'J UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Fakultat fur Elektrotechnik, Informatik und Mathematik
Heinz Nixdorf Institut und Institut fir Informatik
Fachgebiet Softwaretechnik

Warburger StraBe 100

33098 Paderborn

Coverage Criteria for Testing
DMM Specifications

Master’s Thesis

Submitted to the Software Engineering Research Group
in Partial Fulfillment of the Requirements for the Degree of

Master of Science
by
SVETLANA ARIFULINA

Roderweg 5
34295 Edermiinde-Besse

Thesis Supervisor:

Prof. Dr. Gregor Engels

Thesis Reviewer:

Prof. Dr. Wilhelm Schéafer

Co-Supervisor:

Dipl.-Inf. Christian Soltenborn

Paderborn, September 2011

Declaration

(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not
used outside sources without declaration in the text. Any concepts or quotations
applicable to these sources are clearly attributed to them. This thesis has not
been submitted in the same or substantially similar version, not even in part, to
any other authority for grading and has not been published elsewhere.

Original Declaration Text in German:

Erklarung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ahnlicher Form noch keiner anderen Priifungsbehorde vorgelegen hat und von
dieser als Teil einer Priifungsleistung angenommen worden ist. Alle Ausfithrun-
gen, die wortlich oder sinngemafl {ibernommen worden sind, sind als solche ge-
kennzeichnet.

City, Date Signature

ii

Contents

1

Introduction 1
1.1 Problem statement L 2
1.2 Goals of the Thesis L. 4
1.3 Overview of the Thesis 4
Foundations 5
2.1 Running Exampleo)
2.1.1 Idea & Design 5
21,2 Syntax 6
2.1.3 Semantics 7
2.2 Software Quality Assurance 8
2.2.1 Software Quality L. 8
2.2.2 Quality Assurance 9
2.2.3 Software Testing 9
2.2.4 Test Coverage 11
2.3 Dynamic Meta Modeling 16
231 Overview 17
2.3.2 General Constructs 18
2.3.3 Invocation Mechanism 22
2.3.4 Computing GTS 24
2.4 Test-Driven Semantics Specification 26
2.4.1 High Quality Semantics Specifications 26
24.2 Quality of Tests oo 27
Requirements for the Thesis 29
3.1 Motivation for New Coverage Criteria 29
3.1.1 Rule Coverage 29
3.1.2 All-Instances Coverage 30
3.2 Requirements for New Coverage Criteria 30
Coverage Criteria in DMM 32
4.1 Imtroduction Lo 32
4.1.1 Inspiration 32
4.1.2 Intuition for the Algorithm 35
4.2 Common Formalization 36
4.2.1 Invocation Graph 37

iii

Contents

4.2.2 Additional Data Structure 43

4.3 Rule Coverage Criteria 44
4.3.1 Rule Coverage 44

4.3.2 Rule Coverage Plus 47

4.3.3 Rule Coverage Plus Plus 50

4.4 Edge Coverage Criteria 54
4.4.1 Edge Coverage 55

4.4.2 Edge Coverage Plus. 58

4.4.3 Edge Coverage Plus Plus 62

4.5 All-Paths Coverage 65
451 Idea 66

4.5.2 Formal Definitiono 67

4.5.3 Example oo 68

4.5.4 Discussion 69

4.6 Hierarchy of Coverage Criteria 69
4.6.1 Hierarchy 70

4.6.2 Interpretationo 70

4.6.3 Discussion 71

4.7 Conclusion Lo 72

5 DMM Coverage Tool 74
5.1 Designo 74
5.2 Example Application 76
5.2.1 Coverage analysis 76

5.2.2 Technical Characteristics 78

6 Outlook: Critical Pair Analysis 80
6.1 Problem 80
6.2 Idea 81
6.3 Discussion 82

7 Conclusion 83
7.1 Summary 83
7.2 Perspective 84
Bibliography 86

iv

List of Figures

1.1 Testing of software systems and semantics specifications [17] . . . 2
1.2 Exampleofa DMMrule 3
2.1 Meta model for the running example 7
2.2 Artifacts used during testing 10
2.3 Integration of testing and coverage analysis 12
2.4 Classification of relevant coverage criteria [19] 13
2.5 Control-flow graph 14
2.6 Architecture of the DMM approach 17
2.7 Ruleset for the running example 18
2.8 Excerpt from the ruleset meta model regarding GTRs 19
2.9 Smallstep rule transfer.1 20
2.10 Smallstep rule transfer.2 21
2.11 Excerpt from the ruleset meta model regarding the invocation . . 22
2.12 Bigstep rule reorganizeFirm 23
2.13 Smallstep rule createSpeciallnternship 24
2.14 Graph transition system computed by GROOVE 25
2.15 Artifacts used in TDSS 27
2.16 TDSS testing process with coverage analysis 28
4.1 Invocation graph L Lo 34
4.2 Algorithm for coverage analysis in TDSS 36
4.3 Algorithm for invocation graph computation, part 1 37
4.4 Algorithm for invocation graph computation, part 2 39
4.5 Set of invocation graphs for the running example 40
4.6 Elements to cover for rule coverage 45
4.7 Rule coverage analysis with coverage < 100% 46
4.8 Rule coverage of 100% 47
4.9 Elements to cover for rule coverage plus. 48
4.10 Projection of 100% rule coverage onto rule coverage plus 50
4.11 Rule coverage plus of 100% 51
4.12 Elements to cover for rule coverage plus plus 51
4.13 Projection of 100% rule coverage plus onto rule coverage plus plus 53
4.14 Rule coverage plus plus of 100% 54
4.15 Elements to cover for edge coverage 56
4.16 Edge coverage analysis with coverage < 100% o7
4.17 Edge coverage analysis with coverage 100% 58

List of Figures

4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27

5.1
5.2
5.3
5.4
5.5

Elements to cover for edge coverage plus 59
Projection of 100% edge coverage onto edge coverage plus 60
Edge coverage plus of 100% 61
Elements to cover for edge coverage plus plus 62
Projection of 100% edge coverage plus onto edge coverage plus plus 64
Edge coverage plus plus of 100% 65
Elements to cover for all-paths coverage 66
Projection of 100% edge coverage plus plus onto all-paths coverage 68
All-paths coverage of 100% 69
Hierarchy of coverage criteria according to expressiveness 70
Design of components executing coverage analysis 74
Design of components for edge coverage criteria 75
Coverage report: all-paths coverage 76
Coverage report: edge coverage plus 7
Coverage report for metro semantics 7

vi

List of Tables

4.1 Analogy between the control structure in code and DMM testing . 33

5.1 Average run time for coverage analysis with DMM coverage tool
(MSEC) . . . o 78

vii

Acronyms

CPA Ciritical Pair Analysis

DMM Dynamic Meta Modeling

GROOVE GRaphs for Object-Oriented VErification
GTR Graph Transformation Rule

GTS Graph Transition System

OCL Object Constraint Language

RMM Runtime Meta Model

SUT System Under Test

TDSS Test-Driven Semantics Specification

UQS Universally Quantified Structure

viii

1 Introduction

Development of large modern software systems, involving participation of experts
from different problem domains and development on high quality level with least
time efforts, cannot be separated from the usage of models. Models provide be-
neficial properties, like formal representation, abstraction, separation of concerns,
reuse, and are widespread in software engineering nowadays. For example, mo-
dels are successfully used for communication purposes. Visual modeling languages
serve as a convenient means to put together diverse experts, so that it is possible
for them to understand each other. Domain-specific languages designed exactly
for a particular problem domain enable experts to perform modeling on their own
and conveniently exchange information with colleagues from other domains.

In this context, one should be able to judge about the quality of developed
models, since error-free artifacts contribute to the quality of software as well. In
order to design large and complicated models in a given language efficiently and to
be able to check their correctness, the language should be analyzable, that implies
it should have a formal definition.

Static concepts of a language can be expressed by a meta model. The problem of
a formal definition of dynamic concepts can be solved by using existing approaches
for a formal description of language’s semantics, like Dynamic Meta Modeling
(DMM) [4, 11]. Applying DMM, it is possible to formally specify the behavioral
semantics of a visual modeling language syntactically based on a meta model,
and automatically check whether models designed in this language possess stated
properties of correctness.

Soltenborn et al. claim in [17] that DMM semantics specifications were used
for model analysis with not enough consideration of their own quality. However,
the question of the quality is of great importance, since a semantics specification
containing erroneously specified behavior may lead to unreliable results. Con-
sequently, an approach to develop high quality semantics specifications called
Test-Driven Semantics Specification (TDSS) was proposed in [17]. The idea of
this approach is to define a set of example models, on which the conformance
between the actual behavior computed for each model based on a corresponding
DMM semantics specification and the expected behavior for this model specified
by the developer is checked. Error detection in a semantics specification during
this process yields its higher quality.

The comparison between testing of software systems and semantics specifica-
tions is presented in Figure 1.1. In testing of software systems, a test case consists
of an input and expected result. A software system is a system under test (SUT)
here. It is run on the given input, and a test result is then compared to be equal

1.1 Problem statement

with the expected one. For TDSS, an example model corresponds to the test input
and its expected behavior corresponds to the expected result forming a single test
case. A DMM semantics specification serving as SUT in TDSS and an example
model are used by a tool to compute an actual behavior for the given test case.
The actual behavior should contain the expected one, in order for the test to pass.

Test case Test case
Expected Expected
result behavior

A

A
=7 Example contained in?
Input L mo@ \ J
— Test Actual
behavior
Software system

—— }
Figure 1.1: Testing of software systems and semantics specifications [17]

Semantics Tool
specification

Testing in TDSS aims to check the correspondence of a DMM semantics spe-
cification with developer’s expectations. Having achieved good quality of tests in
TDSS, the developer can hope that the quality of the developed DMM semantics
specification has also improved, since either no errors were found in the tested
parts of the specification and so these parts are assumed to be correct or some
errors were revealed and fixed increasing the quality. Thus, one possible solution
to tell more about the quality of DMM semantics specifications could be a defini-
tion of some criteria that characterize a degree to which these specifications were
tested for correctness during their development.

1.1 Problem statement

In order to understand precisely how the quality of tests executed in TDSS can
influence the quality of DMM semantics specifications, the structure of these spe-
cifications and the process of testing in TDSS are examined closely.

Each DMM semantics specifications is implemented as a set of graph transfor-
mation rules (GTRs) called a ruleset. GTRs model behavior of language const-
ructs described in a meta model. Each GTR defines how a certain graph, e.g. an
example model, should be changed after the application of this rule and consists
of a precondition and a postcondition. Precondition is a graph defining a state,
when a rule matches, i.e. when this graph is found within the current state graph,
the corresponding rule can be applied and the current state is changed in a way
defined in the postcondition. A particular matching of the precondition is defined
as matching context.

As an example consider a DMM rule depicted in Figure 1.2. This rule creates
an intern for the given internship. The precondition is a graph representing the

1.1 Problem statement

internship, for which an intern should be hired, and the postcondition is a graph
with the intern belonging to this internship. Black signify elements to preserve in
the pre- and postcondition, green refer to new elements in the postcondition.

interns

Figure 1.2: Example of a DMM rule

During testing in TDSS, example models exercise a certain part of a DMM
semantics specification, which is applicable on them. If this part contains errors,
a corresponding test fails, pointing out that this part of the specification has to
be reworked by the developer. Depending on the properties of the used example
models, a given semantics specification is tested to a certain extent. A larger scope
of tested semantics could mean a semantics specification with a better quality,
because more potential errors could be detected.

Since an implementation of semantics specifications is accessible and a propor-
tion between the tested and the whole parts of a semantics specification is under
consideration, the idea of test coverage in white box testing from software engi-
neering seems to be appropriate for application in this case. Coverage expresses
a degree to which a coverage item has been exercised by a test suite. Coverage
items represent different structural elements of a semantics specification. A test
suite is composed from test cases, see Figure 1.1. Coverage analysis consists in a
measurement of coverage achieved during the testing of a semantics specification
regarding some criteria determined by the coverage item. If an achieved level of
coverage does not satisfy a predefined one, additional test cases are needed.

Two criteria have been proposed in testing of DMM semantics specifications.
The coverage criterion that serves as a minimum measure of quality is rule cove-
rage. A rule coverage of 100% means that every rule from a given ruleset has been
used at least once while testing the semantics on a given set of example models.
Rule coverage guarantees that at least one application of each rule is correct and
tests only several contexts, which all together use each rule at least once. In con-
trast, the second criterion, called all-instances coverage, ensures that all possible
contexts which can occur are tested. This implies that every possible model that
can be created in a language has to serve as example model in TDSS.

So, the proposed coverage criteria are two extremes. On the one hand, it is
unlikely practical to achieve all-instance coverage, because the number of models,
that can be created based on a given meta model, i.e. all possible combinations
of language elements defined by this meta model, is infinite. For example, if a
variable is defined in a range of real numbers from 0 to 1, it is impossible to test
all-instances, i.e. all real numbers in this range, as their amount is infinite.

1.2 Goals of the Thesis

On the other hand, rule coverage does not test all different matching contexts
in which a rule can apply, as for each GTR only one matching is examined, in
spite of the fact that a rule can appear and apply in several ones. For example,
the rule in Figure 1.2 can apply multiple times during the test execution after
different rules, which produce different matching contexts.

In order to overcome the gap between the mentioned extreme techniques in soft-
ware testing, intermediate methods, e.g. testing only boundary values of a domain
or determining test values randomly with a certain distribution, were invented.
They deliver more information, than the simplest testing techniques, and produce
a feasible number of tests. So, the problem of this thesis is to investigate some
efficient and feasible coverage criteria for testing DMM semantics specifications,
which are more powerful than rule coverage and generate a reasonable number of
tests comparing to all-instance coverage.

1.2 Goals of the Thesis

Based on the information provided above, major goals of this thesis are:

- Design and definition of coverage criteria for testing DMM semantics speci-
fications situated between two extremes of rule and all-instances coverage;

- Formalization of the developed coverage criteria, extracting their commona-
lities and underlining their differences;

- Tool support for the proposed solution and its integration into the imple-
mentation of the DMM workbench;

- Systematization of the developed coverage criteria regarding their expres-
siveness and computational effort;

- Explanation and documentation of the results.

1.3 Overview of the Thesis

A brief introduction to the topic, problem statement and pursued goals are illus-
trated in Chapter 1. Theoretical basis needed for understanding of the topic and
content of the thesis is explained in Chapter 2. Inspired from the concepts de-
scribed in Chapter 2, motivation and requirements for the thesis are presented in
Chapter 3. New coverage criteria developed with respect to requirements stated in
Chapter 3, their formalization and classification are provided in Section 4. Details
of the implementation of the concepts illustrated in Section 4 and its evaluation
are discussed in Section 5. An application of the critical pair analysis for qua-
lity analysis of DMM specifications having no or few invocations is elaborated in
Chapter 6. The main achievements and further perspectives for this thesis are
shown in final Chapter 7.

2 Foundations

This chapter provides necessary foundations for the comprehension of this thesis,
motivation for its goals and inspiration for its ideas. It begins with an introduction
of a running example that will be used throughout the whole thesis, in order to
understandably illustrate the concepts and ideas brought up in it, see Section 2.1.
An insight into the notion of software quality assurance, software testing as a
method of quality control, and test coverage as an estimation of the quality of
testing in software engineering follows in Section 2.2. Then a description of the
DMM approach and the process of specifying semantics formally with the help of
this technique are provided in Section 2.3. For the development of high quality
semantics specifications, TDSS approach and its relation to the quality of testing
semantics specifications are addressed in Section 2.4.

2.1 Running Example

In this section, a running example used for the comprehensible illustration of
discussed approaches and their application is presented. At the beginning, an
overall idea and design of the example are described in Section 2.1.1. Then,
syntax of a language used in the example is given in the form of a meta model in
Section 2.1.2 and its dynamic semantics is specified informally in Section 2.1.3.

2.1.1 Idea & Design

The goal of the running example is to model a particular problem domain from
the real world. For description of the problem domain, a visual modeling language
will be designed, whose syntax defining language elements and relations among
them will be represented by a meta model. In addition, the modeled elements
will have their own behavior according to which they change in time with respect
to each other. The meaning of these elements and dynamical changes that they
undergo during time, i.e. dynamic semantics, will be first specified informally
using a natural language.

The content of the running example is described below. It simulates a structure
of an organization, a human resources administration in a firm, controlling several
elements, i.e. departments and internships with employees and interns. The whole
system has a certain dynamics, e.g. departments and internships can be dismissed
or created, employees and interns can be hired or transferred. The chosen modeling

2.1 Running Example

language is rather simple and aims to illustrate common constructs in modeling
the behavioral semantics.
Behavioral constructs that the running example is intended to illustrate are:

- Sequence of actions following one another, where an action is something
what someone can do or something what can happen in the real world;

- Recursive execution of a single action or an action sequence;

- Choice among several actions at a certain execution point;

- Usage of some actions in different application contexts;

- Application of some actions on different objects of the same type;

- Conditions for an execution of a certain action.

The constructs listed above are key elements for describing the dynamic seman-
tics of a visual modeling language. For example, considering modeling of business
processes, a business process consisting of several steps requires a sequence of ac-
tions. A repetition of a single step or sequence of steps is needed, when depending
on some condition or task, a certain activity is done several times or repeated until
the overall activity is finished. A choice among several possibilities is essential,
especially in a case, when several mutual exclusive functionalities are available.
Some functionality can be used at different places alternating with other actions
during one activity. An example of the same action that can be applied to several
objects of the same type could be the same action applied to different items of
a certain kind. So, sequencing, conditioning and repetition, which are also main
structures used in programming languages, should be embraced by the running
example.

2.1.2 Syntax

A meta model describing syntax of a modeling language for the running example
is illustrated in Figure 2.1.

The meta model consists of the main class HR depicting a human resources
administration (HR-administration), which manages departments and internships
in a firm represented by classes Department and Internship. These classes in-
herit from an abstract class NamedElement, highlighted with orange color and
characterized by a string attribute Name. According to the meta model, classes
Department and Internship are containments for classes Employee and Intern cor-
respondingly which denote to the firm’s staff. Employees and interns are identified
by IDs and so inherit from the abstract class IDFElement highlighted with white
color. Regarding the cardinalities, each HR-administration may have none or se-
veral departments and internships, each department has at least one employee
working there, an internship can exists even without any interns or several interns
may correspond to one internship.

2.1 Running Example

H IDElement
T ID : Elnt
' |
E Employee H Intern
employees 1> 0.* | interns
El Department H Internship
0.* 0.*
departments internships
B HR

T amountSI : EInt

Ty v v

H NamedElement
T Name : EString

Figure 2.1: Meta model for the running example

So, the syntax of the modeling language used in the example has been depicted
and explained above. The dynamic relations among the modeling elements will
be presented in the next section.

2.1.3 Semantics

Dynamic semantics represents changes which modeled elements undergo in time.
The dynamic semantics for the running example contains the following main ac-
tivities: an existing internship should be dismissed, unnecessary departments and
internships should be dismissed, a special internship should be initiated, and the
firm should be reorganized. Detail descriptions of activities can be found below.

2.1.3.1 Dismiss Internship

If an existing internship with at least one intern should be dismissed, then all
interns from this internship should be transferred to a suitable existing depart-
ment. After the transfer, the internship is not needed anymore. In this activity,
such constructs for behavior modeling could be involved: a recursive execution
of a single action (transfer is repeated until no more interns are left), an action
applied several times on different object of the same type (transfer is perform for
each intern separately), or a choice among several actions at a certain execution
point (still transfer or already delete).

2.2 Software Quality Assurance

2.1.3.2 Clear Firm

The next activity refers to a discharge of some empty structures in the firm. In
this case, departments and internships without employees and interns should be
destroyed pairwise, depending on their connections to each other. In this activity,
a sequence of actions following one another could be illustrated.

2.1.3.3 Add Special Internship

The next activity concerns an expansion of the firm by adding a new special in-
ternship, which has at least one special intern to be immediately hired. Some
interns from the special internship should be transferred later either to a depart-
ment or to a normal internship. If no department appropriate for the transfer
is already present in the firm, then a new department should be originated. A
newly grounded internship should refer to a suitable department. In this activity,
a condition for an action to happen could be illustrated, i.e. a new internship
cannot be created until there is no appropriate department for it.

2.1.3.4 Reorganize Firm

This activity is needed for a firm reorganization. Essential part of this reorgani-
zation is creation of a special internship for which interns with special skills are
hired, see description in Section 2.1.3.3. Two special internships should be pro-
duced, and a new department created for the first one should be destroyed as it
is not needed in this case. Here, the actions of creating a special internship and
deleting a department could be reused in a different application contexts than in
Section 2.1.3.2 and Section 2.1.3.3.

2.2 Software Quality Assurance

In this section, the idea of software quality assurance and existing methods for
assessing quality of software artifacts are discussed. At the beginning, the notion
of software quality is explained in Section 2.2.1. Then, the definition of quality
assurance as a way to influence software quality through quality of the develop-
ment process is provided in Section 2.2.2. Software testing as activity within the
quality assurance aimed to control the quality of software products is presented
in Section 2.2.3. Consequently, coverage as a means to evaluate the quality of
software testing is discussed in Section 2.2.4.

2.2.1 Software Quality

According to IEEE Glossary of Software Engineering Terminology [13], defining
terms in field of software engineering, software is computer programs, procedures,
and possibly associated documentation and data pertaining to the operation of a

2.2 Software Quality Assurance

computer system. The notion of software quality is defined as the degree to which
a system, component, or process meets specified requirements. Its interpretation
can be conveyed by the conception ” Quality means conformance to requirements”,
held by the founder of modern quality assurance Philip B. Crosby 1979 [5].

Summarizing everything mentioned above, a particular computer program con-
sisting of procedures, its documentation and necessary software data form a single
software item. Requirements, i.e. expected functionality which has to be provided
by this software item, are also specified. In order to determine, whether the pro-
gram possesses a certain degree of quality, its delivered functionality represented
by program outputs have to be compared with the expected one. A software item
is considered having a quality, if it meets a specification at hand.

In this section, the notion of software quality was explained. However, ways
to achieve a particular level of quality and to check whether a software product
conforms to it should be discussed. In the next section, the concept of software
quality assurance is presented that provides an insight of how quality can be
predefined by the software development process and result from it.

