
Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 1

Prolog

Prof. Dr. Stefan Böttcher
Fakultät EIM, Institut für Informatik

Universität Paderborn
SS 2019

Contents:
- Introduction: Prolog as a database language
- List programming and 1:1 machine translation
- Puzzles, quizes, games
- Inference engines, meta-interpreters, ...
- Parsers and interpreters for grep, XML, SQL, German, English
- Compilers, translators, natural language understanding,
- Question answering systems

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 2

Prerequisites and requirements
1. Prolog programming assignments

- given each Tuesday directly in or after the lecture
- have to be solved individually by each student

during the next six days,
- solutions have to be presented and explained on Monday
(6 days after the lecture) within one of the exercise groups

2. Presenting your solutions within the exercise times
is mandatory to pass the exam.

Exercises: to be done at home – starting today !
Presentation times:

Mo. 9:15-10:45 , Mo. 10:50-12:20, Mo 12:25-13:55

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 3

Required previous knowledge
Programming language Prolog, and of Relational Algebra,
exactly of the amount provided in the course "Grundlagen Datenbanken".

If you did not join the course "Grundlagen Datenbanken"
or forgot the Prolog part of it, you should read and work through
the following material, before doing the first exercises:
a) Read about Selection, Projection, Union, Set Difference, Intersection, Join, Cartesian Product and Division

in any good text book on database systems, e.g.: Hector Garcia Molina, Jeffrey, D. Ullman, and Jenifer Widom:
Database Systems. The Complete Book. Prentice Hall 2008, pp 189-224,302-310, and 463-480.

b) Watch the following video about the first steps to Prolog: Programming in Prolog:
this is The Simple Engineer’s four part video introductionusing SWI-Prolog.
https://www.youtube.com/watch?v=gJOZZvYijqk&list=PLVmRRBrc2pRCWtYk752jCIfhD8GmoYfc_
This is a nice small video sequence to start with which covers parts of the first two lectures.
It is definitely less challenging than our course.
As we use SWI-Prolog throughout the lecture, this video is recommended as first video about Prolog.

c) Derek Banas’s Prolog Tutorial. https://www.youtube.com/watch?v=SykxWpFwMGs .
This is an hour-long video tutorial, which is based on GNU Prolog (=gprolog) and requires an installation of C++. Please use
SWI-Prolog instead. You could skip the first minutes and start at minute 5:15, and install and use SWI-Prolog 8.0.2-1 instead.

d) Mike Brayshaw: http://www.doc.gold.ac.uk/~mas02gw/prolog_tutorial/prologpages/
A very basic intro into Prolog (covering at most the first two or three lectures).

e) Bernardo Pires: Try Logic Programming! A Gentle Introduction to Prolog.
Another very basic introduction to Prolog (covering the first two or three lectures)

f) Marc Bezem: A Prolog Compendium (pdf) www.ii.uib.no/~bezem/Prolog_Tutorial.pdf
Useful as introduction for the first two or three weeks of our course (or so).

https://www.youtube.com/watch?v=gJOZZvYijqk&list=PLVmRRBrc2pRCWtYk752jCIfhD8GmoYfc_
http://www.doc.gold.ac.uk/~mas02gw/prolog_tutorial/prologpages/

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 4

Getting started with Prolog

Try to install SWI-Prolog 8.0.2-1 on your computer alone!
à Installation instructions on web page
à Reserve enough time !
à Start today !

If you could not install SWI-Prolog 8.0.2-1 alone
last support for getting started with Prolog is
Wednesday 10.4.2019 9:15 – 12:45
à save the date (in case you did not succeed before)
à if you installed everything alone successfully,

do not come to this specific installation date

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 5

Why Prolog for AI?

1. Declarative programming
à ”say what you want, and Prolog does it for you”

2. Tree data structures and tree unification
à example given on white board

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 6

Our first example database

1000 , ‘Anna‘ , ‘Arm‘ , ‘ti2‘
1001 , ‘Rita‘ , ‘Reich‘ , ‘ti2‘
1002 , ‘Peter‘ , ‘Reich‘ , ‘ti2‘
1003 , ‘Peter‘ , ‘Petersen‘ , ‘ti7‘

tuple
=data record

student

sID

term subject
course

firstname surname term

‘ti2‘ , ‘Mathe2‘
‘ti2‘ , ‘Physics2‘
‘ti7‘ , ‘pdv7‘

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 7

Prolog as a database language - idea

student(1000 , ‘Anna‘ , ‘Arm‘ , ‘ti2‘) .
student(1001 , ‘Rita‘ , ‘Reich‘ , ‘ti2‘) .
student(1002 , ‘Peter‘ , ‘Reich‘ , ‘ti2‘) .
student(1003 , ‘Peter‘ , ‘Petersen‘ , ‘ti7‘) .

