
Seminar SS 2011
Current Trends for Self-* Systems -

Research Roadmap for Self-Adaptive Systems

Thomas Kühne

University Paderborn,
kuehne@mail.upb.de,

6382410
Supervisor: Masud Fazal-Baqaie

Abstract. Ultra-Large-Scale software systems or systems which are in
a rapidly changing environment are difficult to manage manually at run-
time, because of their huge complexity. Those systems should react au-
tonomously to environmental changes like increasing load or changing
goals to reduce the required administration effort and increase the ser-
vice quality. With this so called self-adaption, the administration com-
plexity is reduced, however the development challenges rise. This paper
deals with the general research challenges and provides an overview of
this domain.

Keywords: self-adaptive, self-management, autonomic computing, re-
search roadmap

1 The need for Self-Adaption

Todays largest software systems are so called ”Software-intensive” systems which
usually have an increasing set of functionality with each product release. There-
fore the future will lead to Ultra-Large-Scale (ULS) software systems which have
the complexity of e.g. the whole internet. Besides the growing functionality es-
pecially ubiquitous systems e.g. mobile phones are facing a rapidly changing
environment compared to traditional personal computers or server systems.

Both aspects - the huge complexity and a fast changing environment - cause
a problem for the human actor managing the system at runtime [9, 8, 4, 14]. The
consequences are increasing administration costs for enterprise systems and a
lower acceptance and therefore sales rate of consumer products.

A solution to these problems is to automate the runtime management of
those systems as far as possible in such a way that humans only need to provide
high-level goals [9]. The system then cares for the details on how to achieve or
maintain the goals by using the feedback from its own context at runtime. This
behavior is called self-adaption or in some cases also self-management or au-
tonomic computing. Although the approaches reduce the required maintenance
effort at runtime they add a lot of additional complexity to the software system.



2

Therefore, the central issue of self-adaptive systems is to deal with the additional
complexity at design time to enable the system solving those maintenance issues
autonomously at runtime. This approach introduces many new questions like
how to model and realize goals and how to change systems at runtime.

Based on the named challenge this paper presents a running example in
Section 2 which points out the general idea of self-adaption. Next, the abstract
problem and solution domain are described in Section 3. The problem domain
explains the general terms used in the application area of self-adaptive systems
whereas the solution domain describes the fundamental concepts used to realize
self-adaptive systems. After that an overview of the research challenges and
solution approaches based on the software development process are given in
Section 4.

This seminar paper is based on reference [14] and [4]. The presented chal-
lenges and approaches have been selected based on those references but also on
a broad analysis of the research field.

2 Running Example

The following example gives an idea of the problems to be solved in the area of
self-adaption and also emphasizes the difference between normal requirements
and self-adaptive requirements.
An intuitive example is the field of mobile phones where the primary purpose
are obviously phone-calls. The administration might cover e.g. intelligent battery
management and intelligent sound volume management. Both can be achieved
manually e.g. the former by disabling the connection to the cell tower when
entering the subway and the latter by reducing the volume manually when going
to work. A self-adaptive solution seems evidently more user-friendly.

These additional requirements are different to the primary functional require-
ment: They require a change of the system’s behavior in reacting to changes in
the environment.

In the given example the mobile phone would have to check for the location
via GPS to consequently change the power used for the antenna or the volume of
the ringtone. Those checks also cost some amount of energy and therefore might
be even conflicting with each other. Using the GPS module is really expensive in
terms of energy consumption and therefore frequent checks reduce the battery
life very quickly. On the one hand the autonomous battery management should
reduce the number of checks but on the other hand the autonomous volume
management must guarantee to be silent in certain locations e.g. at work. Oth-
erwise the user would not trust the system and has to check the volume again
manually which makes the self-adaption in this case pointless.

3 Domain Description

After motivating self-adaption informally this section will provide at first a def-
inition of self-adaption. Furthermore, a description of the domain structure is



3

given to provide an understanding of the terms used in the field of self-adaption.
Also the categories of goals are explained to define the possible range of self-
adaptive systems. Finally, the central process which controls the self-adaption is
elaborated.

3.1 Definition of Self-Adaptive Software

A fundamental definition of self-adaptive software is provided by [12]:

Definition 1. ”Self-adaptive software evaluates its own behavior and changes
behavior when the evaluation indicates that it is not accomplishing what the soft-
ware is intended to do, or when better functionality or performance is possible.”

