser.cs

%namespace PBPG.Parser

%YYLTYPE LexSpan
%p a r t i a l
% v i s i b i l i t y internal

%union {
public long iVal;
public bool bVal;
public Tokens tkn;
public string sIdent;
public string sString;
public AstNode node;
public TypeNode typeNode;
public List<AstNode> nodeList;

}

% s t a r t Unit

% token <iVal> INTEGER "Integer value"
% token <bVal> BOOL "Bool value"
% token <sIdent> IDENT "Identifier"
% token BIDOT "..", DOT ".", COMMA ",", SEMI ";", COLON ":", QUESTION "?"
% token LPAREN "(", RPAREN ")", LBRACK "[", RBRACK "]", LBRACE "{", RBRACE "}"
% token kwUNIT "unit", kwUSES "uses", kwIMPORT "import", kwFROM "from"
% token EOF "end of file", TOKERR

//== String literals ==
% token <sString> STRLIT CHRLIT

//== Buil-in Types ==
% token ntBITx2 "2BIT" ntBITx3 "3BIT" ntBITx4 "4BIT"
% token ntBITx5 "5BIT" ntBITx6 "6BIT" ntBITx7 "7BIT"
% token ntBIT "BIT" ntBYTE "BYTE" ntSHORT "SHORT"
% token ntINT "INT" ntLONG "LONG"

//== Left associative operators ===
% l e f t ATSIGN "@", BIATSIGN "@@"
% l e f t <tkn> CARET "^"
% l e f t <tkn> PIPE "|"
% l e f t <tkn> BIPIPE "||"
% l e f t <tkn> AMP "&"
% l e f t <tkn> BIAMP "&&"
% l e f t <tkn> EQ "=="
% l e f t <tkn> NEQ "!="
% l e f t <tkn> LT "<"
% l e f t <tkn> LTE "<="
% l e f t <tkn> GT ">"
% l e f t <tkn> GTE ">="
% l e f t <tkn> BILT "<<"
% l e f t <tkn> BIGT ">>"
% l e f t <tkn> PLUS "+"
% l e f t <tkn> MINUS "-"
% l e f t <tkn> STAR "*"

A Annex 90

% l e f t <tkn> SLASH "/"
% l e f t <tkn> PC "%"

% token <tkn> NOP

//== Right associative operators ==
% r i g h t <tkn> EXCL "!"

//== Nonterminal values ===
% type <nodeList> TypeDecls
% type <typeNode> TypeDecl Scheme

% type <node> Unit UnitHdr
% type <node> SubScheme Repetition Constraint
% type <node> Block Expr OpLogicOR OpLogicAND OpBinOR OpBinXOR OpBinAND
% type <node> OpEquate OpCompare OpShift OpAdd OpMult OpUnary
% type <node> Operand QRef QRefHead FunCall FunCallTail ArrayRef ExprList IdentList
% type <node> QIdent BaseType Int Bool

% type <tkn> Eq_Neq L_G Shift_LR Plus_Minus Mul_Div_Pc Neg_Not

//===
%% //== RULES SECTION ===
//===
Unit : UnitHdr Includes Imports TypeDecls {$$ = new UnitNode(

$1 as IdentNode);
($$ as UnitNode).AddTypeDecls($4);
spec.Add($$);}

;

UnitHdr : kwUNIT IDENT SEMI {$$ = new IdentNode(@2, false);}
;

Includes : kwUSES IdentList SEMI // NOT YET HANDELED
|
;

Imports : kwIMPORT QIdent kwFROM STRLIT SEMI // NOT YET HANDELED
|
;

// ATTENTION: Right recursion can produce stack overflow!!!
QIdent : IDENT DOT QIdent {$$ = new QIdentNode(@1);

$$.Add($3);}
| IDENT {$$ = new QIdentNode(@1);}
;

TypeDecls : TypeDecls TypeDecl {$$ = $1; $$.Add($2);}
| TypeDecl {$$ = new List<AstNode>();

$$.Add($1);}
;