2.2.2 Quality Assurance

According to IEEE Glossary of Software Engineering Terminology [13], software
quality assurance is a planned and systematic pattern of all actions necessary
to provide adequate confidence that an item or product conforms to established
technical requirements.

The goal of software quality assurance is to provide a set of actions performed
throughout the development process, in order to guarantee to some sufficient de-
gree that result software artifacts conform to established level of quality. So, qua-
lity assurance primarily concerns and evaluates the software development process,
whose quality implies a certain quality level of ultimate artifacts.

However, quality of a final product should be evaluated as well. In this case, the
notion of quality control is important. Quality control is a set of activities designed
to evaluate the quality of developed or manufactured products [13]. Thus, quality
control is a separate integral part of the quality assurance activities.

In the context above, methods to evaluate the software product’s quality within
the quality control are required. One of the most widespread technique for this
purpose is software testing that is presented in the next section.

2.2.3 Software Testing

According to IEEE Glossary of Software Engineering Terminology [13], testing is
the process of analyzing a software item to detect the differences between existing
and required conditions (that is, bugs) and to evaluate the features of the software
items. The main goal of testing is to reveal as many errors in software artifacts
as possible, and through the process of continuous correction of identified errors

2.2 Software Quality Assurance

and retesting reach a sufficient quality level [5]. So, testing measures the quality
of software in terms of found defects [2].

The illustration of artifacts participating in testing is presented in Figure 2.2.
Stereotypes introduced in this diagram correspond to stereotypes from the UML
Testing Profile [8].

«TestContex t»
TestSuite

+test

component
+sut 1.* T 1

«SUT» Program 1 <<TE§tCompo nent»
/ TestingProcedures

1 +test case | 1.*

«TestCase»
TestCase

+input / X +expected output

«Testinput» «ExpectedResult»
InputValues Requirements

Figure 2.2: Artifacts used during testing

During testing, evaluation of a test item, which corresponds to a software item,
takes place. Test items can be grouped in one test object, or system under test
(SUT). Referring to Daniel Galin in [5], before the testing process begins, a test
plan and testing procedures are developed in order to define directives to con-
form. Test suite is a set of test cases selected for examination on SUT. Test case
consists of input values and expected result developed for a particular objective,
such as to exercise a certain program path or to verify compliance with a specific
requirement. So, tests simulate special situations, in which the system’s beha-
vior is interesting to observe and differences between actual and expected results
are detected. All definitions in this paragraph are taken from IEEE Glossary of
Software Engineering Terminology [13].

Execution of a single test case for a program consists of the following actions.
At the beginning, the program is executed with given input values. Afterwards,
the test output has been obtained and serves as input for evaluation of results.
The evaluation determines, whether the test output meets requirements stated on
the program. Finally, the verdict is determined based on the previous evaluation
and serves as output for the whole test case execution.

The process of error identification during software testing may involve different
parts of a tested software artifact. Therefore, two classes of testing are defined:

1. black box testing, or functionality testing, which considers only generated

10

2.2 Software Quality Assurance

outputs comparing them with specified functional requirements and does
not examine the internal structure of a test item;

2. white box testing, or structural testing, which inspects the internal calcula-
tion paths of a test item, where a calculation path is a sequence of compu-
tational operations created by a test case during execution.

In order to find as many errors in a tested item as possible, the largest amount
of input values for black box testing or computation paths for white box testing
should be tested. Thus, the quality of tests can be indicated by a percentage
of executed test cases to all possible ones that is called coverage. The notion of
coverage as a method to estimate the quality of software testing and its significance
are explained in the next section.

2.2.4 Test Coverage

Terminology and the main idea of the notion of coverage are explained in Sec-
tion 2.2.4.1. Then, a classification of white box coverage criteria is introduced
in Section 2.2.4.2, in order to determine criteria relevant for this thesis. In Sec-
tion 2.2.4.3, the main data structure used for coverage definition in white box
testing called control-flow graph is illustrated. In Section 2.2.4.4, some concrete
examples of white box coverage criteria are examined.

2.2.4.1 ldea

As mentioned above, it is not only important to evaluate the quality of a software
product with the help of testing, but it is equally essential to evaluate the process
of testing. For a successful testing, a test suite should consists of such test cases,
which exercise SUT to the largest extent while achieving stated objectives [19].
According to Standard Glossary of Terms Used in Software Testing [1], coverage
is the degree, expressed as a percentage, to which a specified coverage item has
been exercised by a test suite. Coverage item is a structural element used as
a basis for test coverage, e.g. lines of code or code statements. Each coverage
item defines a coverage criterion corresponding to it. Measurement of achieved
coverage with respect to some coverage criterion, in order to determine whether
additional testing is required and if so which test cases are needed, is referenced
as coverage analysis. Coverage analysis is realized by coverage tool that provides
objective measures of what coverage items have been exercised by a test suite.
According to Daniel Galin [5] and IEEE Glossary of Software Engineering Ter-
minology [13], test coverage for black box testing is the degree to which a given test
or set of tests addresses specified requirements for a given SUT. The full coverage
is achieved when outputs of test cases executed on the SUT meet all the require-
ments. Test coverage for white box testing refers to the parts of SUT’s internal
structure. The full white box coverage is achieved, when all possible structural
elements related to the chosen coverage item are exercised during testing.

11

2.2 Software Quality Assurance

The integration of coverage analysis into the testing process is illustrated in
Figure 2.3.

[coverage
value is

enough
Execute test Coverage gh]
case [el se] analysis >@
End

[unexecuted test cases exist]

—

Create new test
cases [else]

Figure 2.3: Integration of testing and coverage analysis

The coverage analysis is performed after all test cases have finished. The co-
verage value is calculated relatively to a predefined coverage item and a decision
whether additional test cases should be designed is made. The coverage analysis
either continues or the result coverage is output.

Depending on a type of testing and a chosen coverage item, different families of
coverage criteria exist. Their classification is presented in the next section.

2.2.4.2 Classification

The classification of existing coverage criteria relevant for this thesis is presented
in Figure 2.4. As described in [19], depending on a type of testing, structural and
data coverage criteria can be distinguished. Data coverage criteria correspond
to black box testing and define coverage on the input data space. They aim to
choose a set of good values from the set of all possible input values that is usually
infeasible to test as a whole. Two extreme data coverage criteria are one-value
and all-values coverage. As an example, consider a variable defined in the range of
real numbers from 0 to 1. One-value coverage demands to test at least one value
from this range, e.g. 0,5. All-values coverage requires to test all values from this
domain whose number is infinite in this case.

Structural coverage criteria refer to white box testing and deal with coverage
of the control flow. They can be of control-flow-oriented and data-flow-oriented
types. Control-flow-oriented coverage criteria refer primarily to structure of the
program code and include statement, decision and path coverage as the most
important ones for this thesis. Data-flow-oriented coverage criteria deal with the
definition and use of data variables and have all-defs, all-uses and all-def-use-paths
criteria as a part of their classification.

Since data coverage criteria are defined on an input data set, no additional
data structures are required for coverage computation. In contrast, for structural
coverage criteria and in particular for control-flow-oriented ones, an additional

12

2.2 Software Quality Assurance

Coverage criteria

/\

Data Structural
coverage criteria coverage criteria
One-value All-values Data-flow-oriented Control-flow-oriented

All-ﬁ-defs Statement | Decision
coverage | coverage
All-def-use-paths Path

coverage

Figure 2.4: Classification of relevant coverage criteria [19]

representation of the control flow is necessary, in order to be able to operate
with its structural elements in a way needed for coverage computation. Such an
auxiliary data structure is called control-flow graph and is presented in the next
section.

2.2.4.3 Control-Flow Graph

Control-flow graph is a data structure representing control flow of programs. Con-
trol flow is the sequence in which operations are performed during the execution
of computer program [13]. According to Standard Glossary of Terms Used in
Software Testing [1], control-flow graph is an abstract representation of all pos-
sible sequences of events (paths) in execution through a component or system.
Thus, control-flow graph represents all possible control flow variations of a certain
computer program, component or system.

As discussed by Robert Gold in [6], operations in the control flow are com-
mands of a programming language or statements of a program written in this
programming language. However, nodes of control-flow graph can be different
data structures. For this thesis, the control-flow graph having program state-
ments as nodes is of special interest, since statements are similar to rules that
form a DMM semantics specification, see Section 2.3.2.

Control-flow graph has a form of a directed graph with two marked nodes: entry
and exit node. Entry node corresponds to the beginning of the control flow and
is a unique node having an empty preset in each control-flow graph. Exit node
has an empty postset and expresses the end of the control flow either because a
function has been left or because it ended. Edges of a control-flow graph represent
the order of statements in the control flow. Each edge expresses the situation when
a statement corresponding to the target node of this edge is executed immediately
after a statement corresponding to its source node.

An example consisting of a program and a control-flow graph built for it is

13

2.2 Software Quality Assurance

depicted in Figure 2.5. The program implements the activity reorganizeFirm
from the running example, see Section 2.1.3.4. The implementation starts with
the name of the public method reorganizeFirm, which aims to create a new special
internship in the firm. It is an entry node in the invocation graph, as it starts the
control flow and has no incoming edges. Then, three methods are called: ezpand,
deleteDepartment, and expand again. The functionality of the method expand is
described below.

Control-flow graph Program

1. public void reorganizeFirm() {

2. expand();
[expand.1) (expand.2 j [expand.3) 3. deleteDepartment();
+ \/ 4. expand();

}

5. private void expand() {

G:reateSpeciallnternship] [createSpeciallnternship]

[hireSpeciallntern] if (not X & not) {

6. expand.1();
/ 7. createSpeciallnternship();
}elseif (X & not Y) {
[deleteDepartment] 8. expand.2();
m 9. createSpeciallnternship();
10. hireSpeciallntern();
[expand.1) (expand.2 j [expand.3) }elseif (X & Y) {
+ \/ 11. expand.3();
12. createSpeciallnternship();
G:reateSpeciallnternship] [createSpeciallnternshipj 12. hireSpeciallntern();

}
}

[hireSpeciallntern]

Figure 2.5: Control-flow graph

The method ezpand contains three conditions determining which branch to
follow during the execution. Depending on the condition whether a department
and an internship suitable for transfer already exists in the firm or not, different
types of expansion take place. According to the first condition, a special internship
is originated, but no intern is hired, while in the next two conditions a certain
expansion is first performed followed by creation of a special internship and hiring
a special intern. The choice is illustrated as a fork in the control-flow graph and
results in three branches originating from the enter node.

A node representing createSpeciallnternship is inserted twice into the control-
flow graph and the node expand.l is connected to the first one and the nodes
expand.2 and expand.3 are connected to the second. The second node of create-
Speciallnternship is followed by the node of hireSpeciallntern in the control-flow
graph. Two nodes of createSpeciallnternship cannot be merged together, since
the computation path containing hireSpeciallntern does not correspond to the
computation path of expand.1 having no such statement. Since no further func-

14

2.2 Software Quality Assurance

tionality is specified for createSpeciallnternship and hireSpeciallntern, it ends the
functional call of expand and so the control flow for its branches.

The control flow for reorganizeFirm continues with the functional call of the
method deleteDepartment, destroying an unnecessary department. This node is
inserted into the control-flow graph after the execution of the first functional call
ends. Further operations within the method deleteDepartment are not specified,
so this node is followed by the last functional call belonging to reorganizeFirm,
which repeats the program’s beginning. The control flow for reorganizeFirm is
concluded with this functional call and its structure is repeated from the previous
similar one in the control-flow graph.

Control-flow graph contains all possible paths through control flow, some of
which can be covered by a test case during the test execution. The whole amount
of paths covered by a test suite shows tested part of a software item.

For the definition of a single coverage criterion, a program is projected onto a
control-flow graph. Then, a coverage item is chosen from the control-flow graph,
defining a particular coverage criterion. Depending on the coverage item, a set of
structural elements to be covered for this criterion is selected from the control-flow
graph. All elements from such a set should be executed during testing to achieve
the coverage of 100%. Finally, coverage analysis for the defined coverage criterion
is performed on this set. Coverage is calculated as a ratio of the amount of tested
elements from the set to the amount of all elements in it.

Definitions of some coverage criteria relevant for this thesis and their computa-
tion are examined in the next section.

2.2.4.4 Coverage Criteria

As illustrated in Section 2.2.4.2; coverage criteria can be of data or structural type.
The weakest criterion among structural ones is statement coverage. Statement
coverage demands a test suite to execute every statement in a program at least
once. It corresponds to coverage of control-flow graph’s nodes. A formula for
statement coverage is: coveragegatement = “mzz;zzg (f}fe;ﬁtifafngzms

This criterion is considered to be weak, since it does not test some control flow
structures for common errors, which cannot be revealed even when the statement
coverage of 100% is obtained. An example for such structures could be a loop that
will be tested only with one iteration, or empty branches in if-then-else conditions.

A structural coverage criterion that handles all possible cases exhaustively is
all-paths coverage. It requires testing every path through the control-flow graph.
This is a very strong criterion, since all possible sequences of execution events have
to be executed during testing. However, all-paths coverage is often impossible to
realize, because the computation can be hampered by the presence of loops causing
an infinite amount of paths. If no loops are present, all-paths coverage implies
a check of all combinations of decision outcomes. The computation of all paths
might be sometimes unpractical because of a huge amount of conditional branches.

Tqe __ amount of tested paths
A formula for all-paths coverage is: coverageqi—paths = “oo—= ol s

15

2.3 Dynamic Meta Modeling

A structural coverage criterion situated between two extremes above is deci-
sion coverage. Decision coverage ensures that each decision outcome is tested
at least once. This criterion implies statement coverage, since decision cove-
rage checks each branch resulting from a decision that implies executing every
statement at least once. Decision coverage can detect more erroneous structures
than statement coverage, e.g. empty else-statements. However, loops still remain

unchecked in contrast to all-paths coverage. A formula for decision coverage is:
~ __ amount of tested decision outcomes
COVETAY€Cdecision = amount of all decision outcomes °

The coverage criteria above cannot always reach a maximum of 100%, because
of the presence of unreachable statements, impossible decision outcomes, and un-
satisfiable paths. This is a common problem in the field of testing for which several
approaches facilitating its handling exist. For unreachable statements, static ana-
lysis for "dead” code can be applied. A technique of finding infeasible paths and
abandoning them during testing is described by Gupta et al. in [10].

A data coverage criterion similar to all-paths coverage and testing a problem
domain exhaustively is all-values coverage. It forces to test every value from
an input set. This criterion leads to combinatorial complexity for many input
domains, i.e. tends to be either too complicated in computation or impossible to
realize at all. An example could be a variable of type integer, for which testing
the whole domain of integer numbers requires too much computational effort.

The definitions above are based on Standard Glossary of Terms Used in Soft-
ware Testing [1], Certified Tester Foundation Level Syllabus [2], IEEE Glossary
of Software Engineering Terminology [13], and the work of Utting et al. [19].

Section 2.2 provides an overview of concepts regarding software quality, qua-
lity assurance and quality control. Up to now these concepts were discussed in
application to software in general. In the next section, software items primarily
relevant for this thesis, i.e. DMM semantics specifications, and the approach for
their development are presented.

2.3 Dynamic Meta Modeling

In this section, an introduction to DMM, the approach to specify semantics for
visual modeling languages formally, is provided. Section 2.3.1 gives an overview of
the DMM approach. General constructs of the language for semantics specifica-
tion with DMM are presented in Section 2.3.2. Then the mechanism to control the
execution process in DMM semantics specifications, i.e. invocation mechanism,
is illustrated in Section 2.3.3. After specifying the semantics with the mentioned
constructs, a method for computation of the actual behavior based on the deve-
loped semantics specification is explained in Section 2.3.4.

16

2.3 Dynamic Meta Modeling

2.3.1 Overview

A description of Dynamic Meta Modeling (DMM) is provided in the dissertation
of Jan Hendrik Hausmann [11]. DMM is an approach for formal specification of
dynamic semantics for visual modeling languages. The syntax of these languages
must be represented in the form of a meta model as determined in the OMG mo-
deling and metadata specifications. All considered models must be in compliance
with the defined meta model and can be seen as sentences of a language specified
with it. The goal of such formal specification is to enable automatic analysis of
models’ behavior and to facilitate understandability of their precise semantics [4].
An overview of the DMM approach is presented in Figure 2.6.

Semantics definition Language
Syntax Semantic Operational
definition metamodeling rules
: Graph
Metamodel semantic Runtime typed transforrpr)1ation
mapping metamodel over
rules
A A /
confarms to confgrms to confarms to conforms to
Expression Transition system Instances
Model ————+——— States

Figure 2.6: Architecture of the DMM approach

A DMM semantics specification consists of two components: a runtime meta
model, which expresses states of execution, and operational rules, which describe
behavior by operating with instances of the runtime meta model. The runtime
meta model is an extension of the language’s syntactic meta model with concepts
referring to behavior at runtime. Such concepts may be a token and its location,
information about the active state and other constructs expressing states of exe-
cution in different modeling languages. If a language has no runtime concepts,
syntactic and runtime meta models coincide. Operational rules represent the dy-
namic semantics and describe how instance of the runtime meta model change
over time. Instances of the runtime meta model are mapped to graphs typed over
the runtime meta model which are used in the operational rules.

In order to formalize the behavior of the running example with the help of
DMM, the syntactic meta model and informal description of its semantics, pro-
vided in Section 2.1.2 and Section 2.1.3, are given as input for a DMM semantics

17

2.3 Dynamic Meta Modeling

specification. The runtime meta model coincides with the syntactic meta model,
as no special execution constructs are needed in this case, and states of execution
can be represented by instances of the syntactic meta model. Out of the informal
semantics, operational rules are elaborated and presented in Example 2.1.

Example 2.1 Operational rules representing semantics for the running example
formally are illustrated in Figure 2.7. Structure of the rules and their types will
be explained in the next section.

hrrules
hr.dismissInternship()# hr.clearFirm()# hr.addSpeciallnternship()# hr.reorganizeFirm()#
i.transfer() i.transfer() hr.expand() hr.expand() hr.expand()
i.clearInternship() d.clearDepartment() hr.createSpeciallnternship()
hr.deletelnternship() hr.deleteDepartment() si.hireSpeciallntern()

Figure 2.7: Ruleset for the running example

In this section, the main idea of DMM was discussed. Concrete syntax of the
DMM language and its general constructs will be presented in the next section.

2.3.2 General Constructs

Operational rules comprising DMM semantics specifications, see Figure 2.6, are
implemented as graph transformation rules (GTRs). A single GTR expresses
alternation of an initial graph in some way which results in a new graph. Each
GTR has left-hand side and right-hand side, which correspond to precondition
and postcondition for it. Left-hand side defines conditions under which a GTR
can apply by specifying a subgraph to be changed during the application of this
GTR. A particular matching of the GTR’s precondition on the state graph is
called matching context. Right-hand side contains a specification of a post-state
resulting from GTR application, i.e. a subgraph which should substitute the
matching context.

Host graph is a graph to be changed by a GTR. A certain GTR can apply
on a host graph if matching between the left-hand side of the GTS and the host
graph occurs, i.e. the graph on the left-hand side is a subgraph of the host graph.
Afterwards, the matching context is modified to the GTR’s postcondition.

18

2.3 Dynamic Meta Modeling

Syntax of the DMM language used for description of operational rules is defined
by the ruleset meta model. An excerpt from the ruleset meta model regarding
GTRs is presented in Figure 2.8.

H NamedElement H GraphElement <;enumeration>>
T name : EString 2 role : ElementRole |__= ElementRole |
T quantification : Quantifier = EXISTS
A = NOT_EXISTS
A - DESTROY
— CREATE
1 <<enumeration>>
Mode target H Edge £ Quantifier
= type: EClass SPIR— ~ ONE
source 0.* — ONE_TO_MANY
contextnode |1 edges ~ ZERO_TO_MANY
— NESTED
1 rule
H Rule

& getRuleset() : Ruleset

H BigstepRule H ParameterizedRule |

T

SmallstepRule

Figure 2.8: Excerpt from the ruleset meta model regarding GTRs

Graph transformation rules (GTRs) are represented by the abstract class Rule.
Each rule belongs to a certain set of rules, called ruleset, that can be accessed
through the function getRuleset. Such ruleset is presented in Example 2.1.

All rule in a ruleset inherit from the abstract class Rule. Types of rules rele-
vant for this thesis are represented by the classes BigstepRule and Smallstep Rule,
because they influence the execution while the others do not change the current
graph state anyhow. BigstepRule describes rules which apply whenever their left-
hand side matches with the host graph. SmallstepRule describes rules that can
apply only if they are invoked by other rules. The concept of invocations will
be discussed in Section 2.3.3. Each type can be distinguished according to name
convention for the rules in DMM: names of bigstep rules end with '#’ and names
of smallstep rules have no additional signs. The type SmallstepRule also inher-
its from an intermediary abstract class ParameterizedRule, allowing them have
parameters relevant for invocations.

The main reason for distinguishing several types of rules in DMM semantics
specifications is a separation of different logical parts for better readability and
understandability maintenance of rulesets. As it can be concluded from the names
of the rule types, bigstep rules model bigger steps of execution and their matching
cannot be controlled by developer. On the other hand, smallstep rules model

19

2.3 Dynamic Meta Modeling

smaller pieces of logic, whose order and place of execution can be set by developer
with the help of invocations, see Section 2.3.3.

A rule may have several implementations, so every rule is characterized by two
names: name and uniqueName obtained from the classes NamedElement and Rule
correspondingly. The attribute name refers to the name of a rule similar for all
implementations of this rule. The attribute uniqueName is a name discriminating
each instance of a rule and describing concrete rules used during the execution. A
rule having two implementations in the DMM semantics specification describing
behavior for the running example is provided in Example 2.2.

Example 2.2 The rule modeling the transfer of interns during the internship
dismissal, see Section 2.1.3.1, has two tmplementations depicted in Figure 2.9
and Figure 2.10. The first rule aims to delete one intern from the internship and
create a new employee corresponding to this intern in the given department. The
second rule is meant as a stop for the transfer and applies, when no more intern are
left in the internship and multiple employees representing the transferred interns
exist in the given department.

hrHR

departmentE/ N‘nternships

:Department | | iInternship {cn}

/transfer()

employees interns

:Employee | | Intern

Figure 2.9: Smallstep rule transfer.1

Each GTR operates with graphs, whose elements are represented by instances of
the class GraphElement, see Figure 2.8. White color highlights elements relating
to it. This class has two inheriting classes: Node representing nodes of GTRs and
Edge representing connections between two distinct nodes. An edge references
exactly one source and one target node. Every node or edge can belong to exactly
one rule. A rule consists of at least one node and none or several edges depending
on the amount of nodes and existing connections among them. As shown in
Example 2.2, the rule transfer.1 consists of five nodes with four edges between
them.