Furthermore a technical definition that focuses on the change of the processes
at runtime is given by [14]:

Definition 2. ”A generic process model parameterized by graph constraints which
define compatible structural models (customizers) as parameters of the process
model.”

The conclusion of both definitions is that self-adaption is basically about chang-
ing the behavior of systems at runtime by modifying their configuration accord-
ing to the goals of the software system.

Those definitions describe the general nature of self-adaptive systems. Nev-
ertheless an explicit definition of what the difference to all the other software
systems is has not been given yet.

The general differentiation between self-adaptive software systems and other
software systems according to [14] is that self-adaptive systems are closed instead
of open-loop systems. Open-loop systems or non-feedback systems [11] use only
the current system state and their predefined model of the system to compute
the output for a given input. Consequently those systems are not using any
feedback from the environment to check whether or not the output fulfilled the
goal according to the given input. Closed-loop systems instead are using feedback
from the environment to improve their behavior.

This leads to another description of self-adaptive systems which is based on
the source of changes in the software system [3]: Changing requirements are the
cause for software evolution in usual software systems while a changing context
is the cause for self-adaption.

3.2 Domain Structure

Based on the general definition of self-adaptive systems this subsection defines
the terms in the domain of self-adaption according to [14]. The domain is di-
vided into two main entities: The self-adaptive system (self), which is the mobile
phone in the running example, and the environment around the system, which
is represented by the possible locations e.g. the office, subway etc., and actors
using the system, which is just a single one in the example - the owner of the
phone. System and environment are both the context of the system.



4

The system has objectives which are formulated as goals and is responsible
for fulfilling the goals using self-adaption, which is the actual problem. Referring
to the example the goals are described by the intelligent battery and sound
volume management: The former goal is to save as much battery life as possible
whereas the latter goal is to ensure always an appropriate noise level of the
ringtone depending on the current location.

Furthermore, the system contains sensors to observe the context and effectors
to apply changes to itself. Due to changes in the context detected by the sensors
one or more goals may not be fulfilled anymore. This requires the self-adaption
of the system using the effectors. A change in the environment occurs in the
example when the location changes, e.g. when entering the office is being detected
by the GPS sensor. Consequently, the goal stating that the sound volume should
always have an appropriate noise level is not fulfilled any more and the mobile
phone now has to reduce the volume through the volume control effector.

The system also has knowledge which allows it to reason about previous
attempts to fulfill the goals and improve itself. As an example let us assume
that the GPS sensor has not been accurate because the office is shielded by huge
buildings which in turn sometimes resulted in a delayed reduction of the volume.
The system decides therefore to reduce the volume already when approaching
the office and overcomes the problem using this knowledge.

3.3 Categories of goals: Self-* Properties

The running example already gave a rough idea about the kind of goals a self-
adaptive system might have and the previous section defined the basic terms.
Nevertheless the range of possible goals is still vague and therefore this section
provides a categorization of goals for self-adaptive systems.

Goals can be categorized into adaptive or self-* properties [9]. The following
list represents well known properties according to [14]:

– Self-optimization has already been mentioned in the example as an intel-
ligent battery management. The goal is to reduce the phones energy con-
sumption by disabling or reducing all functions which are not used or can
not be used at the moment. This might be the signal strength in the subway
when there is no cell tower reachable. But the phone even might learn where
a connection is possible and where not and based on this information trigger
the check for new emails automatically before entering the subway.

– Self-configuration is based on the idea to automate the configuration of
components. This kind of self-* objective may be applied in the mobile phone
example as an ”intelligent network discovery” module which tries to find
routes to the next cell tower through other mobile phones when out of range
by reconfiguring the network module. This enables the user to use his phone
almost everywhere while the phone cares for the details of the network route.

– Self-healing deals with the identification of failures and the recovery. An
example is the installation of a malfunctioning software component by the



5

user on the phone. This unintended functionality uses all the cpu time avail-
able and therefore would empty the battery within minutes. The self-healing
module detects this as a malfunction and directly shuts down the component,
searches for an appropriate software patch and updates the application.

– Self-protection is the ”catch-all” objective which is responsible for every-
thing which has not yet been covered by self-healing. If e.g. the identified
patch in the previous example is incompatible with another one which makes
self-protection prevent the setup to avoid any damage to the existing appli-
cations. Furthermore this objective covers the protection from attacks by
applying the right counter measures.

Summarizing the goals, a self-adaptive system might improve its performance,
configure components, recover from failures and protect itself from e.g. attacks.
After this categorization of the goals the topic of the next section is how the
system detects unfulfilled goals and how it reacts to that.