// NON-ARRAY TYPE: TypeDecl := Scheme
TypeDecl : IDENT Scheme Constraint SEMI {$$ = $2;

$$.SetIdent(new IdentNode(@1,
true));

$$.SetConstr(
$3 as ConstraintNode);}

;

// ARRAY TYPE: TypeDecl := ArrayType of Scheme Items
TypeDecl : IDENT Scheme Repetition Constraint SEMI{$$ = new TypeNode(@1,

$2 as TypeNode,
$3 as RepetitionNode);

$$.SetIdent(new IdentNode(@1,

91 A.2 PBPG Language Specification

true));
$$.SetConstr(

$4 as ConstraintNode);}
;

Scheme : BaseType SubScheme {$$ = new TypeNode(@1,
$1 as TypeNode,
$2 as SchemeNode);}

| BaseType {$$ = new TypeNode(@1,
$1 as TypeNode,
null as SchemeNode);}

| SubScheme {$$ = new TypeNode(@1, null,
$1 as SchemeNode);}

| Int {$$ = new TypeNode($1 as IntNode);}
;

BaseType : ntBIT {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BIT);}

| ntBITx2 {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BITx2);}

| ntBITx3 {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BITx3);}

| ntBITx4 {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BITx4);}

| ntBITx5 {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BITx5);}

| ntBITx6 {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BITx6);}

| ntBITx7 {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BITx7);}

| ntBYTE {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.BYTE);}

| ntSHORT {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.SHORT);}

| ntINT {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.INT);}

| ntLONG {$$ = new NativeTypeNode(@1,
NativeTypeNode.DataType.LONG);}

| IDENT {$$ = new TypeRefNode(
new IdentNode(@1, false));}

;

SubScheme : LT TypeDecls GT {$$ = new SchemeNode(@2,
SchemeNode.Arrangement.UNION,

$2);}
| LBRACE TypeDecls RBRACE {$$ = new SchemeNode(@2,

SchemeNode.Arrangement.STRUCT,
$2);}

;

Repetition : LBRACK Expr BIDOT Expr RBRACK {$$ = new RepetitionNode(@1, $2,
$4);}

| LBRACK Expr BIDOT RBRACK {$$ = new RepetitionNode(@1, $2,
null);}

| LBRACK Expr RBRACK {$$ = new RepetitionNode(@1,
null, $2);}

| LBRACK COLON Expr RBRACK {$$ = new RepetitionNode(@1,
$3);}

| LBRACK RBRACK {$$ = new RepetitionNode(@1,
null, null);}

;

Constraint : COLON Block {$$ = new ConstraintNode(@2);
$$.Add($2);}

|

A Annex 92

;

Block : LBRACE Expr RBRACE {$$ = $2;}
| Expr {$$ = $1;}
;

//===
//== Expressions ==
//===
Expr : OpLogicOR {$$ = $1;}

;

OpLogicOR : OpLogicOR BIPIPE OpLogicAND {$$ = new ExprNode(@2,$2,$1,$3);}
| OpLogicAND {$$ = $1;}
;

OpLogicAND : OpLogicAND BIAMP OpBinOR {$$ = new ExprNode(@2,$2,$1,$3);}
| OpBinOR {$$ = $1;}
;

OpBinOR : OpBinOR PIPE OpBinXOR {$$ = new ExprNode(@2,$2,$1,$3);}
| OpBinXOR {$$ = $1;}
;

OpBinXOR : OpBinXOR CARET OpBinAND {$$ = new ExprNode(@2,$2,$1,$3);}
| OpBinAND {$$ = $1;}
;

OpBinAND : OpBinAND AMP OpEquate {$$ = new ExprNode(@2,$2,$1,$3);}
| OpEquate {$$ = $1;}
;

OpEquate : OpEquate Eq_Neq OpCompare {$$ = new ExprNode(@2,$2,$1,$3);}
| OpCompare {$$ = $1;}
;

OpCompare : OpCompare L_G OpShift {$$ = new ExprNode(@2,$2,$1,$3);}
| OpShift {$$ = $1;}
;