tuple = fact
=data record

student

sID

term subject
course

firstname surname term

course(‘ti2‘ , ‘Mathe2‘) .
course(‘ti2‘ , ‘Physics2‘) .
course(‘ti7‘ , ‘pdv7‘) .

constant

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 8

Prolog as a database language - relation

student(1000 , ‘Anna‘ , ‘Arm‘ , ‘ti2‘) .
student(1001 , ‘Rita‘ , ‘Reich‘ , ‘ti2‘) .
student(1002 , ‘Peter‘ , ‘Reich‘ , ‘ti2‘) .
student(1003 , ‘Peter‘ , ‘Petersen‘ , ‘ti7‘) .

course(‘ti2‘ , ‘Mathe2‘) .
course(‘ti2‘ , ‘Physics2‘) .
course(‘ti7‘ , ‘pdv7‘.) .

tuple = fact
=data record

predicate
= relation
= procedure

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 9

Prolog as database language - syntax

student(1000 , ‘Anna‘ , ‘Arm‘ , ‘ti2‘) .
student(1001 , ‘Rita‘ , ‘Reich‘ , ‘ti2‘) .
student(1002 , ‘Peter‘ , ‘Reich‘ , ‘ti2‘) .
student(1003 , ‘Peter‘ , ‘Petersen‘ , ‘ti7‘) .

?- student(M , F , _ , _) .

constant

integer atom

tuple=fact
=data record

predicate
= relation
= procedure

starts with lower case
or is enclosed in ‘ ‘

no blank !

variable anonymous variable

goal = sub-query

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 10

Answer generation by variable binding

student(1000 , ‘Anna‘ , ‘Arm‘ , ‘ti2‘) .

?- student(M , ‘Peter‘ , _ , _) .

student(1002 , ‘Peter‘ , ‘Reich‘ , ‘ti2‘) .
student(1003 , ‘Peter‘ , ‘Petersen‘ , ‘ti7‘) .

constant

integer atom

unification
binds:

M=1002
…

unification
fails

anonymous variables _ and _ can be bound differently !

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 11

Select-Project-Join-Queries

?- student(_, ‘Anna‘ , ‘Arm‘ , S) , course(S , C) .

goal = sub-query sub-query

Query: in which term S is Anna Arm,
and which courses C everyone must take in term S?

projection, selection join

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 12

Join and cartesian product

?- student(M, F , N , S) , course(S , C) .

goal = sub-query sub-query

Query: who (is in which term S and) has to take (therefore)
which courses C?

Join

Query: considering students and offered courses
who can take which courses?

cartesian product

?- student(M, F , N , S) , course(S2 , C) .

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 13

Prolog rules - syntax

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C) .

goal = sub-query sub-query

head = view :- goalsrule:

?- mustTake(1000 , _ , _ , _ , C) .

query

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 14

What are the answers to these queries?
1. ?- student(_ , ‘Anna‘ , N , S) .

2. ?- student(_ , ‘Anna‘ , S , S) .

3. ?- course(S , C) , student(M , F , ‘Petersen‘ , S) .
4. ?- mustPeter(M , _ , _ , _ , C) .

5. ?- mustPeter(_ , _ , N , _ , ‘ti2‘) .
6. ?- mustPeter(_ , F , N1 , _ , S) , mustPeter(_ , F , N2 , _ , S) .

mustPeter(M, F, N, S, C) :- student(M, ‘Peter‘, N, S) , course(S, C) .

student(1000 , ‘Anna‘ , ‘Arm‘ , ‘ti2‘) .
student(1001 , ‘Rita‘ , ‘Reich‘ , ‘ti2‘) .
student(1002 , ‘Peter‘ , ‘Reich‘ , ‘ti2‘) .
student(1003 , ‘Peter‘ , ‘Petersen‘ , ‘ti7‘) .

course(‘ti2‘ , ‘Mathe2‘) .
course(‘ti2‘ , ‘Physics2‘).
course(‘ti7‘ , ‘pdv7‘.) .

same as before
à look at your slides

printed on paper !

??