3.4 Domain Process: Adaption Loop

The result of an unfulfilled goal (reactive) or a change in the environment which
may cause an unfulfilled goal (proactive) is the self-adaption of the system. This
is in general a process which leads to changes in the system itself. According
to the definition of the source of such changes in Section 3.2, which is not only
the environment but also the system itself, the adaption causes again a change
which might lead to another unfulfilled goal. Such a goal is again a trigger for
self-adaption. Therefore, the whole self-adaption process can be modeled as a
loop - the so called adaption loop [14]. In the context of autonomous systems,
where the concept has been developed, the loop is called MAPE-K [9] which
stands for Monitor, Analyze, Plan, Execute and Knowledge. The ”MAPE” part
is actually the same as the four phases in the adaption loop, while ”K” explicitly
refers to a common knowledge base.

In the following paragraph the four process phases of the adaption loop are
described. The foundation is the ”intelligent network discovery” extension of
the running example in Section 3.2: The goal of the mobile phone is maintain
a connection whenever possible. Therefore the system has a GPRS sensor to
detect a reduction of the signal strength and a Bluetooth sensor to detect other
phones in the area. Those other phones can be used to bridge a connection even
when the next cell tower is too far away.

– Monitoring: The first phase is obviously observing the context based on the
events from sensors which includes the environment and the system itself.
Deviations from the desired system state are identified based on thresholds
or through event correlation and are reported as symptoms. In the example
the environment consists of the cell tower and all other phones in the area.
Sensors are the GPRS module to monitor the signal strength to the cell tower
and a Bluetooth module to detect other phones. In the scenario the signal
strength drops because the cell phones distance to the cell tower increases
which is reported as a symptom.



6

– Detecting: Upon this information the system needs to detect possible prob-
lems according to the goal and to check whether any reaction is required. In
this case the result of the detecting process is a request for change. Referring
to the example the system notices a continuously reducing signal strength.
The conclusion is that a total loss of the connection is expected which will
violate the goal because there have been other phones detected in the area.

– Deciding: In the third phase the system has realized that some action is
required and evaluates the detailed decisions: What should be changed and
how. In the example the phone consequently creates a list of all reachable
phones ordered by their signal strength as an alternative route to the cell
tower.

– Acting: The last phase is the utilization of effectors to adapt the behavior
in the desired way. Applied to the example, the phone now tries to route
the connection in the given order over another phone. This ensures that the
connection will not be lost and the goal remains fulfilled.

Finally, the process starts over again according to the closed-loop property with
the monitoring process checking whether the changes had the desired effect.

4 Research Challenges & Solution Approaches

The previous section explained the domain of self-adaption. Based on this foun-
dation, this section describes on the one hand the research challenges and on the
other hand the solution approaches. The presentation of both is based on the
software engineering process.

Using the development process as the foundation is reasonable, because the
design of self-adaptive systems affects the whole development process. Further-
more, the autonomic computing paradigm [9] specifies a clear separation of the
system’s implementation and the adaption loop mechanisms. However expressing
such a separation is still a major research challenge in the development process
[13].

Therefore, the overall challenge is to establish a systematic development of
self-adaptive systems. It has to make the adaptive solution explicit along the
software-engineering-process [4] and allows the design of re-useable, complex
self-adaptive systems.

The first phase is the requirement analysis where the major issue is the
definition of the requirements or in terms of self-adaptive systems the definition
of the goals. The next phase is the system design which deals with adaptive
architectures that change themselves to achieve the given goals. In the following
implementation phase the specified functionality has to be implemented based
on generic adaption engines which are introduced in this section. Finally, the
system needs to be tested and verified which is in the last phase.

4.1 Requirements Analysis

Usually, the software engineering process starts with collecting the requirements.
All requirements containing the expectation that the system should ensure them



7

autonomously at runtime need to be translated into goals. This is the first chal-
lenge [14]. Goals are the foundation for the system design towards the adaption
loop as described in Section 3. Furthermore, a major problem when modeling
goals are conflicts, e.g. performance and safety goals obviously often have con-
tradictory objectives [7]. Those named challenges are already well known in the
field of goal modeling. However, self-adaptive systems are additionally facing po-
tentially unknown environments [4]. This results in uncertainty and incomplete
requirement specifications. Consequently, this idea leads to the assumption that
not all possible situations can be anticipated during the requirement analysis
[14]. This causes another problem: It is therefore not possible to detect and re-
solve all conflicts at design time. Uncertainty can be explicitly introduced to
relax goals which may help to reduce potential conflicts but conflicts will nev-
ertheless occur. As a result, another idea in the field of self-adaptive systems is
the use of goals as runtime objects [14] [4]. This is the foundation to enable the
system to resolve conflicts between goals autonomously instead of manually at
design time. The conflicts can be either resolved using simple goal prioritization
or through optimization techniques using utility functions [14].

