
Master's Thesis
Quality Assurance in Software Ecosystems

using Reference Architectures
Motivation
In recent years, software ecosystems have become an outstanding way to provide millions of
users with different kinds of IT services. Software ecosystems comprise open platforms that
are extendable by third-party developers and online marketplaces to market the third-party
services. An example is the ecosystem around Google Android (as the open platform) and
Google Play (as its marketplace). The literature [1] shows that the range of software
ecosystems in practice is far beyond mobile applications. Nowadays, software ecosystems
are built for service provision in a variety of application domains such as enterprise
application, internet of things (IoT), safety and security, etc.

Problem
Although software ecosystems have already been studied by the literature, there is still a lack
of architectural support that can be used by architects to develop their own software
ecosystem and assure its quality by performing architectural analysis. Reference
architectures are well-known to capture the essential elements of the architecture of similar
systems and later be used to check system quality. However, until now no architectural
guidance facilitates the creation of reference architectures for software ecosystems, so that,
the architects can use it to ensure quality of their ecosystems.

Tasks
The thesis should solve the problem by covering the following tasks:

•Mapping the Archimate [2] language (as a modeling language that can be used to
design software ecosystems) to the domain model of software ecosystem provided in [3]
•Developing three reference architectures using Archimate by referring to the three
architectural patterns in [1]
•Providing tool-support that enables automated generation of the reference
architectures and tailoring the architectures
•Enabling architectural analysis in the tool according to the analysis technique in [3]
•Providing a case study to show the concepts mentioned above

References
1.B. Jazayeri, O. Zimmermann, J. Küster, G. Engels, D. Szopinski, and D. Kundisch, “Patterns of Store-oriented
Software Ecosystems: Detection, Classification, and Analysis of Design Options” presented at the Lathin
American PLOP., 2018.
2.The Open Group, “ArchiMate® 3.0.1 Specification,” 2017. http://pubs.opengroup.org/architecture/archimate3-
doc/ (accessed Apr. 28, 2020).
3.B. Jazayeri, S. Schwichtenberg, J. Küster, O. Zimmermann, G. Engels, D. Szopinski, and D. Kundisch, “Modeling
and Analyzing Architectural Diversity of Open Platforms” to appear at the CAiSE, 2020.

Bahar Schwichtenberg

Database and Information Systems  
University of Paderborn 

E-Mail: bahar.schwichtenberg@upb.de  
Web: https://cs.uni-paderborn.de/dbis/

s-
la

b
–

 S
of

tw
ar

e
Q

ua
lit

y
La

b

Bachelor thesis

Adding Hypermedia as the Engine of Application
State to RESTful Web Services

Motivation
The REST (Representational State Transfer) architectural style includes the principle of Hypermedia as
the Engine of Application State (HATEOAS). Response messages of HATEOAS compliant web services
contain all possible valid states the web service can take in a next step. Thus, such web service rep-
resent a finite-state automaton. Clients that use the web service, only need to know its initial states.
Ideally, the clients do not need to be adapted in case this automaton changes afterwards. Many of
today's web services that claim to be RESTful do not consider HATEOAS. Such web services are not
fully compliant with REST.

Task

The task of the bachelor's the-
sis is to support developers in
making their RESTful web ser-
vices HATEOAS compliant.
This is to be achieved by us-
ing an existing technique that
mines behavioral models (pe-
tri nets or BPMN models) from
call logs. A web service's
states and transitions can be
represented by such behav-
ioral models. These models
can be used to determine all

next possible states of a web service. The response messages of non HATEOAS compliant web service
shall be automatically expanded by the information about the next valid states. Hence, this approach
would help to evolve RESTful web services.
Literature

Liskin et al.: Teaching old services new tricks: adding HATEOAS support as an afterthought

Assigned Student Scientific Supervision
Open Prof. Dr. G. Engels

Contact person

s-lab – Software Quality Lab
Universität Paderborn
Simon Schwichtenberg
Room: ZM1.03-09
Tel: +49 (0) 5251 / 5465-217
Email: sschwichtenberg@s-lab.upb.de