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 15

Prolog:

predicate calculus

relational algebra

SQL

declarative semantics

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C) .

mustTake(M, F, N, S, C) Ü student(M, F, N, S) Λ course(S, C) .
if and

mustTake(M, F, N, S, C) := student |X| course
4 = 1

create view
mustTake as select * from student ST, course CO

where ST . S = CO . S

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 16

procedural semantics: data flow

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C) .

goal = sub-query sub-queryhead = view

rule:

?- mustTake(1000 , _, _, _, C) .

variable bindings for input and output parameters
transport of variable bindings inside a rule

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 17

procedural semantics: 4-port model

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C).
?- mustTake(M, F, N, S, C).

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 18

procedural semantics: 4-port model

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C).
?- mustTake(M, F, N, S, C).

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

?- mustTake(M, F, N, S, C)

?- student(M, F, N, S) ?- course(‘ti2‘ , C)

1000,‘Anna‘,‘Arm‘,‘ti2‘
1007,‘Nobi‘,‘Neu‘,‘ti7‘

‘ti2‘ , ‘Mathe2‘
‘ti2‘ , ‘Physics2‘

M=1000,
V=‘Anna‘,
N=‘Arm‘,
S=‘ti2‘
C=‘Mathe2‘

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 19

procedural semantics: 4-port model

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C).
?- mustTake(M, F, N, S, C).

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

?- mustTake(M, F, N, S, C)

?- student(M, F, N, S) ?- course(‘ti2‘ , C)

1000,‘Anna‘,‘Arm‘,‘ti2‘
1007,‘Nobi‘,‘Neu‘,‘ti7‘

‘ti2‘ , ‘Mathe2‘
‘ti2‘ , ‘Physics2‘

M=1000,
V=‘Anna‘,
N=‘Arm‘,
S=‘ti2‘
C=‘Physics2‘

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 20

procedural semantics: 4-port model

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C).
?- mustTake(M, F, N, S, C).

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

?- mustTake(M, F, N, S, C)

?- student(M, F, N, S) ?- course(‘ti7‘ , C)

1000,‘Anna‘,‘Arm‘,‘ti2‘
1007,‘Nobi‘,‘Neu‘,‘ti7‘

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 21

procedural semantics: 4-port model

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C).
?- mustTake(M, F, N, S, C).

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

?- mustTake(M, F, N, S, C)

?- student(M, F, N, S) ?- course(‘ti7‘ , C)

1000,‘Anna‘,‘Arm‘,‘ti2‘
1007,‘Nobi‘,‘Neu‘,‘ti7‘

‘ti7‘ , ‘pdv7‘

M=1007,
V=‘Nobi‘,
N=‘Neu‘,
S=‘ti7‘
C=‘pdv7‘

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 22

procedural semantics: 4-port model

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C).
?- mustTake(M, F, N, S, C).

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

?- mustTake(M, F, N, S, C)

?- student(M, F, N, S)

false
(no more
answers)false

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 23

mustTake(M, F, N, S, C) :- student(M, F, N, S) , course(S, C) .

void mustTake(M, F, N, S, C)
{ // call-port of student

AS = student . getAll(M, F, N, S) ;
while (student(M, F, N, S) = AS. next())
{ // exit-port of student and call-port of course

AK = course . getAll(S, C) ;
while (course(S,C) = AK. next())
{ // exit-port of course and call-port of Output

Output(M, F, N, S, C) ;
// fail-port of Output and redo-port of course

}
// fail-port of course and redo-port of student

}
// fail-port of student

}

Prolog‘s backtracking in Java (or C)

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 24

4-port model with multiple clauses

C C

C
C

R

F

F

R

E

E E

C=Call E=Exit R=Redo F=Fail

?- course(S,C)

?- monday2friday(S,C)

false
(no more
answers)

false

given are different courses: monday2friday(S,C) and weekend(S,C)

course(S,C) :- monday2friday(S,C) .
course(S,C) :- weekend(S,C) .

‘ti2‘ , ‘Mathe2‘
‘ti2‘ , ‘Physics2‘

?- weekend (S,C)

false
‘ti7‘ , ‘pdv2‘

F F R

C

R F

E
S = ‘ti2‘ , C = ‘Mathe2‘ ;
S = ‘ti2‘ , C = ‘Physics2‘ ;

S = ‘ti7‘ , C = ‘pdv2‘ ;

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 25

Intersection, Bag Union, Difference
given are: undergraduate(S,C) and weekend(S,C)

intersection: weekend undergraduate courses:
?- undergraduate(S,C) , weekend(S,C).

as a rule:
weekendUndergraduate(S,C) :- undergraduate(S,C) , weekend(S,C).