The challenges of goal modeling are now illustrated using the mobile phone
example. This is the foundation for the description of the solution approaches
in the following paragraphs.

The goals of the mobile phone contain a conflict between the battery manage-
ment and the volume management. The battery usage is directly associated with
a precise position. The mobile phone has to ensure the volume of the ringtone
depending on the location information provided by the energy consuming GPS
module. At the same time it also has to increase the battery life. Obviously those
goals are interrelated: Increasing the accuracy of the volume management de-
creases the battery life and vice versa. An obstacle is the accuracy or availability
of the GPS signal which also influences the position information and therefore
the goal of the volume management. The uncertainty will be introduced when
developing the example along the approaches.

Addressing the issues of translating requirements into goals and uncertainty
the goal modeling approach KAOS [7] and the modeling approach for uncer-
tainty, RELAX [16] have been combined [5] and are being presented in this
section.

KAOS is a methodology for specifying a goal model and is independent from
self-adaptive system approaches. The starting point are the high level goals de-
rived from the requirements. The first step is a refinement of the goals and the
identification of possible conflicts, obstacles posing a threat to goals and new
goals resolving the obstacles or conflicts. Mapped to the example the require-
ments are on the one hand a mobile phone that has a long battery lifetime and
an automatic location dependent volume control. These are translated into the
goals: ”The battery usage should be as low as possible” (G1) and the second one
more specific into ”The volume should be low in the office” (G2). Those goals
are conflicting as described before. An obstacle for the volume management is
an inaccurate or unavailable position information.



8

KAOS has no support for modeling uncertainty and therefore does not ad-
dress the feature of self-adaption. Hence RELAX is used to extend the capability
of KAOS which is described in the next paragraph.

RELAX is a modeling language based on natural language using a predefined
vocabulary to have a precise formal semantic for uncertainty factors. The idea
is to treat uncertainty not only as a problem but as a chance: Critical goals may
remain un-relaxed while non-critical goals or non-critical aspects of goals may
be relaxed. In the further development process un-relaxed goals are implemented
as invariants while relaxed goals as variant. Especially important is that in this
approach that it is impossible to anticipate every possible situation. Instead, in
later design phases the system needs to deal with the incomplete definition and
has to be very robust. Applying RELAX to the goals of the running example to
reduce the conflict potential may result in the following goal definitions:

– G1: The battery SHALL be used AS FEW AS POSSIBLE.
– G2: The ringtone volume SHALL be reduced AS EARLY AS POSSIBLE

AFTER entering the office and AS CLOSE AS POSSIBLE TO 2 minutes
thereafter.

The goal G1 now explicitly states ”AS FEW AS POSSIBLE” which remains
almost identical to ”as low as possible” but now have a precise formal semantic
and can also be easier detected as such a relaxation. In goal G2 ”AS EARLY
AS POSSIBLE AFTER” and ”AS CLOSE AS POSSIBLE TO” introduce a
new relaxation which on the one hand reduced the need for a precise position
information at any time and therefore makes it easier to achieve G1. On the
other hand it reduces the threat potential of an inaccurate signal to G2 to some
extend because there is now a timeframe in which the volume has be to reduced
instead of the exact point in time when entering the office.

The combination of these approaches is already an interesting and promising
approach but some questions remain open. An open research issue concerning
KAOS and RELAX is a precise limitation of the goal relaxation to avoid uncer-
tainty in cases where the goals are just too important for the system [5]. This
may be quantified by a ”risk” associated to the goals, but is still an open ques-
tion and just a vague idea provided by the authors of RELAX. Also the idea of
using optimization techniques which requires the definition of utility functions
is not considered by KAOS and RELAX.

