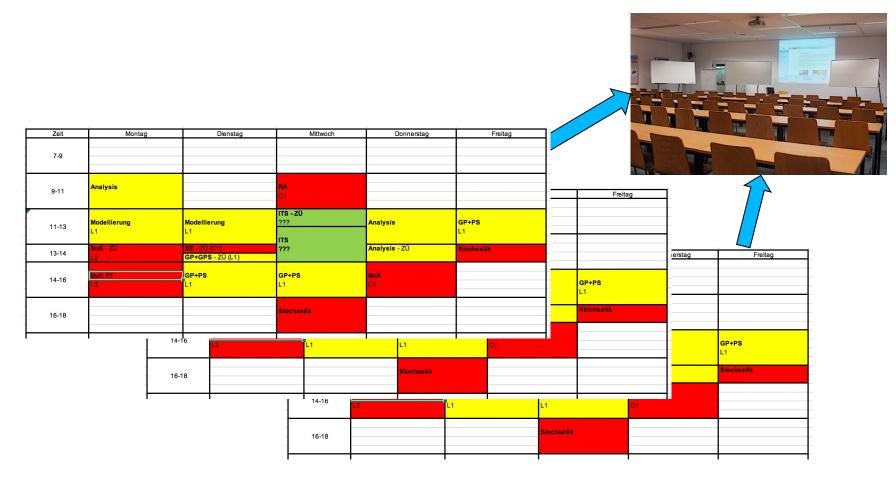

STULP – Support Tool for University Lecture Planning

		Mittwoch	Donnerstag	Freitag
nalysis		RA C1		
	Modellierung L1			GP+PS L1
			Analysis - ZÜ	Stochastik
			ВиК С1	
		Stochastik		
A 30 30	odellierung 1 1 2 2 14	odellierung L1 uK - ZÜ 2 GP+GPS - ZÜ (L1) uK ?? L1 GP+PS L1	odellierung Modellierung ITS - ZÜ L1 ITS uK - ZÜ SE - ZÜ (C1) 2 GP+GPS - ZÜ (L1) uK ?? GP+PS L1 ITS	odellierung L1Modellierung L1ITS - ZÜ ???AnalysiswK - ZÜ L1SE - ZÜ (C1) GP+GPS - ZÜ (L1)???Analysis - ZÜ Analysis - ZÜuK ?? L1GP+PS L1GP+PS L1BulK C1

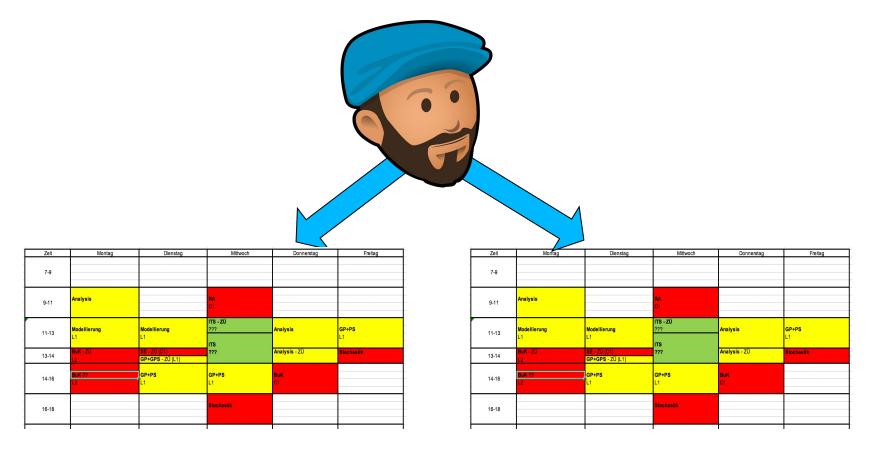
Requirements to be met:

- \rightarrow Check for completeness of offered lectures
- ightarrow Map all lectures to time slots and to rooms
- \rightarrow Check for conflicts and re-plan
- \rightarrow Generate plans for different purposes
- \rightarrow Consider different student groups, e.g.
 - CS 1st year with minor math, CS 2nd year with minor economy, ...


Checking for conflicts of mandatory courses

Check for each student group:

- Are all mandatory lectures offered and planned?
- Do mandatory lectures offered for any student group overlap?

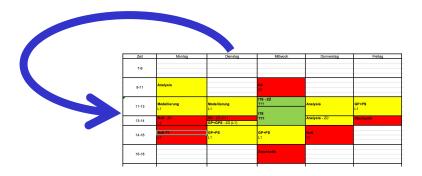

Are rooms too small or over-booked?

How to solve room conflicts?

How to adjust room sizes in last minute planning? Develop room assignment strategies

Are teachers booked for overlapping lectures?

- \rightarrow do multiple lectures planned for a professor overlap?
- \rightarrow do lecture times overlap with other duties?
- → do we have enough non-overlapping exercise time slots for student teachers?


STULP - Avoiding weak conflicts

Does the plan unnecessarily restrict choices?

- ightarrow e.g., avoid conflicts of courses in same focus area
- \rightarrow e.g., avoid conflicts of mandatory courses with optional courses
- \rightarrow plan exercises, such that there are good choices
- ightarrow regard majors and minors
- Find a good work load balance during the week for all lecturers and for all student groups (CS 1st year with minor math, ...):
- ightarrow e.g. distribute work load equally during the week
- → regard time to change lecture rooms (e.g. Fürstenallee/Campus)
- \rightarrow minimize needed daily travel between Fürstenallee and Campus
- \rightarrow avoid unnecessarily long gaps between lectures

STULP – Simplify and minimize re-planning

Improve course collection

Re-use of previously offered lectures and previous plans

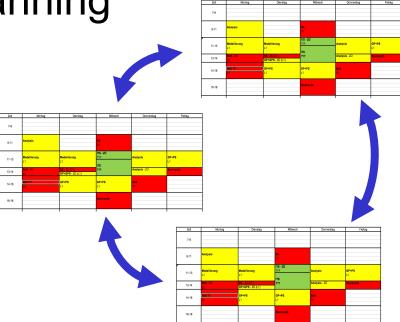
Support last-minute changes of plans, e.g. because of

- \rightarrow additional or cancelled lectures
- \rightarrow too small rooms
- \rightarrow last-minute time changes

STULP – Collaborative and distributed planning

Help to coordinate distributed planning:

- \rightarrow different plan owners plan autonomously
- \rightarrow different planning time frames
- \rightarrow different planning goals
- \rightarrow different planning strategies
- \rightarrow different planning tools



Distributed planning has to share common resources / groups:

- \rightarrow lecture rooms
- \rightarrow lecturers
- \rightarrow multiple different student groups, e.g.

CS 1st year with minor math, CS 2nd year with minor economy, ...

STULP – Flexible planning

Make planning process flexible, i.e. be open to

- new student groups
- new versions of module handbook
- multiple regulations in parallel (e.g. old ECTS system and new ECTS system)
- changes in cooperation model between plan owners

STULP – Needed skills and requirements

- Needed skills:
- → very good programming experience (this PG focuses on programming)

- \rightarrow deep understanding of the Java language
- \rightarrow experience with software design and efficient programming
- \rightarrow knowledge of relational database systems

Knowledge of web server/client programming is an advantage (although not required)

Requirements:

- \rightarrow develop, extend, test, and deliver software
- \rightarrow self-study and present software development / technologies
- \rightarrow join all meetings (Mon/Tue/Wed except holidays (t.b.a.))