OpShift : OpShift Shift_LR OpAdd {$$ = new ExprNode(@2,$2,$1,$3);}
| OpAdd {$$ = $1;}
;

OpAdd : OpAdd Plus_Minus OpMult {$$ = new ExprNode(@2,$2,$1,$3);}
| OpMult {$$ = $1;}
;

OpMult : OpMult Mul_Div_Pc OpUnary {$$ = new ExprNode(@2,$2,$1,$3);}
| OpUnary {$$ = $1;}
;

OpUnary : Neg_Not OpUnary {$$ = new ExprNode(@1,$1,null,$2);}
| Operand {$$ = $1;}
| LPAREN Expr RPAREN {$$ = $2;}
;

//===
Eq_Neq : EQ {$$ = $1;}

| NEQ {$$ = $1;}
;

L_G : LT {$$ = $1;}
| LTE {$$ = $1;}
| GT {$$ = $1;}

93 A.2 PBPG Language Specification

| GTE {$$ = $1;}
;

Shift_LR : BILT {$$ = $1;}
| BIGT {$$ = $1;}
;

Plus_Minus : PLUS {$$ = $1;}
| MINUS {$$ = $1;}
;

Mul_Div_Pc : STAR {$$ = $1;}
| SLASH {$$ = $1;}
| PC {$$ = $1;}
;

Neg_Not : MINUS {$$ = $1;}
| EXCL {$$ = $1;}
;

//===
//== Identifier, FunctionCall, ArrayRef ===
//===
Operand : FunCall {$$ = $1;}

| Int {$$ = $1;}
| Bool {$$ = $1;}
| QRef {$$ = $1;}
| BIATSIGN {$$ = new SelfRefNode(@1);}
| ATSIGN {$$ = new SelfRefNode(@1);}
;

// ATTENTION: Right recursion can produce stack overflow!!!
QRef : QRefHead DOT QRef {$$ = new QIdentNode(@1);

$$.Add($3);}
| QRefHead {$$ = new QIdentNode(@1);}
;

QRefHead : ArrayRef {$$ = $1;}
| IDENT {$$ = new QIdentNode(@1);}
;

FunCall : IDENT LPAREN FunCallTail {$$ = new FunCallNode(@1);
$$.Add($3);}

;

FunCallTail : ExprList RPAREN {$$ = $1;}
| RPAREN
;

ArrayRef : IDENT LBRACK Expr RBRACK {$$ = new ArrayRefNode(@1);
$$.Add($3);}

;

ExprList : ExprList COMMA Expr {$$ = $1; $$.Add($3);}
| Expr {$$ = new ExprListNode(@1);

$$.Add($1);}
;

Int : INTEGER {$$ = new IntNode(@1, $1);}
;

Bool : BOOL {$$ = new BoolNode(@1, $1);}
;

A Annex 94

IdentList : IdentList COMMA IDENT {$$ = $1;
$$.Add(new IdentNode(

@3,false));}
| IDENT {$$ = new IdentListNode(@1);

$$.Add(new IdentNode(
@1, false));}

;
//===
%% // == USER-CODE SECTION empty ==
//===

95 A.3 UICC Commands formalized in PBPG syntax

A.3 UICC Commands formalized in PBPG syntax
The following listing shows an initial rudimentary structure specification of all UICC
instructions of the ETSI TS 102221 [Eur09] standard. Based on the definitions of this
listing the individual substructure of the instruction bodies has to be specified to obtain
binary parsers for the ETSI TS 102221 standard.
unit UICC_COMMANDS;

//== UICC COMMAND ===

COMMAND
<

group1 CLA_0X_4X_6X_COMMAND;
group2 CLA_80_COMMAND;
group3 CLA_8X_CX_EX_COMMAND;

>;

//== INSTRUCTION CLASSES ==

CLA_0X_4X_6X_COMMAND
{

cla BYTE: (@ >> 4) == $0 ||
(@ >> 4) == $4 ||
(@ >> 4) == $6;