4.2 System Design

After defining the requirements through goals as described in the previous section
the next question is how does the logical design of a system has to look like,
that is able to autonomously manage these goals. Modeling adaptive software
systems additionally requires the consideration of the adaption logic besides
the application logic. The former executes the adaption loop and accesses the
latter through its sensors and effectors. The primary overall challenge for self-
adaptive systems is the separation of the design of those two enabling reuse,



9

simplifying maintenance and providing a clear separation of concerns [13]. The
second challenge is to bridge the gap between the requirements analysis and
the technical details as in the traditional system design. At first a high-level
target architecture for the adaption loop is required, which then can be used
as the foundation for a design process and to model the lower-level details in
further steps. Challenging for architectures in huge systems is to minimize the
impact on the system’s performance, because a centralized adaption loop does
not scale [4] [14]. The design process furthermore needs a modeling notation
which supports the concept of the adaption loop [13]. UML is in general an
appropriate language, but does not aid a clear separation of adaptivity aspects
and the other functional parts of the system. It has no domain-specific semantics
for the concepts of self-adaptivity. Due to the huge complexity of self-adaptive
systems the mixture of the adaptivity- and system-logic makes it difficult to keep
the concerns separated and to implement both properly. Having a clear design
of the adaptivity, the system design itself is not any different compared to the
usual design, but requires many design decisions which are specific to adaptive
systems [14]. A question for example is what kind of component model allows
the required amount of reconfiguration capabilities at runtime and should be
therefore used.

Concerning the challenges this section presents at first the two fundamental
high level design patterns for the adaption loop MAPE-K [9] and a three-layer
reference model [10]. Based on them adapt-cases [13] as a design language for
adaptive systems is described which supports the required separation of adap-
tivity and functional aspects. Finally, the open research questions are discussed.

The idea behind MAPE-K is to separate the adaption behavior from the
system, but also implies an environment with many of those decentralized inter-
acting adaptive systems. MAPE-K stands for Monitor, Analyze, Plan, Execute
and Knowledge and defines a basic process to detect unfulfilled goals in the sys-
tem and to adapt the system adequately. This has already been explained as
the adaption loop in Section 3.4: the four process phases are directly derived
from the four MAPE steps. MAKE-K additionally defines a shared Knowledge
base to reason about previous changes and actions which is not explicitly men-
tioned in the adaption loop. The MAPE-K loop is embedded in an autonomic
manager and associated to a so called managed element which is the system it-
self. Together they form an autonomic element being able to interact with other
autonomic elements through their autonomic managers.

MAPE-K is in general a very high level approach not providing much more
detailed concepts than described in the previous paragraph. The three-layer
reference model is similar to some extend from a high level perspective but
is a much more elaborated concept. The three-layer reference model in general
tackles the problems of handling the complexity and enabling reuse, as MAPE-K
does by separating the concerns of adaptivity and the rest of the system as well
as the scalability bottleneck through decentralization. Furthermore, it reuses
the existing architecture description languages (ADL) and thereby creates an



10

integrated approach down to the implementation. ADL solutions already provide
capabilities for software configuration, deployment and reconfiguration.

The thee-layer reference model defines a layer each for goal management,
change management and component control.

– Component Control Layer: Starting from the bottom the component control
layer includes sensors, effectors and the adaption loop. Referring to MAPE-
K the layer seems similar to the whole autonomic element although there is
no explicit mapping mentioned by either approach.

– Change and Goal Management Layer: The other two layers are responsible
for any problems occurring in the component control which can not be solved
in the bottom layer itself. The change management layer then reports the
problems to the goal management layer which creates a new plan and dele-
gates the execution again down to the change management. In the reference
model the assumption is that those exceptional calculations for new plans
are very time consuming and may change the way how components interact.
This may also have huge impacts on the whole system. The adaption mech-
anisms, which are in the component control are fairly simple in comparison
to those in the goal management layer and change only parameters in the
system.

To handle the scalability challenge the authors of the reference model tried to
decentralize the whole system like MAPE-K. However, due to the centralized bus
that is used to provide a reliable communication, the architecture does not scale.
The communication bottleneck remains a research challenge which is discussed
in the end of the section.

Having these two high-level approaches for the actual target system design
at hand the answer to the question of how to model an adaptive system from
scratch by using only the requirements still remains high-level and therefore
vague. Hence, adapt-cases extends the well understood and accepted modeling
notation of use-cases using UML profiles to provide a clear separation of adaption
aspects and functional aspects of the system during the design process. The
general approach is based on MAPE-K, but to reflect all aspects of the system
it provides much more detailed semantics and syntax which are described in
the next paragraphs. Also adapt-cases can directly build on the results of the
previously presented combined approach of KAOS and RELAX. This closes the
gap to the requirement analysis phase.

