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Abstract

In this paper, we propose a method for retrieving promising candidate solutions

in case-based problem solving. Our method, referred to as credible case-based infer-

ence, makes use of so-called similarity profiles as a formal model of the key hypoth-

esis underlying case-based reasoning (CBR), namely the assumption that similar

problems have similar solutions. Proceeding from this formalization, it becomes

possible to derive theoretical properties of the corresponding inference scheme in a

rigorous way. In particular, it can be shown that, under mild technical conditions, a

set of candidates covers the true solution with high probability. Thus, the approach

supports an important subtask in case-based reasoning, namely to generate poten-

tial solutions for a new target problem, in a sound manner and, hence, contributes

to the methodical foundations of CBR. Due to its generality, it can be employed for

different types of performance tasks and can easily be integrated in existing CBR

systems.
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1 Introduction

Longstanding research in artificial intelligence, knowledge engineering, and related fields

has produced a number of paradigms for building intelligent and knowledge-based sys-

tems such as, e.g., rule-based reasoning, constraint processing, or probabilistic graphical

models. Being one of these paradigms, case-based reasoning (CBR) has received a great

deal of attention in recent years and has been used successfully in diverse application

areas [7], ranging from web search [6] to legal reasoning [9]. CBR is inspired by human

problem solving and has roots in cognitive psychology [29]. Its key idea is to tackle new

problems by referring to similar problems that have already been solved in the past [23].

To illustrate this idea, consider the problem to give a talk on a certain topic. Instead of

preparing new slides from scratch every time, one typically starts with having a look at

the talks that one has already given in the past. Then, one takes the relevant slides from

some of these talks, somehow combines and revises them, and finally comes up with a

new set of slides. The key question in CBR concerns the automatization of this kind of

problem solving.

A widely accepted framework for case-based reasoning is characterized by the so-called

“CBR cycle”. The latter reflects the main components necessary for realizing CBR,

namely the retrieval and the intelligent use of stored cases, the update of experiences

given in the form of cases, and the case base maintenance. The (informal) R4 model of

the CBR cycle describes the main steps of a single problem solving episode and consists of

the following four phases [1]: Retrieve the case(s) from the case base which is (are) most

similar to the target problem; Reuse the information provided by this (these) case(s) in

order to generate a candidate solution for the new problem; Revise the proposed solution

according to the special requirements of the new problem; Retain the new experience

obtained in the current problem solving episode for future problem solving.

Especially difficult to automatize is the revision step. For example, reconsider the intro-

ductory example above: How to build a computer program that automatically prepares a

new talk from old slides? This seems to be hardly possible, mainly because in this type of
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problem the adaptation steps are not well-defined and require a degree of understanding

and creativity that goes far beyond the capabilities of current computers. If, one the other

hand, a set of well-defined (formal) adaptation operators is available, these operators can

in principle be used as search operators in a search space the states of which correspond

to cases. As suggested in [8], CBR can then be cast as a search problem amenable to a

computerized solution. We shall come back to this point at the end of the paper.

Even simpler than “systematic” or “combinatorial” adaptation of that kind is “null-

adaptation”, i.e., problems for which no adaptation is necessary at all. In particular,

this includes prediction problems, such as classification and regression, that will be con-

sidered in more detail in section 4.

This paper contributes to the methodical foundations of CBR by developing a method

for case-based inference (CBI) with some interesting theoretical properties. Here, case-

based inference is considered as a part of CBR closely related to the retrieval step. More

specifically, CBI tries to answer the following question: Given the current problem solving

experience in the form of a case base (and background knowledge in the form of the

underlying similar problems–similar solutions assumption), what solutions are likely to

solve a new target problem?

The method that we shall propose will answer this questions in terms of a “credible

solution set”, that is, a set of candidate solutions that covers the correct solution with

high probability. This approach, that we shall refer to as credible case-based inference

(CCBI), will be introduced in its basic form in section 2. Practically motivated extensions

of CCBI will then be presented in section 3. Section 4 is devoted to the application of

CCBI to prediction problems.1 Related work is briefly discussed in section 5. The paper

concludes with a summary and some suggestions for future work in section 6.

1Applying the inference principle underlying our approach to instance-based regression has first been
proposed in a paper presented at the 16th European Conference on Artificial Intelligence (ECAI), Valen-
cia, Spain, 2004 [21].
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2 Credible Case-Based Inference

In this section, we introduce the method of credible case-based inference (CCBI) for de-

riving credible solution sets in CBR. As a major tool, this method makes use of what we

call a similarity profile, a function that establishes a connection between the similarity of

problems and the similarity of solutions. This concept, as well as as the related concept

of a similarity hypothesis, will first be discussed in sections 2.2–2.4. CCBI itself will then

be introduced in section 2.5.