Bag union: undergraduate or weekend courses with duplicates
undergraduateOrweekendCourse(S,C) :- undergraduate(S,C) .
undergraduateOrweekendCourse(S,C) :- weekend(S,C).

difference: undergraduate without weekend
undWithoutWe(S,C) :- undergraduate(S,C) , \+ weekend(S,C).

negation operator (NOT)

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 26

Intersection, Set Union, Difference
given are: undergraduate(S,C) and weekend(S,C)

intersection: weekend undergraduate courses:
?- undergraduate(S,C) , weekend(S,C).

as a rule:
weekendUndergraduate(S,C) :- undergraduate(S,C) , weekend(S,C).

Bag union: undergraduate or weekend courses (with duplicates)
undergraduateOrweekendCourse(S,C) :- undergraduate(S,C) .
undergraduateOrweekendCourse(S,C) :- weekend(S,C).

difference: undergraduate without weekend
undWithoutWe(S,C) :- undergraduate(S,C) , \+ weekend(S,C).

How to get the set union:
Undergrade or weekend courses without duplicates? ?

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 27

Negation as failure
?- \+ student(1000 , ‘Anna‘ , ‘Arm‘ , _) .
false , because
?- student(1000 , ‘Anna‘ , ‘Arm‘ , _) .
true

?- \+ student(123 , ‘Anna‘ , ‘Arm‘ , _) .
true, because
?- student(123 , ‘Anna‘ , ‘Arm‘ , _) .
false à negation as failure

?- \+ student(M , F , N , S) .
false, because
?- student(M , F , N , S) .
has at least one answer.

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 28

Negation as failure is different from
logical negation

?- student(M , F , N , S) .
has (in general) multiple answers
returns bindings for M , F , N , and S

?- \+ student(M , F , N , S) .
false, because
?- student(M , F , N , S) .
has at least one answer.

?- \+ \+ student(M , F , N , S) .
true, No bindings for M , F , N , and S
because
?- \+ student(M , F , N , S) .
returns false

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 29

Cut within the 4-port model

C C C C

R
F F F F

RR

E E E

C=Call E=Exit R=Redo F=Fail

C

F
R

E !

Cut leaves the procedure call box on the way back (=return)

mustTake(M, F, N, S, C) :- student(M, F, N, S) , ! , course(S, C).
?- mustTake(M, F, N, S, C).

?- mustTake(M, F, N, S, C)

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 30

Cut in predicates with multiple rules
Cut leaves the box of the called procedure (not only the clause!)

p(…) :- p11(…) , ! , p12(…) .
p(…) :- p2(…) .

C C C C

R

F

F
F F

RR

E E E
C

FR

E !

C

F R

E C

R F

E

?- p(…)

?- p11(…) ?- p12(…)

?- p2(…)

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 31

Different positions of the Cut
Find an example where it makes a difference
whether the Cut occurs early or late in a rule?

1. p(M, F, N, S, C) :- student(M, F, N, S) , course(S, C) , ! .

2. p(M, F, N, S, C) :- student(M, F, N, S) , ! , course(S, C) .

3. p(M, F, N, S, C) :- ! , student(M, F, N, S) , course(S, C) .

Find an example where it makes a difference
whether we have one or more Cuts in a rule?

4. p(M, F, N, S, C) :- student(M, F, N, S) , ! , course(S, C) , ! .

??

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 32

Negation as failure implemented with Cut

fail always yields false, as if implemented by
fail :- 2 = 3 .

“For semester S there is no course C offered:“

no_course(S , C) :- course(S , C) , ! , fail .

no_course(S, C) .

skip this
slide now

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 33

See every solution only once
example: Which students take several courses?

Implementation of the test rule:
takesSeveralCourses(M) :-

takes(M, C1) , takes(M, C2) , \+ C1=C2 , ! .
0 or 1 answer per M because of Cut at the end

Implementation of the generate-and-test-rule :
studentTakesSeveralCourses(M, F, N, S) :-

student(M, F, N, S) , takesSeveralCourses(M).
generator test

(generates every student exactly once) (selects or does not select)

Query:
?- studentTakesSeveralCourses(M, F, N, S) .