Adapt-cases add a distinction between normal use-cases and adapt-cases,
which adapt the former and are derived from the goals specified in the require-
ment engineering phase. Adapting in this case means optimizing, protecting,
etc. on a high-level as defined by the self-* properties in Section 3.3. The further
refinement is based on the MAPE-K loop and divided into three main language
packages: A monitor package which reflects the phases monitor and analyze,
the adaption package that maps the plan and execute phases, and the adaption
context package for the knowledge aspect. The monitoring package provides lan-
guage concepts to model thresholds which trigger events. In the next step the
adaption package allows to create corresponding actions, which are invoked by



11

those events. Actions may have multiple alternatives and the selection of those is
modeled using OCL. The adaption context package contains a basic hierarchical
component structure of the system which is used to link events and actions to
system components. In the final step the system design is further detailed using
sequence charts to specify the behavior inside the monitor and adaption package
based on the adaption context package. Thus, adapt-cases overall provide a very
complete and at the same time clearly separated model of the adaptivity.

The two presented high-level architectures and the design approach are a
good foundation for the system design but some questions remain open which
will be pointed out in the following paragraphs: The next paragraph deals with
challenge of closing the gap between the requirement analysis and implemen-
tation phase, the one after with missing scalability of a centralized adaption
loop.

First, the challenge of closing the gap between the requirement analysis and
the implementation phase remains: Although this gap is closed through adapt-
cases, as shown in a case study [13], there is still no systematic approach for this
transition [13]. On the other end of the phase towards the technical solutions
adapt-cases may not be able to represent all the possible features in the adaption
frameworks and must be further investigated [13].

Second, scalability is still a major challenge: Systems modeled using one of
the more detailed approaches (adapt-cases, three-layer reference architecture)
will not be able to withstand the huge load in large systems up to ULS at run-
time. Therefore, decentralized adaption-loops are required as proposed in the
high-level approach MAPE-K. Such a decentralization results in further ques-
tions regarding the management of shared knowledge and inter-process commu-
nication [14]. Centralized communication connecting the decentralized compo-
nents was an approach based on the three layer reference architecture but did
not scale [10]. To overcome this problem the authors of the three layer reference
architecture stated that such a system requires components working even with
an inconsistent view of the overall context to reduce the communication over-
head. The field of multi-agent systems already has a theoretical foundation for
decentralized architectures, but it has not been implemented into real world sce-
narios and also needs to be integrated into a systematic development approach
for adaptive systems [2].

Third, besides the scalability challenge, reducing the performance impact of
sensors and effectors is also not solved yet: In large systems event correlation is
used as a monitoring technique to handle the huge amount of single events [14].
Event correlation allows e.g. to aggregate subsequent error events into a single
event or to remove duplicated events. However, it requires a detailed knowledge
about previous events and is a research problem of its own [1]. Adapt-cases
provide only support for modeling thresholds, which is only one possibility for
event correlation, and therefore modeling other types remains an open issue.

Fourth, the complexity of ULS has to be handled by the system designer.
The general approach, as already mentioned, is the separation of adaptivity
related aspects from the rest of the system. Another research direction is to



12

enable the system to solve problems at runtime through machine-learning and
thereby reducing the complexity at design time. As mentioned in the requirement
analysis phase the idea of using utility functions in addition or instead of static
goals is an approach in this direction. It especially helps to achieve real self-
optimization in cases where a binary specification of the desired behavior in
terms of desired and undesired goals is probably not applicable [10]. But utility
functions are difficult to understand and therefore it is a great challenge to
create an appropriate language. A key to such will be algorithms for preference
elicitation that support the developer during the design process [15].

4.3 Implementation

In the previous section the questions related to the logical and technical design of
the adaption engine and the system itself were discussed. Consequently, following
the software engineering process the next question addresses the implementation
of the adaptive system. Again the general idea is to keep the adaption engine
separated from the system [6]. A central issue in this phase is therefore how such
a generic adaption engine can be wired to a wide variety of software systems. The
more detailed challenges are: First, a decentralized solution that can be applied
to large scale systems. Second, the external adaption engine should also provide
a range of sensors and effectors to reduce the implementation cost. Third, the
solution must also provide capabilities to establish trust in terms of reliability
and security of the system [4] [14]. This is essential for an autonomously acting
software. Self-adaptivity also adds at lot of complexity to the system, which
makes it much more difficult to trace errors: Finding the root cause of errors
in a dynamically changing system is much more difficult than in static systems.
Besides that the question of scalability remains on the technical level [4]: The
overhead induced by monitoring may easily outweigh the performance benefit of
the adaption.