2.1 Case-Based Inference

Let X denote a problem space, that is, a set of potential problems in the application under

consideration. More specifically, each x ∈ X is a formal representation of a problem. A

problem space of such kind is a completely general concept; it includes special cases such

as, e.g., feature spaces in supervised learning, where problems are instances characterized

by a fixed number of attribute values, but also problems described by more complex

structures like trees or graphs. Likewise, let L be a solution space, i.e., a set of potential

solutions. For the sake of simplicity, we assume that each problem x ∈ X is associated with

a unique (optimal) solution λx ∈ L. We remark, however, that the approach presented

in the remainder of the paper can be extended to the more general case where a problem

can be solved by more than one solution and, hence, is associated with a subset of L.

We assume the problem space X to be endowed with a similarity measure simX (·); for

each pair of problems x, y ∈ X , simX (x, y) is a quantification of the similarity between

x and y. Likewise, we assume a similarity measure simL(·) to be defined on the solution

space L. For the sake of convenience, we assume that both measures are normalized to

the range [0, 1], where 1 means complete similarity and 0 complete dissimilarity. More-

over, we assume that the measures are reflexive and symmetric, i.e., simX (x, x) = 1 and

simX (x, y) = simX (y, x) for all x, y ∈ X . We like to emphasize, however, that we do not

assume any kind of transitivity. In particular, we do not assume that X or L are met-

ric spaces. This makes our approach widely applicable and more flexible than standard
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statistical inference methods, a point we shall return to later on.2

Finally, we assume a case base (memory) M to be given, that is, a collection of n cases

of the form 〈xı, λxı〉 ∈ X × L, 1 ≤ ı ≤ n. This case base is a summary of the problem

solving experience gathered so far. The task of case-based inference shall be to exploit

that experience in order to predict the solution of a new target problem x0 ∈ X .

2.2 Similarity Profiles

CBR strongly relies of the assumption that similar problems have similar solutions. Even

though this “CBR hypothesis” is in harmony with daily experience, it is a relatively

vague heuristic, which in our opinion is one reason for the ad-hoc character of many CBR

methods. Our point of departure is therefore a concretization of the CBR hypothesis

in terms of a formal model. This will provide the basis of a sound inference procedure

including assertions about the confidence of predictions.

To begin, suppose that the CBR hypothesis has the following concrete meaning:

∀x, y ∈ X : simX (x, y) ≤ simL (λx, λy) (1)

Roughly speaking, (1) is a similarity constraint demanding that solutions are always at

least as similar as problems. On the basis of this constraint, one can reason as follows:

Consider a case 〈x1, λx1〉 from the case base M and let x1 be α1-similar to the target

problem x0, i.e. simX (x1, x0) = α1. According to (1), the unknown solution λx0 must then

be an element of the α1-neighborhood of λx1 , i.e., of the set

Nα1(λx1)
df
= {λ ∈ L | simL(λ, λx1) ≥ α1}.

Likewise, if we have another case 〈x2, λx2〉 such that simX (x2, x0) = α2, the solution

λx0 is also an element of the α2-neighborhood of λx2 and, hence, of the intersection

Nα1(λx1) ∩ Nα2(λx2); see Fig. 1 for an illustration. Repeating the same argument for all

2In principle, we could even give up the symmetry assumption, though we retain it for ease of expo-
sition. We note, however, that non-symmetric measures might indeed be of interest in CBR [30].
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Figure 1: The known solutions of two problems restrict the solution of the target problem,
which must be an element of the shaded region according to constraint (1).

cases in the case base, one finally derives the following restriction for the solution λx0 :

λx0 ∈
n⋂

ı=1

NsimX (xı,x0)(λxı) (2)

Needless to say, for a concrete application the similarity constraint (1) will usually not be

satisfied, which in turn invalidates the above line of reasoning. Let us therefore consider

a relaxation of this constraint:

∀x, y ∈ X : ζ ( simX (x, y) ) ≤ simL (λx, λy) , (3)

where ζ(·) is an appropriate function [0, 1]→ [0, 1]. This function assigns to each similarity

degree between two problems, α, the largest similarity degree β = ζ(α) such that the

following property holds: The solutions of two α-similar problems are guaranteed to be

at least β-similar. We call ζ(·) a similarity profile. More formally, a similarity profile is

defined as follows: For all α ∈ [0, 1],

ζ(α)
df
= inf

x,y∈X ,simX (x,y)=α
simL (λx, λy) . (4)