20

2.3 Dynamic Meta Modeling

hr:HR

departments/ \jnternships

:Department | | iInternship {cn}

| | clearInternship()
| = o

employees_l irffarns
:Employee Intern

L ©

L

Figure 2.10: Smallstep rule transfer.2

A node is also characterized by name inherited from the abstract class NamedFEle-
ment. Fach GTR is bound to a specially marked node on the left-hand side re-
ferred to as context node. Context node is also told to own the GTR’s behavior
and must be set always in its implementation. In both rules in Example 2.2, the
node named 7 of type Internship is chosen as a context node, that is represented
by the sign {cn}.

For all elements of GTRs, side of a GTR to which a considered graph element
belongs to is assigned through the attribute role of the class GraphElement. Ac-
cording to enumeration FElementRole, there are three different roles serving this
purpose: {exists} for elements on the left-hand side which should be preserved
after the rule application, {delete} for elements on the left-hand side which should
be deleted during the rule application, and {create} for new elements on the right-
hand side. In the Example 2.2, the left-hand side of the rule transfer.1 consists
of three node with the role exist depicted as black and of one node with the role
destroy depicted as red. A new element which should be created on the right-hand
side has the role create is marked with green.

In some situation, a certain data structure is not allowed to appear on the
left-hand side of a GTR. For this purpose, DMM also allows to specify nega-
tiwe application conditions (NACs), which denote the absence of a certain data
structure in order for matching to succeed. A rule containing NACs is the rule
transfer.2 presented in Example 2.2. Here, the condition that no intern should
exist in order for the rule to match is modeled with the help of NAC illustrated
as a stop sign.

Sometime more than one instance of the same type needs to be processed on
the same fashion. For this purpose, DMM has universally quantified structures
(UQSs), which enable successful matching for all elements in the host graph
corresponding to the left-hand side. UQSs can be defined by setting the at-

21

2.3 Dynamic Meta Modeling

tribute quantification of the class GraphFElement. Values resulting in UQSs are
given by the enumeration Quantifier, see Figure 2.8, and equal to one_to_many or
zero_to_many. The rule transfer.2 in Example 2.2 contains UQSs as well. In order
for the rule to apply, presence of a department with one or several employees is
required. As the number of employees depends on a particular model, they are
designed as UQS, which means that the same matching occur for all instances of
class E'mployee.

In this section, main constituents of DMM semantics specifications - rules with
their properties - were discussed. In the next section, a mechanism to control the
execution of rules in DMM and constructs related to it are explained.

2.3.3 Invocation Mechanism

In this section, rule invocations as a structural mechanism in DMM allowing dis-
tribution of the logic over multiple rules is illustrated. An excerpt from the ruleset
meta model regarding the invocation mechanism is presented in Figure 2.11.

H Condition H Assignment
= condition : EString = assignment : EString
conditions | 0..* 0..* | assignments
parentNode | 1 1 | parentNode
, El Node
H ParameterizedElement parameters
0“*
1 | targetnode 1 | contextnode
H Invocation o 1 H Rule
T sequenceNumber : Elnt ruie T uniqueName : EString
T invokedRule : EString 0.* # getRuleset() : Ruleset
invocations

Figure 2.11: Excerpt from the ruleset meta model regarding the invocation

As shown in this figure, each rule may have no or multiple invocations. Each in-
vocation is an instance of the type Invocation that has two attributes: invokedRule
specifies a rule invoked by the rule owning the invocation and sequenceNumber de-
fines the number of this invocation in the row of other invocations belonging to
this rule. When a rule defines several invocations, sequence numbers fix the order
of their execution and influence the kind of succeeding rules during the execution.
If no sequence numbers are specified, the order of invocations is determined by

22

2.3 Dynamic Meta Modeling

the tool performing the execution, see Section 2.3.4. A rule illustrating concepts
explained above is presented in Example 2.3.

Example 2.3 Bigstep rule performing the activity of firm’s reorganization, see
Section 2.1.3.4, is presented in Figure 2.12. The rule consists of three invocations
with the order fixed by sequence numbers. First, the invocation expand s pro-
ceeded, then comes deleteDepartment, and expand is called for the second time.

hr:HR {cn}

E amountSI<1 —
— 2:expand()

B SN

expand() l:deleteDepartment()

Figure 2.12: Bigstep rule reorganizeFirm

Invocation is always defined on a certain node called its target mode. This
node restricts the possible matching of an invoked rule on the host graph to
some predefined elements. These predefined elements are also given through the
abstract class ParameterizedElement which references none or multiple nodes as
a context for a certain invocation. When an invocation is called, the type of its
target node should comply to the context node type of the specified invoked rule.
Context and target nodes are like objects in object-oriented programming, while
rules and invocations are like functional calls. In Example 2.3, the node hr of type
HR serves as a target node for all three presented invocations, and is indicated by
arrows pointing at it.

Another mechanism for restriction of matching context is specification of as-
signments and conditions. These are defined on graph nodes, and each belongs
to a single node. Conditions have a form of mathematical expressions, and a cor-
responding GTR can match only when all its conditions hold. In Example 2.3,
the rule can apply only if no special internships currently exist in the firm. This
is programmed by the condition that the counter amountSI defined for the class
HR should be less than 1. Assignments aim to change values of attributes. Exam-
ple 2.4 demonstrates the usage of assignments for the running example.

Example 2.4 The smallstep rule initiating a new special internship is shown in
Figure 2.13. As far as the internship is created, the amount of special internships
of the firm should be increased by 1. This is done through the assignment of the
attribute amountSI in the class HR.

Invocations may also fail, when an invoked rule cannot match on a given host
graph. In this case, a special rule dmm_specification_failure matches indicating

23

2.3 Dynamic Meta Modeling

hr:HR {cn} SE:Internship

B amountSI':=1+amountSI| internships

?

hireSpeciallntern()

Figure 2.13: Smallstep rule createSpeciallnternship

that an error occurred during the execution. With the help of this rule, the
developer can track a point where the specification failure is located and its reason.

As already explained in Section 2.3.1, bigstep rules match whenever they can,
so their names cannot be given as values for the attribute invokedRule in the
class Invocation. Thus, only smallstep rules can be invoked. Which rule owns
an invocation does not matter, so it can be both bigstep and smallstep rules. A
single bigstep rule with all following smallstep rules derived from the specified
invocations is considered as a single functional unit. A bigstep rule finishes its
execution, when no more unprocessed invocations are left in it. No another bigstep
rule is allowed to interrupt the execution of the current one. Thus, a control
mechanism is formed by bigstep rules matching whenever suitable and smallstep
rules executing the behavior as a developer programmed it.

Two previous sections provide an insight of structure of rules representing DMM
semantics and a way they can be controlled with the help of the invocation mech-
anism. These concepts describe the behavior for the whole modeling language.
The form of actual behavior for sentences of this language and a way to compute
it are discussed in Section 2.3.4.

2.3.4 Computing GTS

Each model, i.e. instance of some syntactic meta model, represents a sentence
in a language described by this meta model and has a form of a graph typed
over it. Each model has a certain behavior described by the corresponding DMM
semantics specification. A concrete behavior of such a model is computed as graph
transition system (GTS) based on DMM semantics specification. GT'S has a form
of labeled transition system.

GTS is a sequence of execution events corresponding to rules from the ruleset
applied to the model during the execution. GTS contains all sequences of rules,
which can be derived starting with a model by using the invocation mechanism
and arbitrary matching of bigstep rules. The computation process stops if no more
bigstep rules can match on the current graph state or DMM specification failure

in a smallstep rule occurred.
The toolset GROOVE computes GTSs in DMM. An example of a GTS com-

24

2.3 Dynamic Meta Modeling

puted for a model specified in the language of the running example is presented
in Example 2.5. For more information about the GROOVE toolset see [15].

Example 2.5 A GTS computed by the toolset GROOVE based on DMM seman-
tics specification for the running example is illustrated in Figure 2.14. The input
model consists of one department having no employees and one internship having
one intern.

hr.disrissintemship#() hr.reorganizefirm#() hr.addSpeciallntemship#0
itransfer 10 itransfer_1() hr.expand 20 hrexpand_20
itransfer 10 itransfer 10 hr.createSpeciallnternshipl) hrcreateSpeciallntarnship()
510 511
iitransfer_20 si.hireSpeciallntern() si.hireSpeciallntern()
513 514
i.cleatlnternship() hr.deleteDepartrnent() hr.cleahr.disrnissInter hr.dismissinternship#i)
518 s19 s15] 516 517
hr.deletelnternship) hrexpand_10 duclearDepartment() itransfer_10asfer 10 (utransfer_10)
524 525 520 522 521 523
hrreorganizeFirm() hraddSpeciallntemship¥ hr.createSpeciallnternship() hr.deleteDepartment(isfe itransfer_10) i.transfer_20)
s30[529 531 526 527 528
hrexpand 20 hrexpand_20) si.hireSpeciallntern() i.clearlnternship () ransfer_20 icleatlnternship)
1 536 53 537 532 533 534
hr.createSpeciallnternship) ~ hrcreateSpeciall hip(y hr.dismiss: hip#(), hr.dismissinte hr.d 1 hip#() h i hipt) h hip(), hr.deleteln
E # ﬁ 539 0
si.hireSpeciallntam() sihireSpeciallntern) iitransfer_10 d.clearDepartment(itransfer_107sfer 10 hr.deletehr.deletelnternshing) hr.dismissintemshiph,
hr.dismmisslnternship#o itranster_20nr. hrdismissnternship#) transfe itransfer_10 r.dismissInternshipto istransfe itransfer_10

Figure 2.14: Graph transition system computed by GROOVE

The GTS consists of an initial state corresponding to the input model. Labels
on transitions refer to the names of rules applicable to their source state. As
shown in the graphic, three bigstep rules are applicable to the graph resulted from
the input model. Each of these bigstep rules are followed by different smallstep
rules depending on specified invocations. Red states correspond to the end of a
computation path. One path ends with the DMM specification failure, pointing
on a failed matching.

GTSs can be analyzed by applying model checking techniques. This is the
point where automatic analysis of models is enabled, that was the main purpose
of the behavior specification using DMM. In order to carry out the analysis, model
checking requires two input parameters: GTS and properties for which the actual
behavior should be checked.

In this section, the process of formal semantics specification with the help of
DMM was introduced. However, as explained in Section 2.2, quality of designed
artifacts should be assessed as well, in order to know to which extent the created

25

2.4 Test-Driven Semantics Specification

formal semantics satisfies initial requirements. Test-Driven Semantics Specifi-
cation (TDSS), the approach to assist in quality assurance of DMM semantics
specifications including the quality control of created artifacts, is presented in the
next section.

2.4 Test-Driven Semantics Specification

The process of creating high quality DMM semantics specifications with the help
of continuous testing in TDSS is explained in Section 2.4.1. Methods to evaluate
the quality of executed tests are discussed in Section 2.4.2.

2.4.1 High Quality Semantics Specifications

Quality evaluation of DMM semantics specifications is important, since it delivers
assessment of a degree, to which a created formal behavior specification reflects the
informal semantics that it describes. It is especially significant, since a semantics
specification is helpful only when it is correct to some extent, otherwise the results
are unreliable.

In order to evaluate the quality of a DMM semantics specification, initial re-
quirements should be provided and developed artifacts should be compared for
compliance with them. Requirements are any artifacts against which a formal se-
mantics can be evaluated. For DMM, it might be UML specification in case when
the semantics of UML diagrams is to be modeled [4]. For the running example,
the informal description of modeled activities provided in Section 2.1 can serve as
initial requirements.

Quality assurance explained in Section 2.2.2 aims at providing adequate confi-
dence that a software item conforms to established technical requirements, while
testing checks whether a software item is correct to some extent, see Section 2.2.3.
Analogously, TDSS takes the quality of DMM semantics specification into consi-
deration and checks their correctness with respect to stated requirements. It is
inspired by the test-driven development approach and described thoroughly by
Soltenborn et al. in [17].

Artifacts used in TDSS and their interrelations are presented in Figure 2.15.
These artifacts can be compared to those illustrated in Figure 2.2 for testing in
software engineering. Stereotypes introduced in this diagram correspond to stereo-
types from the UML Testing Profile [8]. Test context SemanticsTest corresponds
to TestSuite in software engineering and interacts with DMM semantics specifica-
tion serving as SUT. Test cases consist of example models serving as test input.
Expected result for test cases in TDSS is traces of execution events expressing
expected behavior of example models.

TDSS testing process is illustrated in Figure 2.16. TDSS starts with creation of
models corresponding to language elements which should be exercised by testing.
Then, discussing models’ semantics, execution events are identified and formalized

26

2.4 Test-Driven Semantics Specification

«TestContext»
SemanticsTest

rsut 0. 1 1 +test
u compon ent
1 13

«TestComponent»

«SUT» +test case |1..* .
DMMSemanticsSpecification TDSSTestingProcedure
«TestCase»
TestCase
1 1
+input / 1 1\ texpected output
«Testinput» «ExpectedResult»
ExampleModel TracesOfExecution

Figure 2.15: Artifacts used in TDSS

using traces of execution events. This notation allows describing the behavior
precisely but at the same time informally. However, traces of execution events
cannot be used by a model checker for the automated analysis on a transition
system, so they are translated into some temporal logic dialect, e.g. CTL formulas.
Test cases are created out of constructs specified above.

After all language elements are covered by designed test cases, their execution
begins. For all test cases, based on the DMM semantics specification at hand and
the model from the current test case, a GTS is computed. Then, developed CTL
formulas are verified for being contained in the computed GTSs. If the verification
fails, the corresponding test case fails as well and the DMM semantics specification
needs to be corrected by the developer. The execution continues until all test cases
have passed.

The process of testing a DMM semantics specifications on a set of models con-
taining important or interesting language structures and correcting specification
failures depending on test verdicts, gives a hope to yield a specification with a
higher quality level than the one created without following TDSS. However, in or-
der to estimate how good a DMM semantics specification elaborated with TDSS
is, the question of how good a given DMM semantics specification has been tested
in TDSS arises. In order to be able to answer this question, the quality of executed
tests has to be discussed.

2.4.2 Quality of Tests

The quality of testing DMM semantics specifications can influence the quality of
these specifications, as successful testing detects errors and so improves the quality.

27

2.4 Test-Driven Semantics Specification

% TDSS testing 1

[all language elements covered] [all elements of example covered]

Specify E lize t
el se] Setanticaior ormalize traces
gt ” of example
Compute
coverage

[all tests passed]

[else]

Create test

case

Execute all
testcases

[some testsfailed]

Fix semantics

Figure 2.16: TDSS testing process with coverage analysis

The type of testing used in TDSS is white box testing, since the developer has an
access to internal structure of the specification’s implementation, i.e. ruleset.

According to Section 2.2.4, coverage is a method to evaluate results of white
box testing. It expresses a ratio between structural elements of a SUT, which were
exercised during testing, and all possible structural elements defined for testing
with regard to a certain coverage criterion. Figure 2.3 describes the integration of
testing and coverage analysis in software engineering. Coverage analysis measures
achieved coverage after test suite’s execution and determines, whether additional
testing is necessary.

The extension of TDSS with coverage analysis is presented in Figure 2.16. The
coverage analysis in TDSS is performed after all test cases have successfully passed.
It consists of calculation of the coverage value regarding a chosen coverage crite-
rion, which serves as output of the coverage analysis. If the coverage value is
not sufficient, then additional test cases should be designed in order to execute
untested parts of the specification. If the coverage value satisfies the predefined
level of quality, i.e. all language elements are covered, TDSS with coverage ana-
lysis finishes. The overall results of this process are semantics specifications with
a possibly higher level of quality. It is also possible to compare several semantics
specifications relatively to each other with respect to a similar criterion.

This chapter provided important foundations of approaches, which serve as an
inspiration for later parts of this thesis. Detailed requirements for this thesis and
their motivation are presented in the next chapter.

28

3 Requirements for the Thesis

In this chapter, detailed requirements for this thesis will be formulated. At the
beginning, a motivation for new coverage criteria in order to evaluate testing of
DMM semantics specifications more thoroughly is presented in Section 3.1. Then,
requirements based on which new coverage criteria for testing DMM semantics
specifications will be developed are provided in Section 3.2.

3.1 Motivation for New Coverage Criteria

Inspired from the coverage criteria in software engineering introduced in Sec-
tion 2.2.4.4, two coverage criteria for testing DMM semantics specification are
already formulated. The first coverage criterion roughly analogous to statement
coverage is explained in Section 3.1.1. The second coverage criterion roughly anal-
ogous to all-values coverage is introduced in Section 3.1.2. Limitations associated
with these criteria are discussed as well and serve as a motivation for the definition
of further coverage criteria, which should overcome them.

3.1.1 Rule Coverage

Rule coverage is a coverage criterion corresponding to statement coverage, which
ensures that each statement of a tested software artifact is executed at least once.
In DMM, the software artifact exercised during testing is the ruleset. So, rule
coverage demands each rule of a considered ruleset being used at least once during
the semantics test execution, i.e. applies at least in one matching context. Thus,
rule coverage tests several matching contexts, which all together use each rule
from the ruleset at least once.

In order to achieve a rule coverage of 100% in TDSS expanded with cove-
rage analysis, such set of example models should be developed, whose models
together use all rules from the DMM semantics specification during the execu-

tion of the semantics test. The formula for rule coverage is: coverage,,. =
amount of used rules
amount of all rules in ruleset’
Analogous to the estimation of statement coverage’s power, rule coverage is also

considered as weak. As it is explained in Section 2.1.1, such constructs as one rule
used several times at different places or recursively executed actions may appear
in semantics specifications. In the case of rule coverage analysis, exercising one
single matching context picked out of all contexts in which a particular rule occurs

29

3.2 Requirements for New Coverage Criteria

is enough to cover it. Thus, some matching contexts are not being checked for
correctness.

3.1.2 All-Instances Coverage

The next existing coverage criterion for DMM corresponds to all-values coverage
for black box testing in software engineering. This criterion tests values from
the input domain exhaustively. According to Figure 1.1, for DMM semantics
specifications this means to test all possible models that can be created based on
the syntactic meta model of the considered modeling language. The formula for
all-instance coverage is: coverageq—instances = am‘;’:ﬁfﬁ}OC{”t;iii‘f;:i?ﬁfpgofjsels.

All-instances coverage performs testing of all matching contexts relevant for a
considered modeling language. Even if not the whole DMM specification has been
tested, it means that some parts of it are never used by any input. But for all
possible inputs, the specification has been checked for correctness.

However, a complete testing of all elements from the language’s input domain
is highly unpractical, since the amount of possible models that can be created in
the language is usually infinite. The simple example for such a situation is an
association end with the cardinality which allows many instances of a type but
does not specify an upper bound. Such construct results in an infinite number of
models. Thus, the computation is impossible in this case.

In order to overcome the gap between the extreme techniques in software engi-
neering, some intermediate criteria were designed. Examples are decision coverage
from structural coverage criteria and all-boundaries or random-value coverage from
data coverage criteria [19]. These intermediate criteria require more test cases as
the simple ones but still remain computationally feasible. The same intuition will
be used in this thesis for the definition of new coverage criteria for DMM. The
concrete requirements for the new coverage criteria are given in the next section.

3.2 Requirements for New Coverage Criteria

In testing DMM semantics specifications, some intermediate coverage criteria in
between of the two introduced extremes of rule coverage and all-values coverage
are desirable. Their main goal is to deliver more insight into the quality of seman-
tics specifications but simultaneously to require feasible computation complexity.
Depending on the structure of the semantics specification at hand, a suitable
coverage criterion should be chosen.

On the one hand, new coverage criteria should be more expressive than rule co-
verage, which also serves as a minimum quality measurement of DMM semantics
specifications. It implies that they should test rules in more different matching
contexts than rule coverage. An example could be a smallstep rule deleting a de-
partment for the running example that is used in several activities, i.e. at different
execution points. For the coverage value of 100% according to rule coverage, tes-

30

3.2 Requirements for New Coverage Criteria

ting this rule only once is enough, but other its applications still remain unchecked.
So, new coverage criteria should provide more information about the correctness of
rule’s applications in different contexts. New coverage criteria should be formally
defined and their interrelations among each other with respect to increasing ex-
pressiveness should be checked through the possibility to built a hierarchy among
them.

On the other hand, new coverage criteria should be computable in comparison
to all-values coverage. They should result in a finite amount of cases to check and a
finite amount of structural elements to cover as well. An example of computational
feasibility is rule coverage, which requires to check each rule in the given ruleset,
whose amount is predefined and finite. In order to prove that the new coverage
criteria are computable, a coverage tool should be developed and applied on DMM
semantics specifications of example modeling languages.

In this chapter, the motivation and requirements for new coverage criteria were
presented. Their concrete realizations will be shown in the next chapter.

31

4 Coverage Criteria in DMM

In this chapter, new coverage criteria for testing DMM semantics specifications
will be introduced, formally defined, applied to the running example, and further
discussed. A high level introduction to data structures and algorithms needed for
the new coverage criteria are presented in Section 4.1. Then, a formalization of
data structures and mathematical concepts common for all new coverage criteria
are provided in Section 4.2. Based on concepts described in the previous sections,
two intermediate families of coverage criteria - rule coverage and edge coverage
criteria, their commonalities, peculiarities, and application cases are described in
Section 4.3 and Section 4.4 correspondingly. The strongest coverage criterion, all-
paths coverage, its idea, application and properties are discussed in Section 4.5.
Finally, connections among the introduced coverage criteria according to their
expressiveness are shown as a hierarchy illustrated in Section 4.6.

4.1 Introduction

In this section, the basis and inspiration for data structures required by the new
coverage criteria are presented, see Section 4.1.1. Then, the general idea of the
algorithm for coverage analysis in DMM and integration of the presented data
structures in it are explained in Section 4.1.2.