This section presents the well known Rainbow Framework [6] as an approach
to solve those challenges and ends with open research questions regarding the
framework, and also the implementation phase in general.

Rainbow’s major focus is on the separation of functionality as much as possi-
ble to maximize the reuse. Therefore, its centralized architecture is divided into
two parts: the re-useable adaption infrastructure and the implementation-specific
adaption knowledge. The latter contains the target system’s architectural model
and can be reused depending e.g. on the architectural style of two systems. The
adaption infrastructure consists of three layers: A system layer with sensors and
effectors, an architecture layer containing the execution engine and a transla-
tion layer between both that maps the architectural model elements to concrete
representations of the target system. The adaption knowledge contains the op-
erational model of the target system with parameters and constraints and is
available at runtime. This circumstance allows the framework to check whether
a change is valid according to this model and therefore addresses the challenge
of reliability.



13

The framework also tries to extend the application area: Rainbow requires
system access hooks in the target system for monitoring and adaption. Having
this requirement met it can also be applied to legacy systems.

The open research issue is especially to achieve scalability and failover which
is prevented by the centralized architecture [6]. Another issue which is not men-
tioned is the establishment of human trust. The design of effective monitoring
approaches has also not been mentioned either, however they assume that spe-
cialized sensors will be implemented by external developers [6]. Therefore this
remains an open research issue as well.

4.4 Test and Verification

The last phase is also the least focused phase by research [14]. After the imple-
mentation phase is finished the remaining question is whether the system behaves
correctly. Because of the lack of solution approaches, this section presents only
the challenges which are in the focus of the current research.

The first challenge has already been mentioned in the requirement analysis
phase. The general assumption was that it is not possible to anticipate every
possible situation which leads to incomplete requirement specifications [14, 4].
Consequently, it is not even clear what correct behavior in an unknown context
is and therefore the term ”desired” instead of ”correct” should be used [4].

Another result of incomplete requirements is that probabilistic verification
techniques are treated as a promising research direction [4]. The foundation for
those techniques is a solid system model where all unknown attributes are added
as probability distribution functions and where finally model checking techniques
can be applied.

Using a sound model as a foundation might lead to an approach to prove
every possible system state to be as desired. However, considering on the one
hand large scale systems and on the other hand the amount of possible states
compared to non-adaptive software that arises from self-adaption, the approach
results in a state explosion.

This leads to the general assumption that a runtime verification of the
changes may be a possible solution. Having performance as a key challenge for
self-adaptive systems, which has already been mentioned in all previous design
phases, this approach might also be difficult, because runtime verification will
most likely cause an additional overhead. Nevertheless, this approach is already
used in adapt-cases and the Rainbow framework.

Overall the verification of the system is especially relevant for safety-critical
systems where also legal questions play an important role [4]: In case of failures
caused by autonomous behavior the manufacturer will also be responsible.

The fundamental question which has to be answered besides the correct or
desired functionality is: Does the system always reach a stable state after a single
change has been triggered and no further external events occur? A stable state
is reached when the system does not change itself again due to previous changes.
Considering that changes may be the cause for other changes this question is
important and not simple.



14

5 Conclusions

The goal of this paper was to provide an overview of the domain of self-adaption
and the current research challenges and approaches. At first a domain description
was presented with the common terms used in the research field of self-adaption
and the fundamental concept of the adaption loop. Based on that an overview of
the current research challenges, approaches and open issues along the different
phases of the software development process was given. Due to the limited space
only selected topics on a high level have been discussed and many research ques-
tions and solution approaches remain untouched. Nevertheless the selected chal-
lenges and approaches receive either a high attention in the research community
(MAPE-K, KAOS & RELAX, Rainbow, the three-layer reference architecture)
or are very new approaches (adapt-cases). Therefore the general research direc-
tion has been pointed out and the results may be used as a starting point for a
further study.

Although there are popular and new research approaches which are based
on each other the overall research field seems very cluttered and is difficult to
analyze. Especially the unclear name of the research field might also lead to
redundant research approaches: Depending on the authors Self-Adaption, au-
tonomous computing, self-management and organic computing are sometimes
used for the same research field and sometimes not [14]. Also the fundamental
concept of the adaption loop, MAPE-K and the concept of control loops in gen-
eral are all using often different terms for the same semantic entities which also
causes an unnecessary confusion. For example the loop phases in MAPE-K and
the adaption loop can be matched but have different names.