We note that, by using ζ(·) as defined in (4), the constraint (3) is satisfied by definition. In

the worst case, ζ(α) = 0 for all α, which means that the similarity between two problems

does not allow one to draw any conclusions about the similarity between the corresponding

solutions. Fortunately, this situation rarely occurs in practice, where the CBR hypothesis

is mostly satisifed at least to some extent. In fact, the similarity profile conveys a precise
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idea of the degree to which an application actually meets the CBR hypothesis. Roughly

speaking, the “larger” ζ(·) is, the more this hypothesis holds true.3

Generalizing our above line of reasoning, the constraint (3) suggests the following coun-

terpart to (2) for predicting the label λx0 :

λx0 ∈ C(x0)
df
=

n⋂
ı=1

Nζ(simX (xı,x0))(λxı) (5)

This inference scheme is obviously correct in the sense that C(x0) is guaranteed to cover

λx0, a property that follows immediately from the definition of the similarity profile ζ(·).
We call C(x0) a credible solution set and refer to the inference scheme itself as CCBI

(Credible Case-Based Inference). As an interesting property of the prediction (5), note

that it can also suggest solutions that have never been observed so far. Roughly speaking,

while traditional CBR methods are typically restricted to retrieve solutions stored in the

case base, our approach is also able to “interpolate” between the observed solutions.

2.3 Similarity Hypotheses

The application of the inference scheme (5) requires the similarity profile ζ(·) to be known,

a requirement that will usually not be fulfilled. This motivates the related concept of a

similarity hypothesis, a function h : [0, 1]→ [0, 1], which is thought of as an approximation

of a similarity profile. We say that h(·) is admissible if h(·) ≤ ζ(·), i.e., h(α) ≤ ζ(α) for

all α ∈ [0, 1]. A hypothesis h(·) is called stronger than a hypothesis h′(·) if h′(·) ≤ h(·)
and h(·) 	≤ h′(·).

It is obvious that using an admissible hypothesis h(·) in place of the true similarity profile

ζ(·) within the inference scheme (5) leads to predictions

Cest(x0)
df
=

n⋂
ı=1

Nh(simX (xı,x0))(λxı) (6)

3Of course, [0, 1] → [0, 1] mappings are only partially ordered: ζ(·) ≤ ζ′(·) if ζ(x) ≤ ζ′(x) for all
x ∈ [0, 1].
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that are correct in the sense that λx0 ∈ Cest(x0). Indeed, h(·) ≤ ζ(·) implies

Nζ(simX (xı,x0))(λxı) ⊆ Nh(simX (xı,x0))(λxı)

for all cases 〈xı, λxı〉 and, hence, C(x0) ⊆ Cest(x0).

Yet, assuming the profile ζ(·) to be unknown, one cannot guarantee the admissibility of a

hypothesis h(·) and, hence, the correctness of (6). In other words, it might happen that

λx0 	∈ Cest(x0). In fact, we might even have Cest(x0) = ∅ (in which case the prediction is

definitely incorrect). Nevertheless, taking for granted that h(·) is indeed a good approxi-

mation of ζ(·), it seems reasonable to derive Cest(x0) according to (6) as an approximation

of C(x0), that is, to realize case-based inference as a kind of approximate reasoning. In

fact, our results below will show that, by using suitable hypotheses, the probability of

incorrect predictions can be bounded and becomes (arbitrarily) small for large case bases.

2.4 Learning Similarity Hypotheses

Our discussion so far has left open the question of how to specify a similarity hypothesis

in an appropriate way. An obvious idea in this connection is to induce such a hypothesis

from the observed cases. Before going into detail, note that the overall approach thus

obtained can be seen as a combination of case-based and model-based learning. In fact,

adapting the similarity hypothesis is a kind of model-based learning, since a similarity

hypothesis is a model of the CBR hypothesis.