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 34

Exercises

Assume, we have a relations takes(M, C) and course(S, C)
M is Matriculation number, C is Course, S is Semester

Assume further, C is a key of the relation course,
use the generate and test approach in the following queries:

1. Which courses are taken by more than one students?

2. Which courses are taken by less than two students?

3. Which courses are taken by exactly one student?

4. Which courses are taken by exactly two students?

??

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 35

Replace "xÎR(p(x)) with not $xÎR(not p(x))

example: Which students take all courses offered for ‘ti2‘ ?

{ (M,F,N,S) Î Student | "(‘ti2‘,C) Î course (takes(M,C)) } Û
{ (M,F,N,S) Î Student | not $(‘ti2‘,C) Î course (not takes(M,C)) }

generate-and-test-rule :

studentTakesAllCoursesOfferedForti2(M, F, N, S) :-

student(M, F, N, S) , \+ atLeastOneti2CourseNotTakenBy(M) .

generator test

(generates every student exactly once) (selects or does not select)

Test rule implementation :

atLeastOneti2CourseNotTakenBy(M) :-

course(‘ti2‘, C) , \+ takes(M, C) , ! .

Query:

?- studentTakesAllCoursesOfferedForti2(M, F, N, S) .

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 36

Exercises

Assume, we have a relations takes(M, C) , course(S, C) ,
and student(M , F , N , S)
M is Matriculation number, C is Course, S is Semester,
F is the first name, N is the last name of a student

Assume further, C is a key of course, M is key of student.
Use the generate and test approach in the following queries:

1. Which students take all courses ?
Use your slides printout to ‘copy‘ this solution

2. Which courses are taken by all students ?

3. Which courses are taken by all students having first name
‘Peter‘?

??

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 37

Replace maximum with “³ all“

example: Which student has the highest student ID ?

{ (M,F,N,S) Î Student | M = max({ M2 | (M2,V2,N2,S2) Î Student }) } Û
{ (M,F,N,S) Î Student | " (M2,V2,N2,S2) Î Student (M ³ M2) } Û
{ (M,F,N,S) Î Student | not $ (M2,V2,N2,S2) Î Student (M < M2) }

Generate-and-test-rule :

studentHasHighestMnr(M , F , N , S) :-

student(M, F, N, S) , \+ someoneHasHigherMnrThan(M) .

generator test

(generate every student exactly once) (selects or does not select)

Test rule implementation :

someoneHasHigherMnrThan (M) :- student(M2 , _ , _ , _) , M < M2 .

Query:

?- studentHasHighestMnr(M , F , N , S) .

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 38

Exercises

Assume, we have a relations takes(M, C) , course(S, C) ,
and student(M , F , N , S)
M is Matriculation number, C is Course, S is Semester,
F is the first name, N is the last name of a student

Assume further, C is a key of course, M is key of student.
Use the generate and test approach in the following queries:

1. Which students in semester ‘ti2‘
have the highest matriculation number?
Use your slides printout to ‘copy‘ this solution

2. Which of students taking the course ‘Physics2‘
have the highest matriculation number?

??

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 39

Practical work with the SWI-Prolog system

1st window
(SWI-Prolog)
for queries
and calling
the editor!

2nd window
SWI-Prolog editor:
for database facts
and rules,
i.e. your program,
and for calling the
compiler

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 40

Practical work with SWI-Prolog using Windows

1st window
(SWI-Prolog)
for calling
the editor!
and for
queries

2nd window
SWI-Prolog editor:
for database facts
and rules,
i.e. your program,
and for calling the
compiler

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 41

Practical work with SWI-Prolog using Windows

1st window
(SWI-Prolog)
for calling
the editor!
and for
queries

2nd window
SWI-Prolog editor:
for database facts
and rules,
i.e. your program,
and for calling the
compiler

Logic Programming for Artificial Intelligence - SS 2019 - Prof. Dr. Stefan Böttcher - Intro / 42

Summary
Prolog supports different programming styles:

1. Procedural style (using Cut(!) and Negation as Failure (\+))
This allows for queries containing

all, at most one, min, max, exactly one, … .
And this allows to avoid duplicate answers, if we have
a generator relation for the superset in which we search,
i.e. agenerator that generates each candidate exactly once

(You will need the procedural style for Exercise 1.)

2. Declarative style (NOT using Cut or Negation as Failure)
This allows for cleaner (pure!) Prolog programming

(You will need the declarative style for Exercise 2.)