Overall there are also many open ends in the research field: A general problem
is scalability which is required because self-adaptive systems should handle the
complexity in ULS. The common idea is to tackle the problem using a decentral-
ized adaption loop, but beside vague ideas, none of the investigated approaches
had any kind of solution concerning this problem. Additionally, machine-learning
concepts would allow the system to adapt to situations that have not been con-
sidered at design time. This would provide another layer of abstraction because
developers do not have to consider every possible situation any more when using
machine-learning. Finally another challenge which has not been considered by
any of the approaches at all is human trust. It is definitely essential and with-
out it the application area of self-adaptivity will be very limited: In the mobile
phone example the user would have to reduce the volume manually at work or
at least check it manually when he does not trust the system, which makes the
adaptivity pointless.

References

1. Albaghdadi, M., Briley, B., Evens, M.W., Sukkar, R., Petiwala, M., Hamlen,
M.: A framework for event correlation in communication systems. In: Pro-
ceedings of the 4th IFIP/IEEE International Conference on Management
of Multimedia Networks and Services: Management of Multimedia on the



15

Internet. pp. 271–284. MMNS ’01, Springer-Verlag, London, UK (2001),
http://portal.acm.org/citation.cfm?id=645749.667569

2. Andersson, J., Lemos, R.D., Malek, S., Weyns, D.: Towards a classification of self-
adaptive software systems. Computer 5525 (2009)

3. Caporuscio, M., Funaro, M., Ghezzi, C.: Graph transformations and
model-driven engineering. chap. Architectural issues of adaptive perva-
sive systems, pp. 492–511. Springer-Verlag, Berlin, Heidelberg (2010),
http://portal.acm.org/citation.cfm?id=1985522.1985547, 0

4. Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive systems.
chap. Software Engineering for Self-Adaptive Systems: A Research Roadmap, pp.
1–26. Springer-Verlag, Berlin, Heidelberg (2009), 104

5. Cheng, B.H., Sawyer, P., Bencomo, N., Whittle, J.: A goal-based modeling ap-
proach to develop requirements of an adaptive system with environmental un-
certainty. In: Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems. pp. 468–483. MODELS ’09, Springer-Verlag,
Berlin, Heidelberg (2009)

6. wen Cheng, S., cheng Huang, A., Garlan, D., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer
37, 46–54 (2004), 407

7. Dardenne, A., van Lamsweerde, A., Fickas., S.: Goal-directed requirements acqui-
sition. Science of Computer Programming, 20(1-2):3–50 (1993)

8. Kephart, J.O.: Research challenges of autonomic computing. In: Proceedings of the
27th international conference on Software engineering. pp. 15–22. ICSE ’05, ACM,
New York, NY, USA (2005), http://doi.acm.org/10.1145/1062455.1062464, 201

9. Kephart, J., Chess, D.: The vision of autonomic computing. In: Computer. vol. 36,
pp. 41 – 50. IEEE Computer Society (01 2003), 2579

10. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: 2007
Future of Software Engineering. pp. 259–268. FOSE ’07, IEEE Computer Society,
Washington, DC, USA (2007), http://dx.doi.org/10.1109/FOSE.2007.19, 229

11. Kuo, B.C.: Automatic control systems (6th ed.). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1991)

12. Laddaga, R.: Self-adaptive software. Tech. Rep. 98-12 (1997)
13. Luckey, M., Nagel, B., Gerth, C., Engels, G.: Adapt cases: Extending use cases for

adaptive systems. In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’11) at the 33rd
IEEE/ACM International Conference on Software Engineering (ICSE’11), Waikiki,
Honolulu (USA). pp. 30–39. SEAMS ’11, ACM, New York, NY, USA (May 2011)

14. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst. 4, 14:1–14:42 (May 2009),
http://doi.acm.org/10.1145/1516533.1516538, 96

15. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. Autonomic Computing, International Conference on 0, 70–77 (2004)

16. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: Relax: Incor-
porating uncertainty into the specification of self-adaptive systems. In: Proceed-
ings of the 2009 17th IEEE International Requirements Engineering Conference,
RE. pp. 79–88. RE ’09, IEEE Computer Society, Washington, DC, USA (2009),
http://dx.doi.org/10.1109/RE.2009.36, 26