Given a hypothesis space H, i.e., a class of functions h : [0, 1]→ [0, 1], learning amounts

to choosing one among these hypotheses on the basis of the data. But which of the

hypotheses are interesting candidates? Of course, first of all a hypothesis h(·) should be

consistent with the data given, that is, the similarity constraint should be satisfied for all

cases inM:

∀ 〈x, λx〉, 〈y, λy〉 ∈ M : simX (x, y) = α ⇒ simL(λx, λy) ≥ h(α). (7)
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Denote by HC ⊆ H the set of hypotheses that are consistent in this sense. Among two

consistent hypotheses h(·) and h′(·), where h(·) is stronger than h′(·), we should prefer

the former since it leads to more precise predictions. Thus, we call a hypothesis h∗(·)
optimal if h∗ ∈ HC and if there is no hypothesis h ∈ HC such that h(·) is stronger than

h∗(·). The following observation is very simple to prove:

Observation 1 Suppose the hypothesis space H to satisfy h ≡ 0 ∈ H and (h, h′ ∈ H)⇒
(h ∨ h′ ∈ H), where h ∨ h′ is the pointwise maximum x �→ max{h(x), h′(x)}. Then, a

unique optimal hypothesis h∗ ∈ H exists, and HC = {h ∈ H | h ≤ h∗}.

Given the assumptions of this observation, learning a similarity hypothesis can be realized

as a candidate-elimination algorithm [26], where h∗(·) is a compact representation of the

version space, i.e., the subset HC of hypotheses from H which are consistent with the

training examples.

A very simple representation of hypotheses, that will nevertheless turn out to be very

useful, is a step function

h : x �→
m∑

k=1

βk · IAk
(x), (8)

where Ak = [αk−1, αk) for 1 ≤ k ≤ m − 1, Am = [αm−1, αm], and 0 = α0 < α1 < . . . <

αm = 1 defines a partition of [0, 1]. (IA(·) denotes the indicator function of set A.) For a

fixed underlying partition, we denote the space of all step functions by Hstep.

The strongest hypothesis h∗ ∈ Hstep consistent with the cases in the case base M is

characterized by the coefficients

βk
df
= min

xı,x:simX (xı,x)∈Ak

simL(λxı, λx) (9)

for 1 ≤ k ≤ m, where min ∅ = 1 by definition. We call this hypothesis the empirical

similarity profile and, since it is directly derived from the case base M, denote it by

hM(·); see Fig. 2 for an illustration.

Now, suppose that the case base M, in which n cases are stored, is to be extended by
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simX (xı, x)

simL(λxı, λx)

0
0

1

1

Figure 2: Each pair of cases 〈xı, λxı〉 and 〈x, λx〉 contributes a point (α, β) in the “simi-
larity space”, where α = simX (xı, x) and β = simL(λxı, λx). By definition, these points
are located above the similarity profile, which is here shown by the solid (red) line. The
empirical similarity profile is given by the step function indicated by the solid (blue)
horizontal lines.

a newly observed case 〈xn+1, λxn+1〉. Updating the empirical similarity profile hM(·) can

then be accomplished by passing the iteration

βκ(xn+1,x) ← min
{

βκ(xn+1,x), simL(λxn+1, λx)
}

(10)

for 1 ≤  ≤ n = |M|. The index 1 ≤ κ(x, y) ≤ m is defined for problems x, y ∈ X by

κ(x, y) = k ⇔ simX (x, y) ∈ Ak. As can be seen, the time complexity of updating the

empirical profile is linear in the size of the case base.

2.5 Credible Case-Based Inference

The updating scheme (10) suggests a CBR process in which prediction and learning are

repeated alternately in the style of incremental supervised learning, as shown in Algo-

rithm 1: At each point of time, we dispose of a case baseM with an associated empirical

similarity profile hM(·). Having to predict the solution of a new problem x0, an esti-

mation Cest(x0) is derived from M and hM(·) according to (6). The system exploits

Cest(x0) in order to support the (external) problem solving process (procedure solve in

Algorithm 1). If, in the course of problem solving, the correct solution λx0 has become

available, 〈x0, λx0〉 is added as the (n + 1)-th case 〈xn+1, λxn+1〉 to the case base and the

empirical profile hM(·) is updated according to (10).
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Algorithm 1 CCBI

Input: a sequence of query inputs
Output: a sequence of credible estimation for outputs

1: initialize the original case base M (perhaps empty)
2: repeat
3: take next query x0

4: derive estimation Cest(x0) fromM and hM(·) according to (6)
5: λx0 ← solve(x0, C

est(x0))
6: M←M∪ {〈x0, λx0〉}
7: update empirical profile hM(·) according to (10)
8: until no more queries exist

Regarding the complexity of CCBI, the estimation step (6) requires computing the simi-

larity between the query x0 and the cases stored in the memory. Likewise, updating the

empirical profile hM(·) according to (10) again requires scanning the case base. Deriving

the prediction itself comes down to intersecting the neighborhood of cases and, hence,

strongly depends on the application (structure of L, representation of neighborhoods).