Instruction
<

select_file SELECT_FILE;
read_binary READ_BINARY;
update_binary UPDATE_BINARY;
read_record READ_RECORD;
update_record UPDATE_RECORD;
search_Record SEARCH_RECORD;
verify VERIFY;
change_pin CHANGE_PIN;
disable_pin DISABLE_PIN;
enable_pin ENABLE_PIN;
unblock_pin UNBLOCK_PIN;
deactivate_file DEACTIVATE_FILE;
activate_file ACTIVATE_FILE;
authenticate AUTHENTICATE;
get_challenge GET_CHALLENGE;
manage_channel MANAGE_CHANNEL;
manage_secure_channel MANAGE_SECURE_CHANNEL;
transact_data TRANSACT_DATA;

>;
};

CLA_8X_CX_EX_COMMAND
{

cla BYTE: (@ >> 4) == $8 ||
(@ >> 4) == $C ||
(@ >> 4) == $E;

Instruction
<

status STATUS;
increase INCREASE;
retrieve_data RETRIEVE_DATA;
set_data SET_DATA;
terminal_capability TERMINAL_CAPABILITY;

>;
};

A Annex 96

CLA_80_COMMAND
{

cla BYTE: @ == $80;

Instruction
<

terminal_profile TERMINAL_PROFILE;
envelope ENVELOPE;
fetch FETCH;
terminal_response TERMINAL_RESPONSE;

>;
};

INS_BODY
{

p1 BYTE;
p2 BYTE;
le BYTE;
data BYTE[le];

};

STATUS_WORD
{

sw1 BYTE;
sw2 BYTE;

};

//== INSTRUCTIONS ===

SELECT_FILE {ins $A4; body INS_BODY; sw STATUS_WORD; };
STATUS {ins $F2; body INS_BODY; sw STATUS_WORD; };
READ_BINARY {ins $B0; body INS_BODY; sw STATUS_WORD; };
UPDATE_BINARY {ins $D6; body INS_BODY; sw STATUS_WORD; };
READ_RECORD {ins $B2; body INS_BODY; sw STATUS_WORD; };
UPDATE_RECORD {ins $DC; body INS_BODY; sw STATUS_WORD; };
SEARCH_RECORD {ins $A2; body INS_BODY; sw STATUS_WORD; };
INCREASE {ins $32; body INS_BODY; sw STATUS_WORD; };
RETRIEVE_DATA {ins $CB; body INS_BODY; sw STATUS_WORD; };
SET_DATA {ins $DB; body INS_BODY; sw STATUS_WORD; };
VERIFY {ins $20; body INS_BODY; sw STATUS_WORD; };
CHANGE_PIN {ins $24; body INS_BODY; sw STATUS_WORD; };
DISABLE_PIN {ins $26; body INS_BODY; sw STATUS_WORD; };
ENABLE_PIN {ins $28; body INS_BODY; sw STATUS_WORD; };
UNBLOCK_PIN {ins $2C; body INS_BODY; sw STATUS_WORD; };
DEACTIVATE_FILE {ins $04; body INS_BODY; sw STATUS_WORD; };
ACTIVATE_FILE {ins $44; body INS_BODY; sw STATUS_WORD; };
AUTHENTICATE {ins BYTE: @==$88 || @==$89; body INS_BODY; sw STATUS_WORD;};
GET_CHALLENGE {ins $84; body INS_BODY; sw STATUS_WORD; };
TERMINAL_CAPABILITY {ins $AA; body INS_BODY; sw STATUS_WORD; };
TERMINAL_PROFILE {ins $10; body INS_BODY; sw STATUS_WORD; };
ENVELOPE {ins $C2; body INS_BODY; sw STATUS_WORD; };
FETCH {ins $12; body INS_BODY; sw STATUS_WORD; };
TERMINAL_RESPONSE {ins $14; body INS_BODY; sw STATUS_WORD; };
MANAGE_CHANNEL {ins $70; body INS_BODY; sw STATUS_WORD; };
MANAGE_SECURE_CHANNEL {ins $73; body INS_BODY; sw STATUS_WORD; };
TRANSACT_DATA {ins $75; body INS_BODY; sw STATUS_WORD; };
GET_RESPONSE {ins $C0; body INS_BODY; sw STATUS_WORD; };