4.1.1 Inspiration

Control-flow-oriented coverage criteria serve as inspiration for the definition of
new coverage criteria in DMM, since the implementation of DMM semantics spe-
cifications is available that leads to the direction of structural coverage criteria
and no actual data flow is present in GTRs that makes control-flow-oriented ones
to be of interest. These criteria require the control-flow graph, whose structure
is obtained by analyzing the internal structure of a software item and built from
executable elements following each other in a predefined order. A software item in
this case is a program written in a certain programming language, and executable
elements are statements comprising this program. The order of statements in the
control-flow graph is determined by their order in the program.

In DMM, a software item consisting of executable elements with a certain order
can be found as well, where executable elements are rules of a given ruleset, see
Section 2.3.2. The invocation mechanism explained in Section 2.3.3 determines
the control flow in DMM. According to it, bigstep rules can match whenever it is

32

4.1 Introduction

possible depending on the current graph state and are not able to interrupt the
execution of other bigstep rules. Smallstep rules can apply only if they are called
either by a bigstep or by a smallstep rule and if they can match on the current
graph state. Thus, the possible order of rules in the control flow is predefined
by a DMM semantics specification, where invoked rules follow a rule containing
them. If multiple invocations are present in a rule, their order is decided using
sequence numbers. Thus, the sequential order of rules resembles the sequential
order of statements.

Additionally, each programming language has mechanisms to express conditions
resulting into several branches of execution and loops making some pieces of a
program repeatable depending on a given condition. Forks and loops are reflected
in the control-flow graph as well. Forks are depicted as several edges outgoing
from a single node. Loops are sketched as an edge pointing backwards to some
node that has been already seen during the execution.

Similar to program structure, forks and loops can be found in a ruleset as well.
A fork corresponds to a case, when a rule has several implementations. In this
case, a branch that will be pursued during the execution is determined by the
current graph state, i.e. matching context. A recursion reflects a loop, i.e. a case
when a certain rule invokes itself or a rule that has been already executed in the
same matching context before. If a rule invoking itself invokes some other rules
as well, all these rules become a part of the loop. After a fork or a loop finishes,
the sequential order of the rules is restored.

As shown above, a structure similar to a control-flow graph can be created with
elements existing in DMM. Nodes of the new graph are bigstep and smallstep rules.
The order of nodes is determined by derivation sequences of invoked rules, which
are sequences of invocations computed for a single bigstep rule and consisting
of smallstep rules invoked further. Forks and loops can be represented as nodes
with several outgoing edges and edges referencing backwards. This data structure
is called invocation graph. The similarity between the control structure in code
testing and DMM are also illustrated in Table 4.1 on Page 33.

Table 4.1: Analogy between the control structure in code and DMM testing

’ Elements \ Control-flow graph \ Invocation graph
Node n Statement, e.g. x = 10 | Rule, e.g. init.1()
Edge e : n1 — n2 | n2 directly follows nl | n2 follows nl in the derivation
in the control flow sequence of invoked rules

Since bigstep rules cannot invoke each other, and only smallstep rules can form
a certain invocation structure, an invocation graph is constructed for each bigstep
rule separately. The example of invocation graph for the bigstep rule reorga-
nizeFirm implementing the behavior described in Section 2.1.3.4 is illustrated in
Figure 4.1. The derivation sequence of rules invoked by this rule can be seen on

33

4.1 Introduction

the right-hand side of the figure. Based on it, the invocation graph is constructed
and presented on the left-hand side of the figure. This invocation graph can be
compared with the control-flow graph shown in Figure 2.5.

Invocation graph Invocation sequence

1. reorganizeFirm is a bigstep rule

2. reorganizeFirm invokes expand,

(expand.1) (expand.2) (expand.3) deleteDepartment, expand

3. expand has 3 instances

G:reateSpeciallnternshipj GreateSpeciallnternshipj 4. expand.1 invokes createSpeciallnternship
5. expand.2 and expand.3 both invoke
(hireSpecialintern j createSpeciallnternship and hireSpeciallntern
/ 6. createSpeciallnternship and

hireSpeciallntern have no invocations
(deleteDepartment j

7. deleteDepartment follows expand

8. expand follows deleteDepartment

9. expand.1 invokes createSpeciallnternship

-— v
(expand.l) (expand.2) (expand.3)
v e

G:reateSpeciallnternshipj (createSpecialInternshipj 10. expand.2 and expand.3 both invoke
createSpeciallnternship and hireSpeciallntern

- - 10. createSpeciallnternship and
(hireSpecialintern) hireSpeciallntern have no invocations

Figure 4.1: Invocation graph

The bigstep rule reorganizeFirm, see Example 2.3, serves as a root for the in-
vocation graph. This rule has three invocations expand, deleteDepartment, and
expand again, which are executed one after another regarding their sequence num-
bers (0, 1 and 2 correspondingly). The first invocation ezpand has three smallstep
rules implementing it. In the invocation graph, it corresponds to a node with the
name reorganizeFirm having three outgoing edges to nodes, each representing one
instance of the rule expand: expand.1, expand.2, or expand.3. The rule expand.1
invokes the smallstep rule createSpeciallnternship, while rules expand.2 and ex-
pand.3 invoke rules createSpeciallnternship and hireSpeciallntern sequentially. So,
the node expand.1 is connected with the node createSpeciallnternship. The rules
expand.2 and expand.3 point to the another node createSpeciallnternship followed
by hireSpeciallntern, as their individual subgraph are identical, and so do sets of
executional paths starting from these rules.

The rules createSpeciallnternship and hireSpeciallntern are the last in this se-
ries as they have no invocations themselves. In the invocation graph, it results
in an edge from the node createSpeciallnternship followed the node expand.1 and
from the node hireSpeciallntern belonging to the branches of expand.2 and ex-
pand.3 to the node corresponding to deleteDepartment, i.e. next invocation of
the rule reorganizeFirm. The rule deleteDepartment has no more invocations, so

34

4.1 Introduction

the last invocation of the rule reorganizeFirm is processed. The last invocation
expand completely repeats the logic of the first invocation. However, its existing
representation in the invocation graph cannot be referenced, since this invocation
ends the execution of the bigstep rule and its end rules serve as leaves for the
whole invocation graph. But the first invocation is followed by two more ones, so
referencing it would not end the execution process.

Analogously to the control-flow graph containing all paths through the control
flow, the invocation graph contains all combinations of sequences in which rules of
a ruleset appear. The problem of infeasible paths arises here as well, since these
sequences are computed based solely on the information about invocations that
does not take into account all properties of rules, e.g. conditions, assignments, or
implemented logic. An example of an infeasible path is a recursive call of a rule,
which has a condition determining its end after three loops but which will result
in an infinite amount of paths in the invocation graph.

In this section, a data structure similar to control-flow graph called invocation
graph necessary for the definition of new coverage criteria in DMM has been
illustrated. Its role and application in the algorithm for the coverage analysis in
testing DMM semantics specifications will be explained in the next section.

4.1.2 Intuition for the Algorithm

In order to compute data structures for coverage analysis in DMM, a transforma-
tion of the ruleset in the form of invocation graphs is necessary. For each bigstep
rule, an invocation graph can be built. For this technique, only bigstep rules ha-
ving at least one invocation are considered, since each of bigstep rules having no
invocations form only one computation path consisting of this bigstep rule itself,
and so the application of the rule coverage is enough to test all computation paths.
As a result, a particular ruleset is mapped onto a set of invocation graphs.

Analogously to the control-flow graph, having a set of invocation graphs and a
definition of a coverage criterion, elements that have to be covered to achieve 100%
coverage regarding this criterion are selected from the invocation graphs. For the
rule coverage, see Section 3.1.1, this set is a set of nodes from all invocation graphs
corresponding to the rules having distinct unique names, i.e. a rule is considered
being covered if it was used at least once no matter where it is located. A set of
elements covered during the execution is a subset of elements to cover appearing
in GTSs computed for example models from the semantics test, see Section 2.3.4.
Coverage equals to the ratio between these two sets.

The algorithm of coverage analysis regarding a single coverage criterion is pre-
sented in Figure 4.2. This diagram can be enhanced by the information from
Figure 2.16. The algorithm begins with computation of a set of invocation graphs
from a given ruleset. It is performed once at the beginning and the set is used for
the whole coverage analysis with several coverage criteria.

Then, the definition of the coverage criterion starts. It consists of a choice of
coverage item and selection of elements from the invocation graphs, which satisfy

35

4.2 Common Formalization

Compute
inv ocation graphs

coverage
definition

Specify coverage item

Select elements to test

Specify coverage
conditions for GTS

coverage
computation

Execute all testcases

Create new test Compute cov ered
cases elements
[Compute cov erage val@
[coverage not out i
Vel put final
sufficient] el se] coverage o

Figure 4.2: Algorithm for coverage analysis in TDSS

the definition of the coverage item. In parallel, a specification of conditions, under
which selected elements are considered covered by a GTS takes place.

After the coverage criterion has been specified, the execution of semantics test
with the integrated coverage analysis begins. After a set of test cases specified
by the developer is executed, covered elements from the computed GTS are iden-
tified. Then, the coverage value is computed. If the reached coverage does not
satisfy a predefined level, new test cases are created and the process of coverage
computation continues, otherwise the final coverage value is output and the whole
algorithm finishes.

So, the algorithm of coverage analysis in testing DMM semantics specifications
is general for all coverage criteria. The only difference from one criterion to another
is in a chosen coverage item and conditions determining which elements are covered
by a computed GTS. Thus, a formalization common to all new coverage criteria
and individual characteristics of each criterion are outlined in the next sections.

4.2 Common Formalization

The formal definition of coverage criteria in DMM requires the formalization of the
required data structures as well. Data structures common for coverage analysis in
DMM are described formally in this section. The invocation graph serving as a

36

4.2 Common Formalization

basis for the coverage analysis is explained in Section 4.2.1. Further necessary data
structures defined on the basis of invocation graphs are illustrated in Section 4.2.2.

4.2.1 Invocation Graph

Firstly, the algorithm for building an invocation graph will be explained in the form
of pseudo code in Section 4.2.1.1. Invocation graphs constructed for the running
example are depicted in Section 4.2.1.2 and will be used later for illustration of
developed coverage criteria. The formalization process of data structures necessary
for the formal definition of the invocation graph is described in Section 4.2.1.3.
According to the described process, data structures in the form of data sets derived
from the ruleset meta model are presented in Section 4.2.1.4. The formal definition
of the invocation graph is provided is Section 4.2.1.5.

4.2.1.1 Computation

The algorithm for computation of a single invocation graph for the activity Com-
pute invocation graphs in Figure 4.2 is described in this section in the form of
pseudo code. Its first part is presented in Figure 4.3.

computeGraph(Rule bigstepRule) : Graph

invocationGraph : Graph

leafRules : Set of Rule

invocation : Invocation

invocations, followinglnvocations : List of Invocation

IF bigstepRule has invocations THEN

ADD bigstepRule to invocationGraph
COMPUTE invocations of bigstepRule

ADD bigstepRule to leafRules
SET followinglnvocations to invocations

FOR each invocation from invocations
SET followinglnvocations to followinglnvocations without invocation
CALL computelnvocationStructure(leafRules, bigstepRule, invocation, followinglnvocations)
SET leafRules to result of computelnvocationStructure

ENDFOR

RETURN invocationGraph

ENDIF
Figure 4.3: Algorithm for invocation graph computation, part 1
The algorithm takes a bigstep rule as input and produces an invocation graph
as output. The following data types are also used in the algorithm: Rule refers

to rules, Invocation describes invocations, and Graph represents a directed graph
with nodes of type Rule. The computation starts with the check, whether the

37

4.2 Common Formalization

input bigstep rule has invocations, since a bigstep rule is processed further only
if it has invocations. Then, the rule is inserted into a newly initialized invocation
graph. A set of invocations for this rule is computed, in order to determine further
invocation structure.

Two additional data structures are also necessary for the computation. These
are a set of rules currently serving as leaves of the invocation graph (leafRules)
and a set of invocations following a currently handled rule (followinglInvocations).
The set leafRules delivers the result of going one step deeper into the invocation
structure and recursively achieves a list of rules that have no more invocations and
so conclude the current derivation sequence. These rules serve as source nodes for
the edges connecting them with the starting rules of a succeeding invocation. The
set followingInvocations for a rule is defined as a list of invocations, belonging to
the same invoking rule and having larger sequence numbers than the current one,
united with invocations following the invoking rule. For the bigstep rule reorga-
nizeFirm from the running example, described in Example 2.3 and Figure 4.1, the
set followingInvocations for the invocation of expand with the sequence number
0 consists of the following invocations delete Department, expand, and createSpe-
ciallnternship invoked by this rule. This set is required for merging of identical
subgraphs in the invocation graph that facilitates the coverage analysis a lot since
equal matching contexts are aggregated.

The two sets mentioned above are initialized: the set leafRules first contains only
the current bigstep rules, as no invoked rules have been computed up to know, and
the set followingInvocations consists of all invocations of the current rule. Then,
processing of invocations begins. For each invocation from the set of invocations
computed for the given bigstep rule, the set of following invocations is modified
by deleting the current invocation from it that preserves invocations only with
larger sequence numbers. This set will be enhanced by rules immediately invoked
by the rules corresponding to handled invocations. At this point this information
is not available.

Then a special procedure that computes the invocation structure for the bigstep
rule is called. Its input parameters are the set leafRules, the bigstep rule, the
current invocation, whose invocation structure will be computed, and the set
of following invocations, that is needed if merging occurs. As a result, the set
leafRules is changed to the result of the computation of invocation structure.

The second part of the algorithm describing the computation of invocation
structure is presented in Figure 4.4.

In order to compute the invocation structure for a rule given as input, each
rule from the set leafRules is processed. Then, invoked rules corresponding to
this invocation are found and for each rule a check takes place, whether a node
describing a current invoked rule already exists in the invocation graph. If such a
node is present, then the possibility for merge is examined. Merge happens when
the set of following invocations for the new and the existing nodes are equal. If
so, then a new edge from the input rule referencing the existing node is created.
Otherwise, a new node and associated data structures are built. So, a node for

38

4.2 Common Formalization

computelnvocationStructure(Set of Rule leafRules, Invocation invocation, List of Invocation
followinglnvocations) : Set of Rule

currentRule, invokedRule: Rule

invokedRules, newLeafRules, nextLeafRules : Set of Rule
nextinvocation : Invocation

invocations, nextFollowinglnvocations : Set of Invocation

FOR each currentRule from leafRules
COMPUTE invokedRules of the invocation
FOR each invokedRule from invokedRules
IF invokedRule already exist in invocationGraph THEN

ADD first invocation of invokedRule to followingInvocations

IF followinglnvocations equal to following invocations of exising node THEN
ADD edge : currentRule -> existing node of invokedRule

ENDIF

ELSE

ADD invokedRule to invocationGraph
ADD edge : currentRule - invokedRule
SET following invocations of invokedRule

COMPUTE invocations of invokedRule

ADD invokedRule to nextLeafRules

SET nextFollowinglnvocations to invocations

ADD following invocations of invokedRule to nextFollowinglnvocations

FOR each nextlnvocation from invocations
SET nextFollowinglnvocations to nextFollowinglnvocations without current invocation
CALL computelnvocationStructure(nextLeafRules, invokedRule, nextinvocation,
nextFollowinglnvocations)
SET nextLeafRules to result of computelnvocationStructure

ENDFOR

ADD nextLeafRules to newLeafRules
ENDIF
ENDFOR
ENDFOR

RETURN newLeafRules

Figure 4.4: Algorithm for invocation graph computation, part 2

the invoked rule is added to the invocation graph, an edge connecting the current
rule from the leafRule and the invoked rule is created, following invocations for
the invoked rule are set.

Afterwards, the procedure similar to that done for the bigstep rule and described
in Figure 4.3 is performed for the invoked rule. At the beginning, invocations of
this rule are computed. Then a new set nextLeafRule is initialized with the invoked
rule added. A new set of following invocations is computed out of the set of
invocations belonging to the invoked rule plus the set of invocations following the
invoked rule itself. For each invocation from the set of invoked rule’s invocations,
the computation of invocation structure is repeated recursively. The recursion
stops when no more unprocessed invocations exist.

As a result of the computation of invocation structure, the whole invocation

39

4.2 Common Formalization

structure for the bigstep rule is being constructed gradually and constitutes the
corresponding invocation graph. The concepts explained above are demonstrated
in the next section by invocation graphs constructed for the semantics specification
of the running example.

4.2.1.2 Example

A set of invocation graphs for four bigstep rules from the ruleset shown in Exam-
ple 2.1 is presented in Figure 4.5. Design of the invocation graphs is explained

below.
dismissinternship
|:{ transfer.lHtransfer.Z) clearDepartment (expand.1) (expand.2)

clearInternship deleteDepartment (createSpeciaIInternshipj

clearInternship (hireSpeciallntern j

deletelnternship

addSpemaIInternshlpj deletelnternship (deleteDepartment j

expandl expand2 (expand.l) (expand.2)
\/

(createSpeuaIInternshl@ (createSpeciaIInternshipj
(hireSpeciallntern) (hireSpeciallntern j

Figure 4.5: Set of invocation graphs for the running example

4.2.1.2.1 Dismiss Internship The invocation graph for the bigstep rule dismiss-
Internship starts with a fork representing the invocation of the rule transfer, which
is implemented by the two rules transfer.1 and transfer.2 resulting in two different
branches in the control flow. The rule transfer.1 invokes the rule transfer again.
This invocation corresponds to a recursive call of the rule transfer.1 or the end
of the recursion through the rule transfer.2. So, transfer.1 can point directly to
transfer.2 enabling the merge of several execution paths. The rule transfer.2 has
one further invocation clearinternship, which follows it in the invocation graph.
The rule clearInternship invokes the rule deletelnternship, which concludes the
invocation sequence for this bigstep rule, since it does not invoke any more rules.

40

4.2 Common Formalization

4.2.1.2.2 Clear Firm The invocation graph for the bigstep rule clearFirm con-
sists of two invocation structures, one for each of its two invocations clearDe-
partment and clearInternship. Their order is not fixed through sequence num-
bers, however only one combination is modeled, where the invocation structure of
clearDepartment is succeeded by the invocation structure of clearInternship, based
on the alphabetical order. The invocation structure of clearDepartment consists of
one rule deleteDepartment, which is placed immediately after it. Analogously, the
rule deleteInternship is put after clearInternship. As neither deleteDepartment nor
deleteInternship invoke further rules, deleteDepartment is connected with clearin-
ternship, and the execution of the bigstep rule stops after deletelnternship.

4.2.1.2.3 Add Special Intern The invocation graph for the bigstep rule addSpe-
cialIntern has one fork for two implementations of the rule expand. Here expand
is simplified by having two implementations instead of three, as illustrated in
Figure 4.1. Both instances of the rule expand invoke the same rules createSpecial-
Internship and hireSpeciallntern, so both branches of expand can be merged. The
rule hireSpeciallntern ends the whole execution, as it has no further invocations.

4.2.1.2.4 Reorganize Firm The invocation graph for the bigstep rule reorga-
nizeFirm is presented in Figure 4.1. This invocation graph is simplified as well,
leaving out the branch of expand.l and preserving only aggregated branches of
expand.2 and expand.S.

4.2.1.3 Formalization Process

For the formal specification of the data structure needed for the coverage analy-
sis, a connection between the ruleset meta model defining constituents of DMM
semantics specification formally and invocation graphs is necessary. Thus, nodes
and edges of invocation graphs are derived from the instances of this meta model,
i.e. concrete rulesets. This means that a set of rules and a set of invocations have
to be extracted from any given ruleset in order to have building elements for an
invocation graph.

To gather objects for building invocation graphs, operations to collect instances
of the necessary classes from the ruleset meta model are required. Such operations
are provided by the Object Constraint Language (OCL) that has a number of
types and commands allowing the manipulation of such collections [20]. With the
help of OCL, sets of elements can be accessed and filtered according to the given
conditions.

Having computed the sets of necessary objects, the invocation graph can be
formulated in mathematical notation. The derived sets will also serve as a part
of mathematical definitions of the data structures and functions containing con-
ditions for selection and coverage of graph elements.

41

4.2 Common Formalization

4.2.1.4 OCL Sets

For the following definitions, a single ruleset, i.e. one instance of the class Ruleset,
is considered. The set of all rules contained by the given ruleset allRules can
be gathered with the help of the operation getRules in the class Ruleset. Then,
the set of all bigstep rules possessing an invocation graph is computed from the
set allRules. These are objects of the class BigstepRule, which have at least one
invocation, because only they produce an invocation structure. Invocations of a
rule can be collected by accessing the association end nvocations of the class Rule,
see Figure 2.11.

Definition 4.1 B is a set of bigstep rules having invocation graphs in a ruleset:
B := allRules — collect(r | r.ocllsTypeO f(BigstepRule) A r.invocations.
not Empty()).

The set of smallstep rules, which are objects of the class SmallstepRule, is
computed from the set allRules as well.

Definition 4.2 S is a set of smallstep rules in a ruleset: S := allRules —
collect(r | r.ocllIsTypeO f(SmallstepRule)).

Invocations determine the order in which nodes of the invocation graph are con-
nected with each other. When several implementations of the invoked rule exist, a
single invocation corresponds to the invocation of several concrete rules character-
ized by their unique names. So, an additional relation expressing invocations for
them is needed. Such a relation in natural language is: a rule r; invokes another
rule ry, when there exists an invocation in the rule ry, whose invoked rule’s name
is equal to the name of 7 and the context node of r, is of type compatible to the
target node of this invocation.

According to Figure 2.11, invocations are represented by the class Invocation
that has an association targetnode pointing to a target node of an invocation.
The class Rule has an association contertnode pointing to a context node. Target
and context nodes are represented by the class Node, their types can be accessed
through the attribute type.

Definition 4.3 invokes(ry, r2) is a relation between two rules, where r; invokes
ro: invokes(ry,To) < Ji € ry.invocations and i.invokedRule = ro.name and
ro.contextNode.type.ocll sKindO f(i.target Node.type). The domain of this rela-
tion is: invokes(ry,) C rules X S.

In this section, auxiliary data sets needed for the definition of data structures
for coverage analysis in DMM have been derived from the ruleset meta model. So,
an invocation graph can be formally described in the next section.