Thus, excluding the prediction itself, the overall complexity of a CCBI step is linear in

the size ofM. As will be seen in the remainder of the paper, several possibilities exist to

further increase the efficiency of the basic CCBI scheme.

Needless to say, the strategy of simply adding all observations to the current case baseM
will usually not be efficient. In fact, much more sophisticated strategies for maintaining a

case base are often used in practice [33], including the possibility of removing or replacing

stored cases [31, 27]. Still, the strategy above is sufficient for our purpose here. Besides,

it simplifies a theoretical analysis of the prediction performance, as will be seen below.

For obvious reasons, we call the step function h∗(·) defined by the coefficients

β∗
k

df
= inf { ζ(α) |α ∈ Ak } , (11)

1 ≤ k ≤ m, the optimal admissible hypothesis. Since admissibility implies consistency,

we have h∗(·) ≤ hM(·). This inequality suggests that the empirical similarity profile

hM(·) will usually overestimate the true profile ζ(·) and, hence, that hM(·) might not be

admissible (cf. Fig. 2). Of course, the fact that admissibility of hM(·) is not guaranteed

seems to conflict with the objective of providing correct predictions and, hence, gives rise
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to questions concerning the actual quality of the empirical profile as well as the quality

of predictions derived from that hypothesis.

We make the simplifying assumption that the problem space X is countable. Further, we

make the standard assumption that the query problems x0 (resp. the new cases 〈x0, λx0〉)
are chosen at random according to a fixed (not necessarily known) probability distribution

µ(·). Statistically speaking, the observed cases are independent and identically distributed

(iid) random variables. Note that we can assume µ({x}) > 0 for all x ∈ X without loss

of generality.

Now, denote byMn the case base in the n-th step of the above CBR process, that is, the

case base M such that |M| = n, and by hn(·) = hMn(·) the empirical similarity profile

derived from that case base. Since, according to our assumption, the observed cases are

random variables, the induced hypotheses hn(·) are random variables (random functions)

as well. As a first important property of the above learning process we can prove that the

sequence of hypotheses h1, h2, . . . converges stochastically toward the optimal admissible

hypothesis h∗(·).

Theorem 2 For the sequence (hn)n≥1 of empirical similarity profiles it holds true that

hn ↘ h∗ stochastically as n → ∞. That is, hn ≥ h∗ for all n ∈ N and Pr(|hn − h∗|∞ ≥
ε)→ 0 as n→∞ for all ε > 0, where |hn − h∗|∞ df

= sup0≤x≤1 |hn(x)− h∗(x)|. �

Proof: Given the definition of h∗(·) and the updating procedure for empirical profiles, it

is obvious that h∗(·) ≤ hn(·) for all n ≥ 1 and, moreover, that the sequence of functions

(hn)n≥1 is decreasing. Let ε > 0 and consider some 1 ≤ k ≤ m. According to (11), there

is some α ∈ Ak such that |ζ(α) − β∗
k| < ε/2. Then, due to the definition of ζ(α), there

are also xk1 , xk2 ∈ X such that simX (xk1 , xk2) = α and | simL(λxk1
, λxk2

) − ζ(α)| < ε/2.

Therefore, | simL(λxk1
, λxk2

)− β∗
k | < ε. This implies |hn(α)− β∗

k| < ε as soon as the case

base Mn contains the problems xk1 and xk2. Since this line of reasoning applies to all

1 ≤ k ≤ m, we obtain

‖hn − h∗‖∞ = max
0≤α≤1

|hn(α)− h∗(α)| < ε
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if the case base Mn contains the (at most 2 m) problems xk1 , xk2 (1 ≤ k ≤ m). Since

µX ({xk1}) > 0 and µX ({xk2}) > 0 for all 1 ≤ k ≤ m, the probability for this tends toward

1 as n→∞. �

Regarding the quality of estimations, we are first of all interested in the probability of

incorrect predictions. In this connection, it should be noted that a prediction Cest(x0)

might well be correct even if the involved empirical profile hM(·) is not admissible: Recall

that the estimation (6) is derived from a limited number of similarity constraints, namely

the βı-neighborhoods associated with known solutions λxı. As we cannot exclude that