97 A.3 UICC Commands formalized in PBPG syntax

Acronyms
3GPP Third Generation Partnership Project
AID Application Identifier
ADF Application Directory File
APDU Application Protocol Data Unit
AG Attribute Grammar
BNF Backus-Naur Form
C-APDU Command APDU
C-TPDU Command TPDU
CDMA Code Division Multiple Access
CFG Context-Free Grammar
DF Dedicated File
EBNF Extended BNF
EF Elementary File
ELF Executable and Linkable Format
ETSI European Telecommunications Standards Institute
FID File Identifier
FSA Finite State Automaton
GPLEX Gardens Point Scanner Generator
GPPG Gardens Point Parser Generator
GSM Global System for Mobile Communications
ISO International Organization for Standardization
IEC International Electrotechnical Commission
MF Master File
MPPG Managed Package Parser Generator
MPLEX Managed Package Scanner Generator
NIDS Network Intrusion Detection System
OSI Open System Interconnection
PBPG Paderborn Binary Parser Generator
PDA Pushdown automaton
PEG Parsing Expression Grammar
PIN Personal Identification Number
R-APDU Response APDU
R-TPDU Response TPDU
SIM Subscriber Identity Module
TPDU Transfer Protocol Data Unit
UICC Universal Integrated Circuit Card
USB Universal Serial Bus
XML Extensible Markup Language

References 98

References
[ALSU06] AHO, ALFRED V., MONICA S. LAM, RAVI SETHI, and JEFFREY D.

ULLMAN: Compilers: Principles, Techniques, and Tools. Addison Wes-
ley, 2nd edition, 8 2006.

[Bac02] BACK, GODMAR: DataScript - a specification and scripting language for
binary data. In GPCE, pages 66–77, 2002.

[BBW+07] BORISOV, NIKITA, DAVID BRUMLEY, HELEN J. WANG, JOHN DUNA-
GAN, PALLAVI JOSHI, and CHUANXIONG GUO: Generic application-
level protocol analyzer and its language. In NDSS, 2007.

[CT03] COOPER, KEITH and LINDA TORCZON: Engineering a Compiler. Mor-
gan Kaufmann, 1 edition, 11 2003.

[ETS95] ETSI: Digital cellular telecommunications system (phase 2+); specifi-
cation of the subscriber identity module - mobile equipment (sim - me)
interface (gsm 11.11), 1995.

[Eur09] ETSI TS 102 221: Smart cards: Uicc-terminal interface; physical and
logical characteristics (release 8), 2009.

[FG05] FISHER, KATHLEEN and ROBERT GRUBER: PADS: a domain-specific
language for processing ad hoc data. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language design and
implementation, pages 295–304, New York, NY, USA, 2005. ACM.

[FMW06] FISHER, KATHLEEN, YITZHAK MANDELBAUM, and DAVID WALKER:
The next 700 data description languages. SIGPLAN Not., 41(1):2–15,
2006.

[For04] FORD, BRYAN: Parsing Expression Grammars: A recognition-based syn-
tactic foundation. In Symposium on Principles of Programming Lan-
guages, pages 111–122. ACM Press, 2004.

[Gou09a] GOUGH, JOHN: The gplex scanner generator.
http://gplex.codeplex.com/, 2009.

[Gou09b] GOUGH, JOHN: The gppg parser generator. http://gppg.codeplex.com/,
2009.

[ISOa] ISO/IEC 7816-2: Identification cards – integrated circuit cards – part 2:
Cards with contacts – dimensions and location of the contacts.

[ISOb] ISO/IEC 7816-3: Identification cards – integrated circuit cards – part 3:
Cards with contacts – electrical interface and transmission protocols.

99 References

[ISOc] ISO/IEC 7816-4: Identification cards – integrated circuit cards – part 3:
Cards with contacts – interindustry commands for interchange.

[ISO94] ISO/IEC 7498-1:1994: Information technology – open systems intercon-
nection – basic reference model: The basic model, 1994.