42

4.2 Common Formalization

4.2.1.5 Definition of Invocation Graph

Invocation graph corresponds to exactly one bigstep rule serving as a root and
comprises all smallstep rules that can be derived from this bigstep rule using
invocation mechanism. That means that for each smallstep rule, there exists an
invocation path from the bigstep rule, i.e. the root of the graph, to this smallstep
rule, i.e. a node in the graph. So, the set of nodes of a single invocation graph is a
subset of the union B and 8, see Definitions 4.1, 4.2. Edges of the invocation graph
connect rule following each other directly during execution and are characterized
by their names formed from the unique names of rules

Definition 4.4 Invocation graph for the i-th bigstep rule bigstepRule; from the
set Bis a graph G' zn = (Vi, E;), where the set of nodes V; C BUS, the set of
edges E; CV; x Vi, and (v1,v9) € E; & invokes(vy, vg).

Then, the actual behavior in the form of GTS is formalized as well. GTS is a
graph with transitions containing labels of rules from the set B U S which were
used during the testing of a given example model, see Section 2.14.

Definition 4.5 Graph transition system is a graph: GT'S = (Vgrs, Ecrs), where
Vars is a set of graph states, Eqrs C VarsxVars is a set of graph transitions,
and Ve € E dr € rules : e.label = r.uniqueName.

In this section, two graphs serving as a basis for the coverage analysis in DMM
were formally defined. Further data structures derived from them and used for
the coverage computation directly are presented in the next section.

4.2.2 Additional Data Structure

The next data structure necessary for the coverage computation is a set of elements
to cover in order to achieve the coverage of 100% with respect to a certain coverage
criterion. The coverage criterion is determined through the selection of a coverage
item. To compute this structure, all invocation graphs corresponding to a given
ruleset are traversed and a set of elements satisfying the definition of the coverage
item is filtered.

The distinction in coverage item is expressed through the relation equals de-
termining when two elements are considered to be equal. A structural element
belong to elements e, if N0 other element equal to this one already exists in this
set. This relation is defined individually by each coverage criterion.

Definition 4.6 Let N be the amount of invocation graphs built for a given rule-
set, then elements ..o, for a certain coverage criterion are elements from the in-
vocation graphs selected as follows:

1. elements.opper == O;

43

4.3 Rule Coverage Criteria

2. Ve e UV |Gl sr:
if (Vey € elements oper : mequals(e, es))
elements oper = elementsqoper U €

endif.

According to the algorithm for coverage analysis in DMM, conditions when
elements e are considered to be covered during the semantics test execution
are specified as well. Analogously to the function equals, each coverage criterion
overwrites the function covered determining conditions for coverage with respect

to GTS.

Definition 4.7 elements qpereq for a certain coverage criterion is a set of elements
from elements e covered by the given GTS and computed as:

1. elements.opered := @5

2. Ve € elementS.oper :
if (covered(e, GTS))
elements opered ‘= elements opereq U €
endif.

Based on the sets derived above, the coverage value as a ratio of the size of the
set elementS overeq 10 the size of the set elements g, 18 computed.

lelementscopered|
lelementscover|

Definition 4.8 Cowverage value is a ratio: coverage =

This computation finishes the coverage analysis and the computed value is out-
put as the final result. In the following sections, new coverage criteria in DMM are
presented and these sets are further refined for each coverage criterion individually.

4.3 Rule Coverage Criteria

In this section, coverage criteria concerning rules in a ruleset are illustrated. Com-
mon structures for this coverage family are distinguished by a structural element
used, which is in this case nodes of the invocation graphs. The concrete rule co-
verage criteria are described in Sections 4.3.1, 4.3.2, and 4.3.3 according to the
following pattern. Firstly, the main idea is explained. Secondly, based on the idea,
the own formal specification of relations equals and covered is provided. Thirdly,
the application of the criterion on the running example is illustrated. Summarizing
the introduced points, the discussion about limitations of the criterion concludes
the description.

4.3.1 Rule Coverage

In this section, characteristics discriminated the simplest coverage criterion, rule
coverage, are described. This criterion serves as a minimal measure of quality for
a DMM semantics specification.

44

4.3 Rule Coverage Criteria

4.3.1.1 ldea

Rule coverage is a coverage criterion demanding that each rule from the ruleset is
exercised at least once during testing. From the GTRs’ point of view, it ensures
that at least one matching context of each rule is checked, since one execution
path containing this rule is enough to cover it that implies testing of at least one
matching context. Concerning invocation graphs, the set of elements to cover
contains rules from the set of invocation graphs having distinct unique names.
The rule’s location within this set does not matter.

Recalling the set of invocation graphs for the running example illustrated in
Figure 4.5, rules to test in order to achieve 100% of the rule coverage are high-
lighted in Figure 4.6. This is one possible set of elements to cover in the set of
invocation graphs. Other nodes of the invocation graphs having the same names
can be selected instead.

dismisslInternship m

[transfer 1)—»[transfer.2) cIearDepartment expand 1) [expand.2)

[clearlnternshlp) [deleteDepartment) E:reateSpeciallmernshi@
[deletelnternship) [clearinternship) [hireSpeciallntern)

v

addSpeciallnternship deletelnternship [deleteDepartment)
expandl) [expand.2) [expand.1l) [expand.2)

[createSpeciallnternship) E:reateSpeciallmernshi@
[hireSpeciallntern) [hireSpeciallntern)

Figure 4.6: Elements to cover for rule coverage

A rule is covered by one of computed GTSs, if there exist a label coinciding
with its unique name.

4.3.1.2 Formal Definition

The relation equals for the rule coverage considers two nodes as the same entity,
when their unique names coincide throughout all the set of invocation graphs.

Definition 4.9 equalsrc (v, v7) is a relation defining the condition when two
nodes are considered equal in the rule coverage : equalsgc(vy,ve) := (vi.uniqueName
= vy.uniqueName).

45

4.3 Rule Coverage Criteria

The relation covered for the rule coverage considers a rule covered by a given
GTS, when there exists a transition in GTS, whose label and the unique name of
the rule coincide.

Definition 4.10 coveredgrc(v, GT'S) is a relation defining the condition, when the
rule is covered by the given GTS in the rule coverage : coveredpe(v, GT'S) := (3t €
Ecrs N t.label = v.uniqueName).

4.3.1.3 Example

The goal is to check the DMM specification for the running example performing
TDSS with the rule coverage analysis. For this purpose test cases are created, in
order to exploit some part of the specification, which also contains some errors.
Errors are either the incorrect behavior that has been modeled or a matching that
has failed. For the rule coverage, the 14 rules depicted in Figure 4.6 should be
used each at least once to achieve the coverage of 100%.

After the execution of a first test case, parts of the semantics specification tested
are shown in Figure 4.7. Green nodes are rules that should be tested for the
rule coverage of 100%. Orange traces are execution paths through the semantics
specification that have been checked. Red elements designated with red lightnings
are faults in the semantics specification that have not been detected by testing so
far. Green lightnings indicate errors that have been found during the testing.

dismisslInternship
- 3
transfer.1 transfer.zj (clearDepartme% (expand.1 J (expand.2

(clearinternship) (deleteDepartment) GreateSpeciallnternshirD
(deletelnternship) (clearlnternship) (hireSpeciallntern J

addSpeciallnternship deletelnternship (deleteDepartment j
(expand.1) (expand.z} l expand.1 ; expand.2
\/

(createSpeciaIlnternship) GreateSpeciallnternshirD
(hireSpeciallntern) (hireSpeciallntern J

Figure 4.7: Rule coverage analysis with coverage < 100%

As it can be concluded from the picture above, the rule coverage of 100% was
not reached since the bigstep rule reorganize Firm and the smallstep rule expand.2
were never used during the semantics test. An error in the smallstep rule clearDe-
partment has been revealed and successfully corrected. But a lot of errors still

46

4.3 Rule Coverage Criteria

remain unrevealed, e.g. problems with rules expand.! and expand.?2 appearing in
contexts, other than the tested ones.

The execution of the second test case yielded the coverage of 100% and is
depicted in Figure 4.8. The rule expand.2, which was first marked in the invocation
graph for the bigstep rule addSpeciallnternship, was covered in another invocation
graph, that is legitimate regarding to the rule coverage. However, despite no new
errors have been disclosed, the maximum of coverage value is achieved.

=TS 3
transfer.1 transfer.z) (clearDepartme% (expand.1l) expand.2

dismisslInternship

=

(clearlnternship) (deleteDepartment) (createSpeciall nternship)
(deletelnternship) (clearlnternship) (hireSpeciallntern)
addSpeciallnternship deletelnternship (deleteDepartment)

(expand.1 J (expand.Z} expand.1 expand.2
E:reateSpeciaIlntemshi[a (createSpeciallnternship)

(hireSpeciallntern) (hireSpeciallntern)

Figure 4.8: Rule coverage of 100%

4.3.1.4 Discussion

Demanding the check of all rules from the invocation graphs with different unique
names helps to detect some error in the DMM semantics specification. However,
since a single rule is only tested in one matching context, some matching contexts
remain untested. So, this criterion is concluded to be weak, and a definition
of more powerful rule coverage criteria that checks more matching contexts is
desirable.

4.3.2 Rule Coverage Plus

In this section, properties of a more powerful criterion as the rule coverage, called
rule coverage plus, are explained. It considers rules not only within the whole set
of invocation graphs, but also within each invocation graph independently.

4.3.2.1 ldea

The idea of the rule coverage plus is to apply the rule coverage to each invocation
graph separately. Thus, the rule coverage plus is a coverage criterion requiring

47

4.3 Rule Coverage Criteria

that all rules with unique names in every invocation graph are used at least once
during testing. It results in testing more matching contexts for the same rule, since
at least one matching context for a rule is checked within each invocation graph
where it appears. Rules to test in order to reach 100% of the rule coverage plus
for the running example are illustrated in Figure 4.9. This is a possible selection
of nodes within the invocation graphs, so each node within a single invocation
graph can be replaced by another one with the same unique name in this set.

dismisslInternship m m

transfer.1 transfer.2 cIearDepartment expandl) (expand.2)
\ /

[clearinternship) [deleteDjpartment) [createSpeciallnternship)
v v

(deletelntemship) (clearlnttrnship) (hireSpeciallntern)
v

[deleteDepartment)

[expand.1) [expand.2) expand.1 expand.2

\/

[createSpeciallnternship) createSpeciallnternship
v v

(hireSpeciallntern) [hireSpeciallntern)

Figure 4.9: Elements to cover for rule coverage plus

The size of the set is larger than for the rule coverage and equals to 21. So,
more elements need to be covered in order to reach the maximum coverage value.
According to this coverage criterion, multiple rules with the same name within the
same invocation graph are considered as a single element for covering by a GTS.
A rule is covered by a GTS, if a label with its unique name appears after a label
of the bigstep rule which this rule belongs to and no other bigstep rule intervene
in between.

4.3.2.2 Formal Definition

The relation equals for the rule coverage plus considers two nodes as the same en-
tity, when their unique names coincide within the same invocation graph. So, rules
with the same unique name appearing in diverse invocation graphs are considered
distinct.

Definition 4.11 equalsrcp(vy,v2) is a relation defining the condition when two
nodes are considered equal in the rule coverage plus : equalsgcp(vi, v9) := (v, v2
€ V; A vi.uniqueName = vy.uniqueName).

48

4.3 Rule Coverage Criteria

The relation covered for the rule coverage plus considers a rule covered by a
given GTS, when there exists a transition in the GTS, which covers this rule
according to Definition 4.10 of the rule coverage and belongs to the same bigstep
rule as the invocation graph which this rule is a part of. So, it is not enough
anymore to consider only rule’s name; the rule’s context regarding the bigstep
rules should be taken into account as well.

The relation follows(ty, t) expresses that a transition ¢, comes after the tran-
sition ¢; in a GTS and no bigstep rule intervenes between them. This relation is
necessary for determining which bigstep rule an observed smallstep rule belongs
to, since labels of smallstep rules invoked by a certain bigstep rule are situated
between a label of their own bigstep rule and a label of the next bigstep rule.
The relation follows can be formulated as: there should exist a path from t; to t,
in GTS such, that no element of this path belongs to the set B of bigstep rules
possessing invocation graphs.

Definition 4.12 follows(t1, t3) is a relation defining that the transition ¢, follows
the transition ¢; in GTS without interruption by a bigstep rule: follows(ty,ts) :=
(Htl...ti...tg € Egrg A /Etj €ty..tj..la N T; € B)

Now, the relation covered can be formulated. The relation follows used is
presented in Definition 4.12.

Definition 4.13 coveredrcp(v, GTS) is a relation defining the condition when
the rule is covered by the given GTS in the rule coverage plus: coveredgcp(v, GT'S)
= (Ft1,ts € Egrs N v € V; AN ty.label = bigstepRule;.uniqueName A
follows(ty,t2) N to.dlabel = v.uniqueName).

4.3.2.3 Example

The goal is to perform the rule coverage plus analysis on the DMM specification
for the running example. The set of elements to cover for the rule coverage plus
is depicted in Figure 4.9. The rule coverage of 100% is reached in a way depicted
in Figure 4.8. A projection of this view onto the rule coverage plus perspective is
illustrated in Figure 4.10.

The rule coverage plus is less than 100%, as the smallstep rule ezpand.2 in the
invocation graph for the bigstep rule addSpeciallnternship has not been tested.
So, new test cases are required in order to achieve the full rule coverage plus.
The execution of the new test case delivered the coverage value of 100% and is
illustrated in Figure 4.11.

As a result of the coverage analysis, a new error has been found in the DMM
semantics specification: the rule expand.2 in the invocation graph for the bigstep
rule addSpeciallnternship has been corrected by the developer. However, two
faulty rules ezpand.1 and expand.2 in the invocation graph for the bigstep rule
reorganizeFirm are still not tested, since the maximum coverage is achieved by
exercising an execution path that does not involve them.

49

4.3 Rule Coverage Criteria

dismisslinternship
- A\
transfer.1 transfer.z) (clearDepartme% (expand.1) (expand.2

(clearlnternship) (deleteDepartment) G:reateSpeciaIlnternship)
(deletelnternship) (clearlnternship) (hireSpeciallntern)
addSpeciallnternship deletelnternship (deleteDepartment)

(expand.1l) (expand.z} (expand.l} (expand.2)
G:reateSpeciallnternshi;a (createSpeciallnternship)
(hireSpeciallntern) (hireSpeciallntern J

Figure 4.10: Projection of 100% rule coverage onto rule coverage plus

4.3.2.4 Discussion

The rule coverage plus ensures that each rule applies correctly at least in one
matching context in each invocation graph where it appears. Thereby the rule
coverage plus tests more contexts and assists in finding more failures in the DMM
semantics specification, as the previous rule coverage. With the help of the rule
coverage plus, the rule coverage is guaranteed for each invocation graph providing
higher expressiveness of this criterion.

However, important matching contexts still remain untested and some incorrect
behavior was not detected as well. So, this criterion is concluded to be more
powerful as the rule coverage, but a definition of a more powerful rule coverage
criterion would be helpful.

4.3.3 Rule Coverage Plus Plus

In this section, the last rule coverage criterion, called rule coverage plus plus, is
elaborated. It ensures that all nodes from the set of invocation graphs are covered
during testing.

4.3.3.1 ldea

The main idea of the rule coverage plus plus is to cover all nodes of the invoca-
tion graphs. Nodes with the same unique name within one invocation graph are
considered being distinct for this coverage criterion. The rule coverage plus plus
demands to check those execution paths through the invocation graphs, which
include each node at least once. Since the merging of identical subgraphs during
the invocation graph’s construction assembles the equal matching contexts in one

50

4.3 Rule Coverage Criteria

1

(createSpeciaIlnternship)

(hireSpeciallntern)

Figure 4.11: Rule coverage plus of 100%

and leaves different ones untouched, more distinct execution paths are demanded
comparing with the previous rule coverage plus.

The illustration of parts of the DMM semantics specification to cover in order to
achieve 100% of the rule coverage plus plus for the running example is presented
in Figure 4.12.

Figure 4.12: Elements to cover for rule coverage plus plus

Here, rules with the same name have to be tested several times but in different
contexts, e.g. rule expand.1 and expand.2 once after the different bigstep rules
addSpeciallnternship and reorganizeFirm, and once within the same bigstep rule

51

4.3 Rule Coverage Criteria

but after the different rules reorganizeFirm and deleteDepartment. Even when a
rule follows the same one at different execution points, e.g. in the invocation graph
for the bigstep rule reorganizeFirm, the smallstep rule createSpeciallnternship al-
ways goes after the same two rules, the matching contexts at these points still can
differ, since the graph states resulting from application of the previous rules may
be different. So even in such a case, more parts of the semantics specification than
by the previous rule coverage criteria are tested.

For covering, to be able to distinguish nodes which rules with the same unique
name in the GTS represent, the context in which a rule appears should be taken
into account as well. For example, in the invocation graph for the bigstep rule
reorganizeFirm, when a rule expand.1 appears, one needs to know what exact
node to mark as covered: the one following the rule reorganizeFirm or the one
following the rule deleteDepartment. Looking at the sets of previous rules, it is
possible to determine the difference. For the cases like createSpeciallnternship,
when the previous rules for both instances are identical, both nodes are marked
as covered.

4.3.3.2 Formal Definition

The relation equals for the rule coverage plus plus considers two nodes equal, when
they are the same entity.

Definition 4.14 equalsrcpp(vi,v2) is a relation defining the condition when two
nodes are considered equal in the rule coverage plus plus : equalsgrcopp(vi,vs) :=
(Ul = Ug) .

The relation covered for the rule coverage plus plus considers a rule covered
by a given GTS, when there exists a transition in the GTS, which covers this
rule according to Definition 4.13 of the rule coverage plus and the set of incoming
labels for the rule’s label in GTS is a subset of the set of incoming edges of the
rule. The set of incoming rules for a rule r in an invocation graph is a set of source
nodes of edges which have this rule r as a target node.

Definition 4.15 incomingRules is a set of rules directly preceding the rule r,
in the invocation graph: incomingRules(r.) C V;, where incomingRules(r.) :=
Vi = collect(r | Je € E; A e.source =1 A e.target =r.).

Incoming labels are labels of transitions, which directly precede a given transi-
tion in the GTS. The set of incoming transitions for a transition ¢ in GTS is a set
of transitions which end in the same state as the transition ¢ starts.

Definition 4.16 incomingLabels is a set of labels of transitions directly preceding
the transition t. in the given GTS: incomingLabels(t.) C Egrs, where
incomingLabels(t.) := Eqgrs — collect(t | t.target = t..source).

Now, the formal definition for the relation covered can be formulated.

52

4.3 Rule Coverage Criteria

Definition 4.17 coveredrcpp(v, GT'S) is a relation defining the condition when the
rule is covered by the given GTS in the rule coverage plus plus : coveredrcopp(v, GTS)
= (v € V; AN 3Tty, to € Egrs N tyi.label = bigstepRule; uniqueName A
follows(ty,ta) A ta.label = v.uniqueName A incomingRules(v) = incomingLabels(ts)).

4.3.3.3 Example

The set of elements to cover for the rule coverage plus plus is depicted in Fi-
gure 4.12. The 100% of rule coverage plus is also achieved in a way depicted in
Figure 4.11. The projection of the 100% rule coverage plus onto the elements to
cover for the rule coverage plus plus is presented in Figure 4.13.

N o
transfer.1 transfer.z) (clearDepartme% (expand.1) (expand.23

(clearlnternship) (deleteDepartment) G:reateSpeciaIlnternshi@

dismissInternship

(deletelnternship) (clearlnternship) (hireSpeciallntern)

addSpeciallnternship

deletelnternship (deleteDepartment)
expand.1l

/ \
(expand.l} (expand.2)
\/

=R

expand.2

\/
G:reateSpeciallnternship) G:reateSpeciaIlnternshi@
(hireSpeciallntern) (hireSpeciallntern)

Figure 4.13: Projection of 100% rule coverage plus onto rule coverage plus plus

As shown in the graphic, the rule coverage plus plus is less than 100%, since
the smallstep rules expand.1 and ezpand.2 in the invocation graph for the bigstep
rule reorganizeFirm has not been covered. So, new test cases are created, and the
full rule coverage plus plus for the running example is achieved and illustrated in
Figure 4.14.

During the coverage analysis, both faulty rules expand.1 and expand.2 in the
invocation graph for the bigstep rule reorganizeFirm have been detected in the
DMM semantics specification. However, some incorrect behavior still remained.
The application of the rule transfer.2 immediately after the bigstep rule dismiss-
Internship and the recursive application of the rule transfer.1 do not deliver right
results. The reason is that the rule coverage plus plus demands the coverage of
execution paths,, that

53

4.4 Edge Coverage Criteria

nd.1)

dismisslinternship
-
transfer.1 transfer.z) (clearDepartme% (expal

expand.2

(clearlnternship) (deleteDepartment) G:reateSpeciaIlnternshi;D
(deletelnternship) (clearlnternship) (hireSpeciallntern)
addSpeciallnternship deletelnternship (deleteDepartment)

o

expand.1l expand. expand.1 expand.2
G:reateSpeciallnternship) G:reateSpeciaIlnternshi;D
(hireSpeciallntern) (hireSpeciallntern)

Figure 4.14: Rule coverage plus plus of 100%

4.3.3.4 Discussion

The rule coverage plus plus ensures the coverage of execution paths, which use all
nodes in the invocation graphs at least once. Thereby it assists in finding more
failures in the DMM semantics specification, as the previous rule coverage criteria,
since all rules are tested in more matching contexts than by the rule coverage plus.
Thus the rule coverage plus plus is considered as a more powerful rule coverage
criterion.

However, some errors in the DMM semantics specification still remain unre-
vealed. The reason is that the rule coverage plus plus leaves out the execution
paths formed from the already tested nodes in another way, i.e. cases when already
tested rules follow each other in different combinations during the execution. Such
incorrect behavior can be detected, when connections among rules would be taken
into account as well. For this purpose edge coverage criteria will be introduced in
the next section.

4.4 Edge Coverage Criteria

In this section, the edge coverage criteria concerning connections among rules in a
ruleset are illustrated. Common structures for this coverage family are defined on
the edges of invocation graphs. Three concrete edge coverage criteria are described
in Sections 4.4.1, 4.4.2, and 4.4.3 with regard to the pattern introduced for the
rule coverage criteria in Section 4.3.

54

4.4 Edge Coverage Criteria

4.4.1 Edge Coverage

In this section, the simplest edge coverage criterion, called edge coverage, is de-
scribed. This criterion guarantees that every possible pair represented by edges
in the set of invocation graphs is exercised during testing.

4.4.1.1 ldea

Edge coverage is a coverage criterion demanding that all distinct edges from the
invocation graphs for a given ruleset are exercised at least once during testing.
Each edge represents a pair of rules, following one another in an invocation graph
and occurring in a certain matching context. Similar to rules distinguished by
their unique names unequivocally, an edge is characterized unambiguously by its
name. This name is built from unique names of rules, connected by this edge, and
has a form: unique_name_of the_first_rule — unique_name_of _the_second_rule.
Examples of edge labels for the running example are: dismissInternship —
transfer.1l, transfer.l — transfer.1, etc. So, on the basis of invocation graphs,
the edge coverage ensures that all edges having different names are used at least
once during semantics test execution, i.e. they are a part of at least one execution
path generated during the test execution.

In order to illustrate the edge coverage criteria more conveniently, the semantics
of the running example will be modified, resulting in a larger amount of similar
edges within the invocation graphs. For this modification, the bigstep rule addSpe-
ciallnternship is dismissed, so is the corresponding invocation graph, and replaced
with a new bigstep rule named reorganizeFirm2. The behavior of this rule is simi-
lar to the bigstep rule reorganize Firm. The only difference is that reorganize Firm2
has four invocations ordered by sequence numbers: deleteDepartment (1), expand
(2), clearDepartment (3), and expand (4).

The modified set of invocation graphs for the running example with highlighted
edges to test for achieving 100% of the edge coverage is depicted in Figure 4.15.

As for the rule coverage, this set is only a possible collection of elements cor-
responding to the names of 19 edges required for testing in this case. Edges with
the same name no matter in which invocation graph are considered as the same
entity for the coverage analysis.

4.4.1.2 Formal Definition

The relation equals for the edge coverage considers two edges to be equal, when
their names coincide throughout the set of invocation graphs. Edges with the
same name appearing in diverse invocation graphs are considered equal.

Definition 4.18 equalsgc(eq,ez) is a relation defining the condition when two
edges are considered equal in the edge coverage : equalsgc(er, ea) := (ep.name =
es.name).

55

4.4 Edge Coverage Criteria

dismissinternship reorganizeFirm reorganizeFirm2

transfer.1 transfer.2 [expand.1l] expand.2 J [deleteDepartment]
2. clearinternship [createSpeciaIlnternshipD [expand.1
deletelnternship [hireSpeciallntern J G:reateSpecialIntemship]

- [deleteDepartment j [hireSpeciallntern]
clearFirm \
expand.1l expand.2 clearDepartment
clearDepartment \/

[createSpeciaIlnternshipD [deleteDepartment]
deleteDepartment *

[hireSpeciallntern J [expand.l expand.zj

I

\
/

—/
Y

expand.2]

/
\

I¢

\
/

J
Y

clearlnternship

/
\

[createSpecialInternship]

v

[hireSpeciallntern]

deletelnternship

Figure 4.15: Elements to cover for edge coverage

The relation covered for the edge coverage considers an edge covered by a given
GTS, when there exist two transitions in GTS, so that they directly follow each
other, their labels coincide with the names of the rules forming the edge, and their
order agrees with the direction of the edge (first source rule, than target rule).

Two transitions in a GTS follow each other directly, when they share a state,
i.e. a source state of one transition is a target state of another one. Moreover,
the label of one transition has to be the same as the edge’s source rule, and the
label of another - as the edge’s target rule. For the edge to be covered by these
transitions, their order should preserve the order in which rules appear in the
edge, i.e. the transition corresponding to the source rule should come before the
transition corresponding to the target rule of the edge.

Definition 4.19 coveredgc(e, GTS) is a relation defining the condition when an
edge is covered by a given GTS in the edge coverage : coveredgc(e, GT'S) := (3 ty,
ta € Egrs N ti.target = ty.source A ty.label = e.source.uniqueName A ty.label =
e.target.unique Name.

In order to mark an edge as covered, its name should be derived at least once
from the computed GT'Ss.

56

4.4 Edge Coverage Criteria

4.4.1.3 Example

The idea of coverage analysis remains the same as for rule coverage criteria. After
the execution of the first test case, parts of the semantics specification tested are
shown in Figure 4.16. The coloring used is similar to that for the rule coverage

analysis.

dismisslinternship reorganizeFirm

transfer 1 transfer.2 expand 1 expand.2 deleteDepartment
\ (clearlnternshlp) (createSpemaIlntemshlpa [expand 1 expand 2
(deletelnternsmp) (h|reSpeC|aIIntern) [createSpeuallnternsmp)
I (deleteDepartment [hireSpeciallntern
;[
expand.1l expand.2 cIearDe artment
cIearDepartmen P P *
(createSpemaIlntemshlpa [deleteDepartment
deleteDepartment

clearinternship

(hireSpeciaIIntern) [expand.l) expand.2

E:reateSpecialInternship)

v

[hireSpeciallntern)

deletelnternship

Figure 4.16: Edge coverage analysis with coverage < 100%

According to the graphic, the edge coverage of 100% was not reached so far,
since some green edges were never used during the semantics test. Faulty edges
dismissInternship — transfer.l and transfer.l — transfer.1 should also be
tested for the maximum of the coverage value. So, the coverage analysis continues.

Errors in the smallstep rules clearDepartment and expand.1 were revealed dur-
ing the exercising of edges clear Firm — clear Department and delete Department —
expand.l. The erroneous edges transfer.l — transfer.l are situated within the
recursion in the 1-st and later recursive loops. Errors in edges delete Department
— expand.l and delete Department — expand.2 in the invocation graph for the
bigstep rule reorganizeFirm2 signify some matching errors in the context of exact
this rule.

The execution of a second test case yielded the coverage of 100% and is depicted
in Figure 4.17. Errors in the bigstep rules dismissinternship and reorganizeFirm
were found. The maximum of coverage value is achieved, despite the error in the
recursive call still remains, since it occurs after the first loop through the recursion
that was only tested. Errors in the bigstep rule reorganizeFirm2 have not been
disclosed as well.

57

4.4 Edge Coverage Criteria

dismissinternship

Ii transfer.1 II transfer.2 expand 1 expand. 2 (deleteDepartment

4 (clearlnternshlp) (createSpemallnternshlp) [expand 1 ' expand.2 '

(deletelnternshlp) (hlreSpeuallntern) (createSpeuaIInternshlp)

reorganizeFirm

) (deleteDepartment (hireSpeciallntern)
Q
\ expand.1 expand.2 clearDepartment
clearDepartment
(createSpemallnternshlp) (deleteDepartment)
deleteDepartment
X (hireSpeciallntern) (expand.l expand.2
clearinternship \ /
- createS eciallnternshi)
deletelnternship (P ¥ p

(hireSpeciallntern)

Figure 4.17: Edge coverage analysis with coverage 100%

4.4.1.4 Discussion

Demanding the use of all edges from the set of invocation graphs with distinct
names involves testing of matching contexts, which were not exercised by the
rule coverage criteria, and helps to detect new errors in the DMM semantics
specification. These matching contexts concern different possible order sequences
of the same nodes of the invocation graphs.

Considering nodes having multiple incoming edges in the invocation graph, in
order to fulfill the requirements of the rule coverage criteria to use each rule at
least once, only one edge from those can be chosen each time during testing. In
contrast, the edge coverage considers such multiple edges as distinct objects and
forces to test all of them increasing the number of tested matching contexts.

However, a single pair of rules represented by an edge is only tested in one
matching context leaving the application of this pair on another possible graph
states unchecked. Thus, this criterion is concluded to be the weakest among the
edge coverage ones, and a definition of more powerful edge coverage criteria is
desirable.

4.4.2 Edge Coverage Plus

In this section, properties of a more powerful criterion than the edge coverage,
called edge coverage plus, are explained. It ensures that all edges with distinct
names in a single invocation graph are exercised during testing.

58

4.4 Edge Coverage Criteria

4.4.2.1 ldea

The idea of the edge coverage plus is to apply the edge coverage to each invocation
graph independently, thus requiring all distinct edges in every invocation graph
to be exercised at least once during testing. So, the edge coverage plus regards
edges having the same name but located in different invocation graphs as different
elements to cover. Each of these edges should be at least once a part of execution
paths generated during the semantics test and belonging to the same bigstep rule
as the invocation graph of this edge. Edges to test in order to reach 100% of the
edge coverage plus for the running example are illustrated in Figure 4.18.

dismissinternship reorganizeFirm reorganizeFirm2
;.. Q.. v
transfer.1 @sfer.Z) [expand.l) @)and.zj (deleteDepartment J
/
5. clearinternship Q:reateSpeciallnternshipj (expanm expand.2
deletelnternship (hireSpeciallntern j [createSpeciaIlnternshi@

) (deleteDepartment j (hireSpeciallntern j
clearFirm \ v
expand.1l expand.2
clearDepartment

Q:reateSpeciallnternshipj (deleteDepartment j
deleteDepartment + /\

- (hireSpeciallntern j (expand.l j [expand.2 J
clearinternship \/
teSpeciallnt hi
deletelnternship Q:reae pecia nterms ij

[hireSpeciallntern J

Figure 4.18: Elements to cover for edge coverage plus

For the edge coverage plus, the size of the set is larger than for the edge coverage
and equals to 26. So, more pairs of rules need to be tested in order to reach the
maximum of coverage value. The additional testing is motivated by the reasoning,
that even if a pair of rules works correctly in one matching context, it does not
exclude the possibility of erroneous behavior in another matching context, since
graph states, on which the rules apply, may vary according to the logic of the rules
applied before.

4.4.2.2 Formal Definition

The relation equals for the edge coverage plus considers two edges as the same
entity, when their names coincide within the same invocation graph. So, edges
with the same name appearing in diverse invocation graphs are considered distinct.

59

4.4 Edge Coverage Criteria

Definition 4.20 equalsgcp(es,ez) is a relation defining the condition when two
edges are considered equal in the edge coverage plus : equalsgpcop(er, ez) = (€.
name = es.name A ey, e; € E;).

The relation covered for the edge coverage plus considers an edge covered by a
given GTS, when there exist two transitions in the GTS, which cover this edge
according to Definition 4.19 of the edge coverage and belong to the same bigstep
rule as the invocation graph which this edge is a part of. So, the transitions
covering the edge should lie after the corresponding bigstep rule but before the next
following one that is expressed by the relation follows(t;,t;) in Definition 4.12.
Thereby, the context of a bigstep rule is taken into account.

Definition 4.21 coveredgcp(e, GT'S) is a relation defining the condition when an
edge is covered by a given GTS in edge coverage plus : coveredgcp(e, GTS) :=
(Ft1,tse, ty € Egrs N ty.target = ty.source A ty.label = e.source.uniqueName A
to.label = e.target.uniqueName N e € E; A ty.label = bigstepRule; A follows(ty,t1)).

4.4.2.3 Example

The edge coverage of 100% is reached in a way depicted in Figure 4.17. The
projection of this view onto the edge coverage plus perspective is illustrated in
Figure 4.19.

dismissinternship

I

reorganizeFirm reorganizeFirm2

transfer.1 transfer.2 expand.1 expand.2 deleteDepartment
ﬂ 2. (clearlnternship) (createSpeciallnternship) (expand.l expand.2
(deletelnternship) (hireSpeciallntern) (createSpecialInternship)
) (deleteDepartment) (hireSpeciallntern)
-
expand.1 expand.2
clearDepartment \/
(createSpeciallnternship) (deleteDepartment)
deleteDepartment v

- (hireSpeciallntern) (expand.l expand.2
clearinternship \ /

(createSpeciallnternship

L]

(hireSpeciallntern)

deletelnternship

Figure 4.19: Projection of 100% edge coverage onto edge coverage plus

60

4.4 Edge Coverage Criteria

The edge coverage plus is less than 100%, since some edges in the invocation
graph for the bigstep rule reorganizeFirm2 marked green still need to be covered.
So, a new example model is required in order to achieve the complete edge coverage
plus. The delivered coverage value of 100% and is illustrated in Figure 4.20.

reorganizeFirm reorganlzeFlrmZ

dismissinternship

* (

transfer.1 transfer.2 expand.1 expand.2 deleteDepartment
ﬁ 2. (clearlnternship) (createSpecialInternship) ' expand.1 ' ' expand.2 '
(deletelnternship) (hireSpeciallntern) (createSpeciallnternship)
) (deleteDepartment) (hireSpeciallntern
Q
expand.1 expand.2 cIearDe artment
cIearDepartmen P P *
(createSpemalInternshlp) (deleteDepartment
deleteDepartment
X (hireSpeciallntern) (expand.l expand.2
clearinternship \ /
createS eciallnternshi)
deletelnternship (P v P

(hireSpeciallntern)

Figure 4.20: Edge coverage plus of 100%

The new test case was designed in such a way, that it generates an execution
path through the branch of the first ezpand.! in the invocation graph for the big-
step rule reorganizeFirm2, revealing another error in the semantics specification.
However, one incorrect rule application between rules deleteDepartment and ex-
pand.2 in the invocation graph for the bigstep rule reorganizeFirm?2 is still not
discovered, since the maximum coverage is achieved by exercising an execution
path that does not involve them.

4.4.2.4 Discussion

The edge coverage plus ensures that each pair of rules represented by edges applies
correctly at least in one matching context in each invocation graph. Thereby the
edge coverage plus exercises more matching contexts and assists in finding more
failures in DMM semantics specifications than the previous edge coverage.

However, some incorrect behavior still was not detected, since not all of the exe-
cution paths were involved by the matching contexts used during testing. Thus,
this criterion is concluded to be more powerful as the edge coverage, but a defini-
tion of a more powerful edge coverage criterion would still be helpful.

61

4.4 Edge Coverage Criteria

4.4.3 Edge Coverage Plus Plus

In this section, the most expressive edge coverage criterion, called edge coverage
plus plus, is elaborated. It requires all edges from the set of invocation graphs be
covered during testing.

4.4.3.1 ldea

The main idea of the edge coverage plus plus is to test all pairs of rules appearing
in the form of edges in the set of invocation graphs. All the collected pairs show
matching contexts for a rule with respect to rules directly preceding it. Covering
all edges in the set of invocation graphs checks the same pair of rules on different
state graphs determined by the application of preceding bigstep and smallstep
rules.

The illustration of parts of the DMM semantics specification to cover in order to
achieve 100% of the edge coverage plus plus for the running example is presented
in Figure 4.21.

dismissinternship reorganizeFirm reorganizeFirm2

Gansferl transferzj (expand.1 j expand2 j [deleteDepartment j
2. clearinternship (createSpemalIntemshlpj (expand.1l expand.2
deletelnternship [hireSpeciallntern j G:reateSpeciallnternshipj
- (deleteDepartment j (hireSpeciallntern j
clearFirm \ V
clearDepartment
(createSpecialIntemshipj (deleteDepartment j
deleteDepartment

- [hireSpeciallntern j [expand.1l j (expand.2 j
clearinternship

- (createSpeciaIlntemshi@
deletelnternship

(hireSpeciallntern j

Figure 4.21: Elements to cover for edge coverage plus plus

Here, all edges of the invocation graphs should be exercised during the se-
mantics test. The equally named edges within one invocation graph have to be
tested several times, e.g. edge delete Department — expand.l once after the big-
step rules reorganizeFirm?2 and once after the smallstep rule deleteDepartment.
Even when an edge follows the same rule at different execution points, e.g. in
the invocation graph for the bigstep rule reorganizeFirm2 the edge expand.l —

62

4.4 Edge Coverage Criteria

createSpecialInternship always goes after the same rule deleteDepartment, the
graph states at these points still can differ. So even in such a case, more parts of
the semantics specification than by the previous edge coverage criteria are tested.

In order to be able to distinguish edges with the same name during the GTS
coverage, the context in which an edge appears should be taken into account as
well. For example, in the invocation graph for the bigstep rule reorganizeFirm,
when the edge expand.1 — createSpecialInternship appears, one needs to know
what exact edge to mark as covered: the one following the rule reorganizeFirm
or the one following the rule deleteDepartment. Looking at the sets of previous
edges, it is possible to determine the difference. For the cases like expand.1 —
createSpecialInternship in the invocation graph for reorganizeFirm2, when the
previous edges for both instances are identical, both nodes are marked as covered.

4.4.3.2 Formal Definition

The relation equals for the edge coverage plus plus considers two edges equal,
when they are the same entity. Different edges with the same name within one
invocation graph are considered being distinct for this coverage criterion.

Definition 4.22 equalspcpp(er,€2) is a relation defining the condition when two
edges are considered equal in the edge coverage plus plus : equalsgopp(er, e2) ==
(e1 = e3).

The relation covered for the edge coverage plus plus considers an edge covered
by a given GTS, when there exists two transition in the G'TS, which cover this
edge according to Definition 4.21 of the edge coverage plus and the set of labels
of transitions forming the incoming edges for the considered edge in the GTS is a
subset of the set of incoming edges for this edge in the invocation graph.

The set of incoming edges for an edges in an invocation graph is a set of edges
which have the source node of this edge as their target node.

Definition 4.23 incomingFEdgesIG is a set of edges preceding the edges e, in an
invocation graph: incomingEdgesIG(e.) C E;, where incomingFEdgesIG(e.) :=
E; — collect(e | e.target = e..source).

Incoming edges in a GTS are labels of transitions, which precede a transition,
representing the source node of a given edge, and their pairs form edges from the
set incomingFEdgesIG for this edge. A set of incoming transitions for a transition
t in GTS is a set of transitions which end in the same state as the transition ¢
starts.

Definition 4.24 incomingFEdgesGTS is a set of labels of transitions forming edges
which preceding a given edge e, in a GTS: incomingEdgesGTS(e.) C GT'S, where
incomingEdgesGTS(e.) = {t1.label — to.label | t1,ts,t3,t4 € Egrs N €. =
t3.label — td.label A tyi.target = ty.source N to.target = tz.source }.

63

4.4 Edge Coverage Criteria

Now, the formal definition for the relation covered can be formulated. The
relation follows used is presented in Definition 4.12.

Definition 4.25 coveredpcpp(e, GTS) is a relation defining the condition, when
the edge is covered by the given GTS in the edge coverage plus plus : coveredgcpp
(e, GTS) := (Tty, to, ty € Egrs N ti.target = ty.source A ty.label = e.source.
uniqueName A tg.label = e.target.uniqueName N e € E; N ty.label =
bigstepRule; N\ follows(ty,t1) A incomingEdgesIG(e) = incomingEdgesGTS(e)).

4.4.3.3 Example

The edge coverage plus of 100% is achieved in a way depicted in Figure 4.17. The
projection of the 100% edge coverage plus onto the elements to cover for edge

coverage plus plus is presented in Figure 4.22.

dismissinternship

reorganizeFirm

(

transfer.1 transfer.2 expand.1 expand.2 deleteDepartment
ﬁ 2. (clearlnternship) (createSpecialInternship) ' expand.1 ' ' expand.2 '
(deletelnternship) (hireSpeciallntern) (createSpeciallnternship)
) (deleteDepartment) (hireSpeciallntern
§\\(
expand.1 expand.2 cIearDe artment
cIearDepartmen P P *
(createSpeualInternshlp) (deleteDepartment
deleteDepartment
X (hireSpeciallntern) (expand.l expand.2
clearinternship

E;reateSpeciaIlnternship)

y

(hireSpeciallntern)

deletelnternship

Figure 4.22: Projection of 100% edge coverage plus onto edge coverage plus plus

As shown in the graphic, the edge coverage plus plus is less than 100%, since
some edges in the invocation graph for the bigstep rule reorganize Firm2 marked
green still need to be covered. So, a new example model is created in order
to achieve maximum of the edge coverage plus plus, which is illustrated in Fi-
gure 4.23.

During the coverage analysis, both faulty matching contexts delete Department —
expand.2 in the invocation graph for the bigstep rule reorganizeFirm2 has been
detected in the DMM semantics specification. However, some incorrect behavior

64

4.5 All-Paths Coverage

dismissinternship

Ii transfer.1 II transfer.2 expand 1 expand. 2 (deIeteDepartment

4 (clearlnternshlp) (createSpemallnternshlp) ' expand.l ' ' expand.2 '

(deletelnternshlp) (hlreSpeuallntern) (createSpeuaIInternshlp)

) (deleteDepartment) (hireSpeciallntern)
-
expand.1 expand.2 clearDepartment
clearDepartment

reorganizeFirm

(createSpeciallnternship) (deleteDepartment)
deleteDepartment

X (hireSpeciallntern) (expand.l expand.2
clearinternship

(createSpeciallnternship)

Y

(hireSpeciallntern)

deletelnternship

Figure 4.23: Edge coverage plus plus of 100%

still remains. The recursive application of the rule transfer.1 does not deliver
correct results after a certain recursive loop. This error will not be found, since
the maximal edge coverage plus plus involves the execution of all edges once, that
leaves out the execution of paths containing repetitions of the same edges.

4.4.3.4 Discussion

Edge coverage plus plus ensures that all edges from the invocation graphs are
tested. Thereby it tests more occurrences of rule pairs than edge coverage plus
and so assists in finding more failures in DMM semantics specifications, as the
previous edge coverage criteria. Thus, edge coverage plus plus is considered as the
most powerful criterion from this coverage family.

However, some errors in the DMM semantics specification still remain unre-
vealed. They concern special execution paths, when already tested edges could
follow each other in a recursive fashion during the execution. Such incorrect be-
havior can be detected, when more execution paths would be taken into account.
For this purpose all-paths coverage criterion will be introduced in the next section.

4.5 All-Paths Coverage

In this section a coverage criterion concerning executional paths, which can be
derived from a given ruleset, is explained. This criterion is considered to be the

65

4.5 All-Paths Coverage

most expressive one among all presented above. It is described according to the
pattern used for the rule and edge coverage criteria.

4.5.1 ldea

All-paths coverage is a coverage criterion demanding that all distinct paths in the
invocation graphs for a given ruleset are exercised at least once during testing.
All paths are all possible routes through the invocation graph from its root to all
its leaves. Similar to other elements distinguished by their names unequivocally,
a path is characterized unambiguously by a list of labels of rules composing it.