[ISO01] ISO/IEC 9126-1: Software engineering – product quality – part 1: Quality
model, 2001.

[ISO03a] ISO/IEC 9126-2: Software engineering – product quality – part 2: Exter-
nal metrics, 2003.

[ISO03b] ISO/IEC 9126-3: Software engineering – product quality – part 3: Inter-
nal metrics, 2003.

[ISO04] ISO/IEC 9126-4: Software engineering – product quality – part 4: Quality
in use metrics, 2004.

[JS00] J., MCCANN PETER and CHANDRA SATISH: Packet Types: Abstract
specification of network protocol messages. SIGCOMM Comput. Com-
mun. Rev., 30(4):321–333, 2000.

[Kas90] KASTENS, UWE: Übersetzerbau. Oldenbourg, 1990.

[Kas09a] KASTENS, UWE: Grundlagen der Programmiersprachen. http://ag-
kastens.uni-paderborn.de/lehre/material/gps/, 2009.

[Kas09b] KASTENS, UWE: Programming Languages and Compilers. http://ag-
kastens.uni-paderborn.de/lehre/material/plac/, 2009.

[Knu68] KNUTH, DONALD E.: Semantics of context-free languages. Mathemati-
cal Systems Theory, 2(2):127–145, 1968.

[LJ09] LEVINE, JOHN and LEVINE JOHN: Flex & Bison. O’Reilly Media, 1
edition, 7 2009.

[PPSP06] PANG, RUOMING, VERN PAXSON, ROBIN SOMMER, and LARRY PE-
TERSON: binpac: a yacc for writing application protocol parsers. In
IMC ’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pages 289–300, New York, NY, USA, 2006. ACM.

[RE02] RANKL, WOLFGANG und WOLFGANG EFFING: Handbuch der Chipkar-
ten: Aufbau - Funktionsweise - Einsatz von Smart Cards. Carl Hanser, 4.,
überarb. und akt. Auflage, 2002.

[RE03] RANKL, W. and W. EFFING: Smart Card Handbook. John Wiley & Sons,
3rd edition, 2003.

References 100

[SK95] SLONNEGER, KENNETH and BARRY L. KURTZ: Formal Syntax and Se-
mantics of Programming Languages: A Laboratory Based Approach. Ad-
dison Wesley, 1st edition, 9 1995.

[Wir96] WIRTH, NIKLAUS: Compiler Construction (International Computer Sci-
ence Series). Addison-Wesley, pap/dsk edition, 6 1996.

[Wir05] WIRTH, NIKLAUS: Compiler construction, revised version of [Wir96],
2005.

	Introduction
	Motivation
	Document Structure

	Foundations
	Smart Cards
	Protocols
	Logical Organization
	Smart Card Commands

	Monitoring
	Technical Setup
	Manual Implementation
	Drawbacks

	Aspects of Compiler Theory
	Compilation is Translation
	Analysis
	Lexical Analysis
	Syntax Analysis
	Semantic Analysis
	Synthesis

	Parsing Binary Data
	Structural Patterns and Indication
	A Type System for Binary Parsing

	Summary

	Related Work
	PacketTypes
	DataScript
	Parsing Expression Grammar (PEG)
	Processing Ad hoc Data Sources (PADS)
	binpac
	GAPA
	Summary

	Design Concept
	Requirement Analysis
	Language Quality
	Compiler Quality
	Quality of Generated Parsers
	External Requirements

	The PBPG Language
	The PBPG Compiler
	Choice of Tools
	Front-end
	Static Semantic Analysis
	Back-end

	Binary Parser Model
	Input Memory Model
	Language Construct Mapping

	Implementation
	Tree Walking with Visitors
	Analysis and Translation of Name References
	Translation of Name References

	Evaluation
	Language Quality
	Compiler Quality
	Quality of Generated Parsers

	Summary and Future work
	Annex
	ISO/IEC 7816-4 smart card commands
	PBPG Language Specification
	Scanner Specification
	Parser Specification

	UICC Commands formalized in PBPG syntax

	Acronyms
	References