In order to visually illustrate this criterion, the set of invocation graphs used for
edge coverage analysis is taken. All paths to test for achieving 100% of all-paths
coverage are formed from the edges highlighted in Figure 4.24.

1--f§CU'ﬁi°” dismisslinternship reorganizeFirm reorganizeFirm2
ept

transfer.1 transfer.2 [expand.1l) expand.2) [deleteDepartment)
(recursion [clearlnternship) Q:reateSpeciallnternship) [expand.1l expand.2

depth +1)..

[deletelntemship) [hireSpeciallntern) G:reateSpecialImernshi@

, [deleteDepartment) [hireSpeciallntern)
clearFirm \ v
Comm1) (omm?)
clearDepartment
Q:reateSpeciallnternship) [deleteDepartment)
deleteDepartment
- [hireSpeciallntern) [expand.1l) [expand.2)
clearinternship
createSpeciallnternshi
deletelnternship [pec |p)

[hireSpeciallntern)

Figure 4.24: Elements to cover for all-paths coverage

All-paths coverage is aimed to handle errors and test application of rules within
recursive calls, since neither the rule coverage plus plus nor edge coverage plus plus
check execution paths containing a repetition of one or several graph elements. As
it is also known from the coverage criteria in software engineering, the presence
of loops causes infinite number of paths. The same problem arises in invocation
graphs as well.

In order to limit the number of paths, a special parameter, called recursion
depth, is introduced. It contains information about how many times the control

66

4.5 All-Paths Coverage

flow should go through a repeated structure. Considering a recursion with recur-
sion depth NV on a single edge, it will result in /N paths containing this edge and
each with ¢ repetitions of it, where ¢ = 1, N. This parameter can be set by the
developer for every round of all-paths coverage analysis.

Thus, on the basis of invocation graphs, all-paths coverage ensures that all paths
down to a specified recursion depth are used at least once during semantics test
execution, i.e. they appear at least once in the computed GTSs.

4.5.2 Formal Definition

The coverage item for the all-paths coverage is a single path. A path is a list of
rules, following one another in an invocation graph, where the starting rule is a
bigstep rule, i.e. root of the invocation graph, and the ending rule is a smallstep
rule that has no more invocations, i.e. leaf of the invocation graph. The definition
of a path belonging to the i-th invocation graph is provided below.

Definition 4.26 path; is a path in the invocation graph G pp: path; :={ (r1.
uniqueName, ...,ry.uniqueName) | r,....,ty € Vi N r; = bigstepRule; N Ae €
E;:esource =ry N Vj=(1,N—1):3e€ E; A e.source =r; N e.target =
Tjt1 }-

The common structures defined for the coverage criteria in Section 4.2.2 are
valid for the all-paths coverage as well. They use the path from Definition 4.26 as
structural elements. So, the relations equals and covered are left to define.

The relation equals for the all-paths coverage considers two paths equal, when
their lists of labels coincide, i.e. they have equal sizes and consist of the same labels
following each other in the same order. Only paths from to the same invocation
graph can possibly be equal, as otherwise they would have different starting labels.

Definition 4.27 equals aypains(path;, path;s) is a relation defining the condition,
when two paths from the same invocation graph are considered equal in the all-
paths coverage : equals aypains(pathii, path;y) = (path; = (ri1.unique Name, ...,
rin.uniqueName) A path;y = (rop.uniqueName, ..., oy uniqueName) N YVj =
(1, N) : rij.uniqueName = ryj.uniqueName).

The relation covered for all-paths coverage considers a path covered by a given
GTS, when there can be found a sequence of transitions in the GTS, directly
following one another, which has the same length as the path, and labels of its
transitions coincide with unique names of the rules from the path comparing in
consecutive order.

Definition 4.28 coveredaypans(p, GT'S) is a relation defining the condition, when
a path p = (p1,...,pn) is covered by the given GTS in the all-paths coverage:
coveredaypains(p, GT'S) := (Jt1,....,txn € Egrs N (Vi= (1, N —1): t;target =
tir1.source A t;label =p;) AN (tn.label = py)).

67

4.5 All-Paths Coverage

4.5.3 Example

In this section, all-paths coverage analysis on the running example is shown. The
coverage values of 100% according to edge coverage plus plus is achieved in a way
depicted in Figure 4.23. The projection of the full edge coverage plus plus onto
the elements to cover for the all-paths coverage is presented in Figure 4.25.

deleteDepartment

dismisslinternship

A ! .
I i transfer.1 transfer.2

reorganizeFirm

expand.1l expand.2

recursion (clearlnternshlp) (createSpeuallnternshlp) expand.1l expand.2
denth (recursion
P depth +1) .. v v \/
(deletelntemship) (hireSpeciallntern) (createSpeciaIIntemship)
; (deleteDepartment (hireSpeciallntern)
§\(
expand.1 expand.2 clearDepartment
cIearDepartmen P P *
(createSpeuallnternshlp) (deleteDepartment
deleteDepartment

(hlreSpemaIIntern) (expandl ' ' expand.2 '

(createSpemalInternshlp)

clearinternship

deletelnternship

(hireSpeciallntern)

Figure 4.25: Projection of 100% edge coverage plus plus onto all-paths coverage

As it can be concluded from the graphic, the all-paths coverage is less than
100%, since edges within the recursion in the invocation graph for the bigstep rule
dismissInternship marked green still need to be covered. So, several new example
models are designed, in order to exercise the recursion with different amount of
repetitions. The complete all-paths coverage is achieved, when (recursion depth)
number of paths containing an increasing number of the edges transfer.l —
transfer.1 are tested during the semantics test execution.

The all-paths coverage of 100% for the running example is illustrated in Fi-
gure 4.26. During the coverage analysis, some incorrect behavior in the recursive
execution of the rule transfer.1 in the invocation graph for the bigstep rule dis-
missInternship has been detected in the DMM semantics specification. However,
some errors still can remain unrevealed, since the maximal all-paths coverage en-
sures the execution of all paths with repetitions until the recursion depth that
leaves out the execution paths having more recursive loops than the limit set by
the recursion depth.

68

4.6 Hierarchy of Coverage Criteria

deleteDepartment

dismisslinternship

\ = l
I i transfer.1 transfer.2

reorganizeFirm

expand.1 expand.2

recursion (ecursion (clearlnternship) (createSpemallnternshlp) expand.1l expand.2
depth depth +1) .. v v \/
(deletelnternship) (hireSpeciallntern) (createSpeciaIInternship)

} (deleteDepartment (hireSpeciallntern)

cIearDepartmen ' expand.1 ;' expand.2 | clearDepartment

(createSpemallnternshlp) (deleteDepartment)

deleteDepartment

- (hireSpeciallntern) (expand.l expand.2
VﬂE)

(createSpeciaI Internship)

y

(hireSpeciallntern)

deletelnternship

Figure 4.26: All-paths coverage of 100%

4.5.4 Discussion

The all-paths coverage is a coverage criterion expressing which part of all pos-
sible invocation sequences computed from a ruleset have been covered during the
test execution. Thereby, this criterion tests all possible matching contexts for
each rule exhaustively and so assists in finding more failures in DMM semantics
specifications than the previous rule and edge coverage criteria, since it involves
paths which were not engaged in testing before. Thus, the all-paths coverage is
considered as the most powerful coverage criterion in DMM.

However, there are some problems involved with this criterion. Because of
limited computational resources and an infinite number of paths produced by
loops, some of paths are excluded from the set to test through the recursion
depth. The 100% of the all-paths coverage is achieved, despite the erroneous
behavior contained in these excluded paths will not be discovered during testing.

4.6 Hierarchy of Coverage Criteria

In the previous sections, coverage criteria for testing DMM semantics specification
were introduced. In this section, interrelations among these criteria are discussed.
The hierarchy of the coverage criteria and a principle for its design are given in
Section 4.6.1. The interpretation of the created hierarchy with respect to the
introduced principle is provided in Section 4.6.2. Then, the hierarchy is discussed

69

4.6 Hierarchy of Coverage Criteria

further in Section 4.6.3.

4.6.1 Hierarchy

The main motivation to create a hierarchy of the coverage criteria in DMM is the
ability to judge about the power of each criterion individually. This is helpful for
the developer to know, which criterion would be the most appropriate for a certain
DMM semantics specification. The hierarchy of coverage criteria is presented in
Figure 4.27, where arrows designate hierarchical dependencies among criteria.

All-Paths Coverage

Edge Coverage ++
Edge Coverage +

Edge Coverage

Rule Coverage ++
Rule Coverage +

Rule Coverage

Figure 4.27: Hierarchy of coverage criteria according to expressiveness

The principle of the hierarchical dependencies is the following: if a coverage
criterion located on a higher level of hierarchy achieves a complete coverage, it
implies a complete coverage for all criteria placed lower than this one.

4.6.2 Interpretation

The reflection of the principle introduced above in the created hierarchy is ex-
plained in this section.

Each criterion of the same type created later expands the set of structural ele-
ments to cover of the previous one. As a consequence, each higher level coverage
criterion exercises all matching contexts tested by the lower level coverage crite-
ria, since structural elements in invocation graphs represents distinct matching
contexts due to the merging. The concrete reasoning for each hierarchy relations
presented in Figure 4.27 is the following:

1. All-Paths Coverage is on the top of the hierarchy, since it tests all paths
exhaustively or in the case of a loop up to the defined recursion depth that
includes matching contexts and structural elements tested by all other co-
verage criteria;

70

4.6 Hierarchy of Coverage Criteria

2. Fdge Coverage++ precedes Edge Coverage+, since it tests all edges appear-
ing in all invocation graphs that implies testing of all edges with unique
names in each invocation graph required by edge coverage plus;

3. Edge Coverage++ precedes Rule Coverage++, since it tests all edges ap-
pearing in all invocation graphs that implies testing all rules required by
rule coverage plus plus as a part of exercised edges;

4. Edge Coverage+ precedes Edge Coverage, since it ensures edge coverage for
every invocation graph;

5. Edge Coverage+ precedes Rule Coverage+, since it tests all edges with
unique names appearing in every invocation graph that implies testing all
rules with unique names required by rule coverage plus as a part of exercised
edges. There is also no need to think about whether the same entities were
picked out, as all elements in the set of elements to cover are characterized
by their names making the conformity of names determinative;

6. Rule Coverage++ precedes Rule Coverage+, since it tests all rules appearing
in all invocation graphs that implies testing of all rules with unique names
in each invocation graph required by rule coverage plus;

7. Edge Coverage precedes Rule Coverage, since it tests all edges with unique
names appearing in the ruleset that implies testing all rules with unique
names required by rule coverage as a part of exercised edges. The conformity
of name holding for the Edge Coverage+ and Rule Coverage+ remains valid
here as well;

8. Rule Coverage+ precedes Rule Coverage, since it ensures rule coverage for
each invocation graph.

In the hierarchy, edge coverage plus and rule coverage plus plus are not con-
nected by any arrow, since edge coverage plus does not test all rules in each
invocations graph, but only those belonging to edges with different names. And
the rule coverage criteria do not check all edges, required even by the simplest
edge coverage. Exactly in the similar manner, edge coverage does not imply rule
coverage plus, and another way around.

4.6.3 Discussion

The introduced hierarchy aims to assist the developer in estimation of the expres-
sive power of a particular coverage criterion. The developer should start the cove-
rage analysis with all-paths coverage. This criterion provides the most expressive
coverage analysis, because it tests either all possible execution paths exhaustively
or in the case of loops checks them to an extent defined by the developer through
the recursion depth. Having obtained the full all-paths coverage, the developer
achieves the complete coverage of all other coverage criteria as well.

71

4.7 Conclusion

The hierarchy built according to an increasing amount of tested matching con-
texts implies an increasing amount of errors that can be revealed, since checking
more matching contexts enables finding more errors. The rule/edge coverage plus
can discover errors in matching contexts of a rule/edge with the same name in
different invocation graphs, which were not checked by the rule/edge coverage.
The rule/edge coverage plus plus can find errors in different matching contexts of
a rule/edge appearing in the same invocation graph multiple times.

Regarding the relations between rule- and edge-types, each edge coverage crite-
rion finds errors, which can be disclosed by a corresponding rule coverage criterion.
This is guaranteed by the fact, that each edge coverage criterion exercise execution
paths going through all edges considered different according to it, while a corres-
ponding rule coverage criterion exercises some of them containing rules necessary
for testing. So, errors hidden in additionally checked edges can be discovered.

Concerning the relations between edge coverage and rule coverage plus, or edge
coverage plus and rule coverage plus plus, since their tested matching contexts are
not in any dependency, so they reveal different types of errors as well.

4.7 Conclusion

In this chapter, coverage criteria and their usage in the coverage analysis for testing
DMM semantics specifications are introduced and formally defined.

At the beginning, the invocation graph as a data structure representing a DMM
semantics specification for the definition of coverage criteria is presented. Its form,
the intuition for its usage in the definition of coverage criteria, and its common
formalization are illustrated. The formalization includes the algorithm for its
computation, the derivation of data sets and relations necessary for its definition,
and the formal definition of the invocation graph itself. Then, additional data
structures used for the definition of coverage criteria are presented based on the
invocation graph structure.

Coverage analysis is performed with respect to some coverage criteria, so three
different families of coverage criteria are developed for the coverage analysis in
TDSS: rule coverage, edge coverage and all-path coverage criteria. The rule cove-
rage family requires rules corresponding to nodes of the invocation graphs selected
according to certain conditions appear in particular execution paths in the gene-
rated GTSs. Three concrete rule coverage criteria are created, each delivering
more information about the correctness of DMM semantics specification regard-
ing exercised rules than the previous one.

The edge coverage family demands the same as the rule coverage family but
for pairs of rules corresponding to edges of the invocation graphs. It consists of
three concrete edge coverage criteria as well, each of which is more expressive
with regard to tested edges as the previous one. The all-paths coverage family
consists of one criterion, which ensures that all paths computed for the invocation
graphs are exercised during testing, restricting the paths resulting from loops by

72

4.7 Conclusion

the parameter of recursion depth.

In conclusion, a hierarchy among the developed coverage criteria is depicted,
in order to arrange them according to the property of expressiveness. There
hierarchical relations reflect the fact that a complete coverage of a certain coverage
criterion implies a complete coverage with respect to all coverage criteria situated
lower than this one. According to this hierarchy, the developer should always start
with the all-paths coverage, since it is the most powerful criterion among all.

But the problem regarding the computational complexity of the developed co-
verage criteria arises. The recommended all-paths coverage even with the lowest
recursion depth can still demand too much computational effort. The rule co-
verage is always feasible, but it delivers the least amount of information about
the correctness of the DMM specification. So, computational complexity of the
coverage criteria in between should be assessed for the developer to be able to
choose the suitable one for the semantics specification at hand.

For this purpose, the implemented coverage tool is introduced in the next sec-
tion, and its evaluation on a set of examples is provided.

73

5 DMM Coverage Tool

In this chapter, the implementation of the introduced approaches is presented,
which is integrated within the implementation of the DMM workbench realizing
the DMM approach and its features. It begins with the explanation of the DMM
coverage tool’s design and rationale provided in Section 5.1. The coverage ana-
lysis with the tool and its technical characteristics reflecting the computational
complexity of the coverage criteria based on application for several semantics spe-
cifications are discussed in Section 5.2.

5.1 Design

The DMM coverage tool consists of two general parts: the code executing the
coverage analysis and the code implementing the coverage criteria. The design of
components responsible for the coverage analysis is presented in Figure 5.1.

CoverageManager RGeS «interfacex
ruleset :Ruleset o> CoverageFactory ® Coverage
-coverageFactories A
|
AbstractCoverage
RuleCov erage EdgeCoverage

Figure 5.1: Design of components executing coverage analysis

The coverage analysis is executed by the class CoverageManager, which collects
all coverage criteria necessary for the current round of coverage analysis, a ruleset
to test, a test case, and a GTS computed for it. Each coverage criterion inher-
its from the class AbstractCoverage, which realizes all methods from the interface
Coverage needed to implement for a single criterion and to report about it. The in-
terface Coverage contains the interface CoverageFactory, which assists in creating
executable coverage criteria that can be used during the coverage analysis. Fach

74

5.1 Design

coverage criterion is realized by a class implementing this interface and making a
particular criterion ready for execution. As examples, rule and edge coverage cri-
teria are illustrated in this graphic, i.e. classes RuleCoverage and FEdgeCoverage.
Classes implementing other coverage criteria look exactly the same.

The rationale of this design is a possibility to adjust the coverage analysis to a
particular situation with the help of CoverageManager. It serves as a central unit
to determine the coverage criteria and test cases to use. Moreover, all methods
necessary for the definition of each coverage criteria are generalized in the interface
Coverage. It facilitates expansion of the tool with further coverage criteria and
maintenance in the case of changing the existing ones. This design is also believed
to provide better understandability of the source code.

The design for edge coverage criteria is shown in Figure 5.2 and serves as an
example of the design of rule coverage and all-paths coverage criteria as well.

RuleNode

. h i
DefaultDirec tedGraph<V,E grap ity EEEmE e ICTEEEen

® - invocations :list<Invocation>

1 - ruleset :Ruleset root :boolean
rule :Rule
-setOflnvocationGraphs, 0.*
DataGts EC

EdgeCoverageHelper

o— - bigstepRule :string

previousState :string

~helper = ~helper - state :GraphState
/~helper /‘\ 1 1

EdgeCoverage EdgeCoverageP EdgeCoveragePP

Figure 5.2: Design of components for edge coverage criteria

Edge coverage criteria are represented by classes EdgeCoverage, EdgeCoverageP,
and EdgeCoveragePP correspondingly. The functionality common for all edge
coverage criteria is extracted in the helper class EdgeCoverageHelper. The class
EdgeCoverageHelper calls the functionality of the class InvocationGraphCreator
mapping the given ruleset to a set of invocation graphs, which are instances of
the class DefaultDirectedGraph. The class DefaultDirectedGraph has an auxiliary
class RuleNode, which represents nodes of the invocation graph with all necessary
information regarding it, like a corresponding rule, whether it is a root in the
invocation graph, and a set of rule’s invocations. The class EdgeCoverageHelper
contains the class DataGtsEC, which assists in covering the structures computed
based on the invocation graph by storing the information derived from the input
GTS.

The advantages of this design are, firstly, the functionality concerning the con-
struction of the invocation graph is consolidated in one class and its results are

75

5.2 Example Application

reused for all coverage criteria participating in the coverage analysis. Secondly,
all necessary information about a single node of an invocation graph is stored in
the class RuleNode and can be used in different stages of execution without the
need to traverse the invocation graph once more. During the coverage, the given
GTS is also traversed only once saving all needed information with the help of the
class DataGtsEC. The computation for all three edge coverage criteria is imple-
mented in the general fashion and differs only in parts distinct for each criterion
individually.

In general, the design is aimed to implement the concept as general as possible
and facilitate expansion, maintenance, and understandability of the source code.

5.2 Example Application

In this section, the application of the DMM coverage tool on several examples is
presented. Firstly, the coverage analysis performed with the tool is described in
Section 5.2.1. Secondly, the computational complexity of the developed coverage
criteria computed with the DMM coverage tool is discussed in Section 5.2.2.

5.2.1 Coverage analysis

In order to execute the coverage analysis with the DMM coverage tool, a DMM
semantics specification in the form of a ruleset and a set of example model with
the specified expected behavior should be given. As a result, a coverage report
containing the result of the coverage analysis is formed. An excerpt from the cove-
rage report for the running example concerning the all-paths coverage is depicted
in Figure 5.3.

Coverage report: All-Paths Coverage

Description: It is a ratioc of paths tested during the tests ewxecution to all posible paths in the given ruleset.

Ruleset: hr

Coverage: 38,88%

Additional Information:

of paths: 18

of paths covered: 3 out of 1@

Suggestions for improvement:

The following paths are not tested by any test model - provide additional test models such that these paths are
reorganizeFirm expand.2 createSpecialInternship hireSpecialIntern deleteDepartment expand.2 createSpecialIntert
recrganizeFirm expand.2 createSpecialInternship hireSpecialIntern deleteDepartment expand.l createSpecialIntert
addspecialInternship expand.2 createSpecialInternship hireSpecialIntern]

clearFirm clearDepartment deleteDepartment clearInternship deleteInternship]

dismissInternship transfer.l transfer.l transfer.2 clearInternship deleteInternship]

dismissInternship transfer.2 clearInternship deleteInternship]

reorganizeFirm expand.l createSpecialInternship hireSpecialIntern deleteDepartment expand.2 createSpecialIntert

— e ————

Figure 5.3: Coverage report: all-paths coverage

For each coverage criterion participating in the coverage analysis, it consists of
the coverage value in percent, the overall amount of structural elements to cover

76

5.2 Example Application

and the amount of covered ones. If the coverage of 100% has not been achieved,
recommendations which part of the semantics specifications have to be tested
further, in order to improve the coverage value, are given. In this graphic, paths
which were not exercised during the testing process are listed. The developer
should consider these, when creating new test cases to improve coverage.

The excerpt from the coverage report concerning edge coverage plus is presented
in Figure 5.4. In this part, recommendations are given for each bigstep rule
individually.

Coverage report: Edge Coverage +

Description: It is a ratio of edges covered during the tests execution to all edges with different names in .

Ruleset: hr

Coverage: 52,17%

Additicnal Information:

of edges: 23

of covered edges: 12 out of 23

suggestions for improvement:

The following edges are not tested by any test model - provide additional test models such that these edges
In bigstep rule addSpecialInternship: [addSpecialInternship->expand.2 expand.2->createSpeciallnternship]
In bigstep rule clearFirm: [clearDepartment->deleteDepartment clearFirm->clearDepartment clearInternship-
In bigstep rule dismissInternship: [dismissInternship->transfer.2 transfer.l-»>transfer.l]

In bigstep rule reorganizefirm: [deleteDepartment-rexpand.2 expand.2->createSpecialInternship reorganizef

Figure 5.4: Coverage report: edge coverage plus

Some lists of recommendation for increasing the coverage ratio can be rather
long. Consider a language modeling a metro system with the ruleset consisting of
the same amount of rules as that for the running example, the amount of paths to
cover with respect to all-paths coverage equals 684 and the amount of covered path
equals 1 for this language, see Figure 5.5. The recommendation consists of a list of
683 paths, which are impossible to take into account by the developer at once. So,
the developer should choose several paths and create test cases exercising them.

Coverage report: All-Paths Coverage

Description: It is a ratio of paths tested during the tests execution to all posible paths in the given ruleset.

Ruleset: Metro_Rules

Coverage: @,15%

Additional Information:

of paths: 684

of paths covered: 1 out of 684

suggestions for improvement:
The following paths are not tested by any test model - provide additional test models such that these paths are generated!

Figure 5.5: Coverage report for metro semantics

Another observation concerns the fact that some rules, which are covered for the
rule coverage plus, are uncovered for the rule coverage plus plus. Such situation
may happen, when a particular rule has several incoming edges in the invocation
graph, and so all these contexts must be tested for its coverage with respect to
rule coverage plus plus. In the case, when only some edges from the incoming ones
appear in the GTS leaving the other edges untested, the rule is covered by rule

77

5.2 Example Application

coverage plus but remains uncovered by rule coverage plus plus. Analogously for
the edge coverage family, edge coverage plus plus can have edges covered by edge
coverage plus in the list of uncovered elements, since they have several incoming
edges, not all of which were checked during the testing.

5.2.2 Technical Characteristics

In the previous section, a testing of the DMM coverage tool on two examples,
the running example and the language modeling metro system, were introduced.
These examples were rather simple for modeling a real problem domain. In con-
trast, the UML semantics, like UML activities, UML state machines, or UML
interactions, represents languages complicated and large enough for modeling the
real world. For more information see UML Specification [9] and the UML refen-
rence manual [16]. The behavior of UML activities with the help of DMM is
described in the dissertation of Hendrik Hausmann [11].

For the assessment of computational complexity, two semantics specifications
used in the previous section are considered. The average run time of the coverage
analysis for all developed coverage criteria with the DMM coverage tool is pre-
sented in Table 5.1 on Page 78. For each example semantics, coverage analysis is
performed on two different example models from each language.

Table 5.1: Average run time for coverage analysis with DMM coverage tool (msec)

Exam- | Inv. All- Edge++ | Edge+ | Edge | Rule++ | Rule+ | Rule
ple graph | paths

Run. 197 14 30 9 8 19 13 6
ex. o6 87 13 21 60 17 4
Metro | 183 ATT7 1302 7 103 | 1446 109 3
ex. 193 73 8 15 20 17 6

It can be concluded from the table that the easiest criterion to compute is rule
coverage that proves the assumption about its simplicity made before. Depending
on example models used, the fluctuations in coverage values differ. However,
the overhead needed for the computation of rule coverage plus plus and edge
coverage plus plus is usually significantly larger than the overhead required by
edge coverage, edge coverage plus, and rule coverage plus.

In the case of a semantics specification having a small amount of paths like in the
running example, all-paths coverage remains feasible to compute. However, for the
semantics having much more paths like in the metro example, its computational
effort depends on an example model used. As shown in the table for the metro
example, the all-paths coverage value for the first example model is several times
more than for edge coverage plus or rule coverage plus, but it is still feasible in
comparison with rule coverage plus plus and edge coverage plus plus. In this case,

78

5.2 Example Application

the time for coverage in rule coverage plus plus and edge coverage plus plus is
more than the time for computing all paths. However, for the second model, the
overhead for all-paths coverage is the largest, since the time for computation of
all paths is much more than the time for the coverage itself.

As a result of the coverage analysis for two example semantics shown above,
there is a tendency for rule coverage plus plus and edge coverage plus plus to
require more computational time than the other criteria, even all-paths coverage.
For the metro example, the all-paths coverage was computed with the recursion
depth of 1. The all-paths coverage with the recursion depth of 2 is infeasible for
this language. So, for semantics specifications represented by invocation graphs
containing conditions and recursions, all-paths coverage could be infeasible at all.
Thus, the computation time depends mostly on the semantics specification at
hand, and cannot be exactly predicted in advance.

This evaluation could be helpful for a developer, who would like to test the crea-
ted DMM semantics specification, in order to choose the most suitable coverage
criteria, which would deliver the most information about the correctness of this
specification, see hierarchy in Figure 4.27, and still would possess an affordable
computational complexity.

The general advise for finding this compromise would be to start with the
edge coverage plus, since this criterion implies three other criteria, which are
edge coverage, rule coverage plus and rule coverage, and requires relatively few
computational efforts. If it is computable, rule coverage plus plus or edge coverage
plus plus can be tried, depending on which one is computable. It is better to start
with edge coverage plus plus, since it implies rule coverage plus plus. If no criteria
of mentioned above are feasible, further advice would be to perform both edge
coverage and rule coverage plus, since they handle different structural elements
and reveal different kinds of errors. In the worst case, execute the rule coverage
as a minimum guarantee of quality.

79

6 Outlook: Critical Pair Analysis

This chapter suggests the application of critical pair analysis (CPA) as an outlook
for this thesis, in order to achieve more sophisticated coverage analysis in DMM.
The problem that can be handled with the help of CPA is introduced in Section 6.1.
The idea of CPA is explained in Section 6.2, in order to illustrated how this
approach could be used further for the DMM coverage analysis. A possible way
to facilitate the stated problem by applying CPA is proposed in Section 6.3.

6.1 Problem

The DMM coverage analysis developed in this thesis concerns separate parts of a
DMM semantics specification, i.e. it checks the correctness of logic within bigstep
rules individually. However, several bigstep rules can apply on a given example
model in different sequences, since they match on a current graph state whenever
possible. Connections between bigstep rules are not considered during the coverage
analysis. In order to check the correctness of a DMM semantics specification as
a whole, it is desirable to test all possible sequences of bigstep rules, which can
occur during the execution of this semantics specification.

The trivial solution for this problem could be testing of all permutations of all
bigstep rules. However, bigstep rules do not follow each other in arbitrary order,
as their order is determined by the possibility of matching of one bigstep rule after
the executed invocation sequence belonging to another bigstep rule. Even if every
bigstep rule from the ruleset can follow all other bigstep rules, it could not be
computationally feasible to test all the possible combinations, since their amount
combinatorially explodes when the number of bigstep rules gets larger.

So, it would be helpful to limit the amount of all permutations to the amount of
feasible or interesting ones. The infeasible permutations can never be obtained by
testing, because the suitable matching cannot be generated during the execution.
So, these should be excluded from the set of all permutations to test. Interesting
permutations are those, in which bigstep rules influence each other. For example,
if one bigstep rule must not apply after another bigstep rule, this situation is
interesting to check for correctness.

So, CPA as a possible approach to handle the problem of testing interrelations
among bigstep rules is presented in the next section.

80

6.2 Idea

6.2 ldea

According to Ehrig et al. in [3], Hausmann et al. in [12], and Mens et al. in [14],
CPA is a technique to detect conflicts and dependencies among rules. A critical
pair is a pair of GTRs, which are in conflict with each other, meaning there exists
an application of one GTR, which disables an application of the second GTR, and
vice versa. A dependency is a situation, when two rules cannot be be exchanged
without affecting the overall result of the sequence.

There are three main types of conflicts, which can be detected between two

GTRs r; and ro by CPA:

1. delete-use conflict, when r; deletes some graph object, that is required by
ro for matching;

2. produce-forbid conflict, when r; produces some graph objects, that together
with existing ones form a NAC contained in 7;

3. change-attribute conflict, when ry changes attributes, that influence the
matching of rs.

There is also a notion of parallel independence between two GTRs. It implies
that the applications of these GTRs in arbitrary order produces the same result.
When a GTR can apply before but not after another GTR, then asymetrical
conflict between these GTRs takes place. Symmetrical conflict refers to the case,
when rules disable each other mutually.

A tool implementing CPA is called Attributed Graph Grammars (AGG) and
described in [3]. It is also accessible online under the AGG Homebase [18]. The
AGG tool can be exploited as follows. Firstly, a meta model in the form of a type
graph should be specified. Secondly, using this meta model, a set of GTRs are
defined. NACs and multiplicities can be specified within the AGG as well. Thirdly,
the conflicts described above are searched in these graph transformations.

In order to find conflicting GTRs, minimal critical graphs application to which
cause conflicts between rules are computed. These minimal graph are intersections
of the left-hand sides of these GTRs. Conflict means that there is at least one
item in such a graph, which is deleted or changed somehow by one of these GTRs,
and both of them are applicable to this graph.

The result of this search is a matrix mapping the GTRs to themselves and
marking conflicting pairs and specifying types of conflicts occurred. After the
conflicts have been calculated, different ways of solving them exist. Firstly, paral-
lel applications of rules resulting in conflicts can be solved by setting priorities by
the developer. Symmetric conflicts can be resolved by fixing the order of conflic-
ting rules. The asymmetric conflicts can be worked out by performing additional
actions enabling the application of the following rule.

The idea of possible use of the CPA approach and its program realization for
the DMM coverage analysis is discussed in the next section.

81

6.3 Discussion

6.3 Discussion

Section 2.3.2 showed that the logic of a single bigstep rule is spread onto a set
of smallstep rules belonging to its invocation sequence. In order to compute
the absolute dependencies among bigstep rules with the help of CPA, changes of
the initial host graph made by the invoked smallstep rules should be propagated
up. Having the result of the invocation sequence’s execution, its conflicts and
dependences with other bigstep rules can be computed. However, this method
may demand much computational efforts, so a limitation of the computation only
on bigstep rules is proposed.

So, CPA can be applied to discover dependencies and conflicts among bigstep
rules only, in order to figure out on the level of bigstep rules whether some problems
are already present in the general logic of the semantics specification. As also
explained in [12], detected conflicts or dependencies do not immediately mean
errors in the specification. They could be an intentional part of the specified
behavior, since rules can be dependent according to the modeled behavior as well.

Then, a graph containing all bigstep rules as nodes and connections between
rules showing allowed sequencing could be built. Such graph would represent all
sequences of bigstep rules, which could match one after another during the execu-
tion and, therefore, should be tested. A coverage analysis on that graph could be
used as a metrics for this testing process. The more advanced application of CPA
could consider the behavior of smallstep rules, so computing all dependencies in
the whole ruleset.

In order to integrate CPA into the DMM coverage analysis, a mapping from a
syntactical meta model in DMM to a graph representing a meta model in AGG
should be implemented. Elements of a ruleset should also be transformed into
the format of GTRs in AGG. After these steps, CPA features available in AGG
can be exploited. The developer uses the feedback about the analysis results for
correction of the DMM semantics specification if necessary.

So, application of this approach would reveal additional dependencies among
structural elements of a DMM semantics specification, thereby assisting in testing
more matching contexts and finding more possible errors in the specified behavior.

82

7 Conclusion

In this chapter, the main results of this thesis are summarized and some perspec-
tives for future development of the topic are proposed. The essence and benefits
of the thesis are described in Section 7.1. Open questions left and perspectives for
this work follows in Section 7.2.

7.1 Summary

In this thesis, quality of DMM semantics specifications as a correspondence bet-
ween this formal specification and the semantics specified informally is discussed.
The TDSS approach assists in developing high quality DMM semantics specifi-
cations through continuous testing on a set of example models, which exercise
particular parts of a DMM semantics specification revealing incorrect behavior
in them. A solution for an improvement of the quality of DMM semantics spe-
cifications through an improvement of the quality of testing these specifications
was proposed. This solution consists in an expansion of the TDSS testing with
a coverage analysis for it. The coverage analysis delivers an extent, to which a
DMM semantics specification is checked for correctness, that delivers a particular
confidence about its quality.

In order to perform the coverage analysis, a new data structure expressing
the control flow in DMM semantics specifications called invocation graph has
been introduced. Based on the invocation graph, new coverage criteria have been
specified through a selection of structural elements representing a set of elements
to cover and a specification of conditions, when these elements are covered during
the coverage analysis. According to this procedure, three families of coverage
criteria in DMM, which are coverage regarding rules, edges, and paths in the
invocation graph, have been developed. Each of them has been described by its
idea, formal definition, application example, and relation to the other criteria.

Coverage criteria within the rule or edge coverage family have been defined
with respect to increasing expressiveness. This means that each further criterion
exercises a DMM semantics specification to a larger extent than the previous ones.
Coverage criteria from the different families test different parts of the specification
with the possibility to reveal more incorrect behavior. The all-path coverage tests
all possible execution paths exhaustively limiting the infinite number of paths
resulting from the loops by the amount of rounds through it. In order to formalize
the relations among the developed coverage criteria, their hierarchy with respect
to the property of expressiveness has been created.

83

7.2 Perspective

Then, the coverage analysis with respect to the presented coverage criteria has
been realized by a DMM coverage tool. With the help of this tool, an approxi-
mate computational complexity for each coverage criterion has been evaluated by
application on a set of example DMM semantics specifications.

The technique elaborated in this thesis is a way to facilitate quality assurance
for DMM semantics specifications. The developer has a means to check a certain
level of correctness of these semantics specifications determined by the used co-
verage criterion and find erroneous behavior in them. The developer has a set of
coverage criteria in disposal, from which the most suitable one, delivering a com-
promise between the expressiveness and computational complexity, can be chosen
for testing the semantics specification at hand.

In general, this technique is applicable, in order to assure to some degree quality
of formal semantics specifications created with the help of DMM and TDSS. The
specifications are checked for correctness with the help of tests, quality of which
are estimated by the coverage analysis regarding the coverage criteria discussed
above. So, in the form of coverage analysis in DMM, the developer has a means
to obtain better tests for checking correctness of DMM semantics specifications.
Through a higher quality of testing, a larger extent of semantics specifications is
exercised resulting in improvement of their quality, which contribute to the quality
of models designed in these languages as well.

7.2 Perspective

The first problem with the proposed coverage analysis comes from the software
engineering and concerns unreachable rules or edges and infeasible paths in the
invocation graph. In this case, the coverage value of 100% cannot be always
reached no matter of the example models used. This problem is caused by the
fact that invocation graphs are computed based solely on the static information
contained in the ruleset and with no consideration of actual executional behavior.
For the rule or edge coverage criteria, it means that a certain matching context
can never occur. This case cannot be detected from the structure of the ruleset,
and so no matter which test cases are used, no coverage criteria can achieved the
coverage value of 100%.

The problem related to the all-paths coverage regards irrelevant paths, which
are paths that can never be executed. In DMM, assume that a developer would
like to test more paths by increasing the recursion depth and so adding more paths
into the set of elements to test by iterating more through the loops. Since the
information about the recursion stop implicitly or explicitly programmed into a
ruleset is not being propagated to the invocation graphs, it is never known whether
additionally generated paths still may be generated by any example model in this
language.

An example to illustrate this problem could be a recursion modeled in a way
that it stops after 2 loops. If a developer has enough computation power, the

84

7.2 Perspective

testing for the recursion depth 3 and 4 would seem to be beneficial. However, the
coverage would sink and complete coverage could never be achieved. In a simple
case, the developer could analyze the semantics specification and understand the
reason for such behavior. In a more complicated case, when it is impossible to
decide whether a path is irrelevant or not, example models which could generate
it have to be searched.

The process of finding models, which exercise particular parts of a DMM se-
mantics specification, may be hard or even impossible for the developer to realize
manually. So, a method to find a correspondence between an example model and a
particular part of a DMM semantics specification could be helpful. Moreover, the
problem of deciding whether some path cannot be reached during testing either
since a suitable example model cannot be found or since the path is impossible to
execute at all is also relevant for the topic of this thesis.

The topic of generating test data, satisfying special predefined conditions, is
discussed for test coverage in software engineering as well. One technique for
generation of an input exercising a selected branch for branch coverage is presented
by Gupta et al. in [10]. The idea of this approach is to dynamically refine
an initially chosen input, so that a selected path or element in the program is
executed. It also helps either to track the path by adjusting the input or to
identify the path as infeasible. For testing in DMM, it could mean starting with
some initial model, then refine it in a way that an aimed path is generated.

Another approach for automatic test data generation is proposed in [7]. It
is based on constraint solving techniques and uses constraint systems to detect
feasible paths and generate test data, global constraints to detect some of the
non-feasible paths, and partial consistency techniques to reduce the domains of
possible values. This approach could be adjusted for the coverage improvement
in the context of this thesis as well.

Further improvement of the quality assurance in testing DMM semantics spe-
cifications through an application of the critical pair analysis was also suggested.
This approach could assist in testing by checking the dependencies within a DMM
semantics specification. The idea of its application is described in detail in Chap-
ter 6.

85

Bibliography

1]

[10]

[11]

Standard Glossary of Terms Used in Software Testing, Version 2.1. Technical
report, Glossary Working Party, International Software Testing Qualifications
Board (ISTQB), April, 2010.

International Software Testing Qualifications Board. CTFL (Certified Tester
Foundation Level) Syllabus . Technical report, International Software Testing
Qualifications Board (ISTQB), 2011.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fun-
damentals of Algebraic Graph Transformation (Monographs in Theoretical
Computer Science. EATCS. Springer, March 2006.

Gregor Engels, Christian Soltenborn, and Heike Wehrheim. Analysis of UML
Activities Using Dynamic Meta Modeling. In M. M. Bosangue and E. Broch
Johnsen, editors, Proceedings of the Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2006), volume 4468 of LNCS,
pages 76-90, Oslo (Norway), June 2007. Springer (Berlin/Heidelberg).

Daniel Galin. Software Quality Assurance. Pearson Education, 2004.

Robert Gold. Control Flow Graphs and Code Coverage. Applied Mathematics
and Computer Science, 20(4):739-749, 2010.

Arnaud Gotlieb, Bernard Botella, and Michel Rueher. Automatic Test Data
Generation Using Constraint Solving Techniques. SIGSOFT Softw. Eng.
Notes, 23:53-62, March 1998.

Object Management Group. UML Testing Profile, Version 1.0. Technical
report, Object Management Group, 05-07-2007.

Object Management Group. OMG Unified Modeling Language (OMG UML)
Infrastructure Version 2.3. Technical Report formal/2010-05-03, 2010.

Neelam Gupta, Aditya P. Mathur, and Mary Lou Soffa. Generating Test
Data For Branch Coverage. In Proceedings of the International Conference
on Automated Software Engineering, pages 219-227. IEEE, 2000.

Jan Hendrik Hausmann. Dynamic Meta Modeling: A Semantics Descrip-
tion Technique for Visual Modeling Languages. PhD thesis, University of
Paderborn, 2005.

86

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

Jan Hendrik Hausmann, Reiko Heckel, and Gabriele Taentzer. Detecting Con-
flicting Functional Requirements in a Use Case Driven Approach: A Static
Analysis Technique Based on Graph Transformation. In Proceedings of the
24th International Conference on Software Engineering (ICSE 2002), Or-
lando, FL (USA), pages 105-155, New York, NY (USA), Mai 2002. ACM
Press.

[EEE. IEEE Glossary of Software Engineering Terminology, IEEE Standard
610.12. Technical report, IEEE, 1990.

Tom Mens, Gabriele Taentzer, and Olga Runge. Detecting Structural
Refactoring Conflicts Using Critical Pair Analysis. Electronic Notes in
Theoretical Computer Science , 127(3):113-128, 2005. Proceedings of the
Workshop on Software Evolution through Transformations: Model-based vs.
Implementation-level Solutions (SETra 2004).

Arend Rensink, Iovka Boneva, Harmen Kastenberg, and Tom Staijen. User
Manual for the GROOVE Tool Set. Department of Computer Science, Uni-
versity of Twente, The Netherlands, August 25, 2010.

James E. Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley-Longman, 1999.

Christian Soltenborn and Gregor Engels. Towards Test-Driven Semantics
Specification. In A. Schiirr and B. Selic, editors, Proceedings of the 12th In-
ternational Conference on Model Driven Engineering Languages and Systems
(MODELS 2009), volume 5795 of LNCS, pages 378-392, Denver, Colorado
(USA), 2009. Springer (Berlin/Heidelberg).

The AGG Team. The AGG Homebase, September 2011.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA (USA),
2006.

Jos Warmer and Anneke Kleppe. The Object Constraint Language: Getting
Your Models Ready for MDA. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA (USA), 2 edition, 2003.

87

	1 Introduction
	1.1 Problem statement
	1.2 Goals of the Thesis
	1.3 Overview of the Thesis

	2 Foundations
	2.1 Running Example
	2.1.1 Idea & Design
	2.1.2 Syntax
	2.1.3 Semantics

	2.2 Software Quality Assurance
	2.2.1 Software Quality
	2.2.2 Quality Assurance
	2.2.3 Software Testing
	2.2.4 Test Coverage

	2.3 Dynamic Meta Modeling
	2.3.1 Overview
	2.3.2 General Constructs
	2.3.3 Invocation Mechanism
	2.3.4 Computing GTS

	2.4 Test-Driven Semantics Specification
	2.4.1 High Quality Semantics Specifications
	2.4.2 Quality of Tests

	3 Requirements for the Thesis
	3.1 Motivation for New Coverage Criteria
	3.1.1 Rule Coverage
	3.1.2 All-Instances Coverage

	3.2 Requirements for New Coverage Criteria

	4 Coverage Criteria in DMM
	4.1 Introduction
	4.1.1 Inspiration
	4.1.2 Intuition for the Algorithm

	4.2 Common Formalization
	4.2.1 Invocation Graph
	4.2.2 Additional Data Structure

	4.3 Rule Coverage Criteria
	4.3.1 Rule Coverage
	4.3.2 Rule Coverage Plus
	4.3.3 Rule Coverage Plus Plus

	4.4 Edge Coverage Criteria
	4.4.1 Edge Coverage
	4.4.2 Edge Coverage Plus
	4.4.3 Edge Coverage Plus Plus

	4.5 All-Paths Coverage
	4.5.1 Idea
	4.5.2 Formal Definition
	4.5.3 Example
	4.5.4 Discussion

	4.6 Hierarchy of Coverage Criteria
	4.6.1 Hierarchy
	4.6.2 Interpretation
	4.6.3 Discussion

	4.7 Conclusion

	5 DMM Coverage Tool
	5.1 Design
	5.2 Example Application
	5.2.1 Coverage analysis
	5.2.2 Technical Characteristics

	6 Outlook: Critical Pair Analysis
	6.1 Problem
	6.2 Idea
	6.3 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Perspective

	Bibliography