βı = hM(simX (xı, x0)) > ζ(simX (xı, x0)), it is true that each of these neighborhoods

might be “too small” and, hence, might remove some solutions from the credible solution

set C(x0). Still, this unjustified removal does not necessarily concern the correct label

λx0. An indeed, we can show the following result:

Theorem 3 Suppose that observed problems are independent and identically distributed

(iid) random variables, generated according to a fixed (not necessarily known) probability

distribution µ(·) over X . Let Cest(x0) be the prediction of the label λx0 derived from the

empirical similarity profile hM(·). The following estimation holds true:

Pr
(
λx0 	∈ Cest(x0)

) ≤ 2m

1 + |M| , (12)

where m is the size of the partition underlying the step function hM(·). �

Proof: Consider a case baseM with related (empirical) profile hM(·). We call a problem

x0 ∈ X extremal (with respect toM) if there is some 1 ≤ k ≤ m and a case 〈x, λx〉 ∈ M
such that simX (x, x0) ∈ Ak and simL(λx, λx0) < simL(λx1, λx2) for all 〈x1, λx1〉, 〈x2, λx2〉 ∈
M such that simX (x1, x2) ∈ Ak.

4 We first show that, if λx0 	∈ Cest(x0), then x0 is extremal

with respect to the underlying case base M. In fact, if λx0 	∈ Cest(x0), there must be a

case 〈x, λx〉 ∈ M such that λx0 	∈ NhM(simX (x,x0))(λx). This means that simL(λx, λx0) <

hM(simX (x, x0)) and, therefore, simL(λx, λx0) < simL(λx1, λx2) for all 〈x1, λx1〉, 〈x2, λx2〉 ∈
4This definition of being extremal is to some extent related to the concept of “strangeness” of an

observation in the context of so-called confidence machines [18, 28].
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M such that simX (x1, x2) ∈ Aκ(x,x0). Thus, x0 is extremal. This result shows that the

probability (12) is upper-bounded by the probability that x0 is extremal with respect to

M. Let M+ =M∪ {〈x0, λx0〉} and consider hM+(·). Obviously, there is a sub-memory

M− ⊆M+ consisting of (at most) 2m cases and such that hM+(·) = hM−(·). Moreover,

〈x0, λx0〉 	∈ M− implies that x0 is not extremal. Therefore, recalling that problems are

chosen independently according to µX (·) and noting that |M+| = 1 +M, the theorem

simply holds due to reasons of symmetry. �

Corollary 4 The expected proportion of incorrect predictions in connection with the above

CBR process converges toward 0. �

According to the above results, the probability of an incorrect prediction becomes small

for large memories, even if the related hypotheses are not admissible. In fact, Pr(λx0 	∈
Cest(x0)) → 0 as |M| → ∞. In a statistical sense, the prediction Cest(x0) can indeed

be seen as credible solution set, a justification for using this term not only for C(x0) but

also for Cest(x0). Note that the level of confidence guaranteed by Cest(x0) depends on the

number of observed cases and can hence be controlled.

The upper bound established in Theorem 3 might suggest decreasing the probability of

an incorrect prediction by reducing the size m of the partition underlying Hstep. Ob-

serve, however, that this will also lead to a less precise approximation of ζ(·) and, hence,

to less precise predictions of solutions. When “merging” two neighbored intervals Ak

and Ak+1, for instance, the corresponding coefficients βk and βk+1 would be replaced by

min{βk, βk+1}.

It is furthermore interesting to note that the level of confidence does not depend on the

similarity measures simX (·) and simL(·), i.e., credible predictions can be made for any

pair of similarity measures. In other words, the suitability of the similarity measures

does not influence the confidence of the predicted solution sets Cest(x0). It does influence,

however, the precision of these predictions: The more suitable the similarity measures are,

the “larger” the similarity profile and, hence, the more precise the predictions become.

Thus, methods for learning or adapting similarity measures, a topic of general interest
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in CBR (e.g. [17, 34]), could of course complement CCBI in a reasonable way. Even

though this idea will not be developed further in this paper, note that the similarity

profile provides an interesting point of departure in this regard: As mentioned above, the

precision of predictions is to a large extent dictated by the strength of the similarity profile.

Consequently, the latter can be taken as an indicator of the quality of the underlying

similarity measures (and, hence, as an optimization criterion).

2.6 Practical Issues

A rather obvious idea in connection with the inference scheme (5) is to take the intersection

not over all n cases in the case base M but only over the k � n nearest neighbors of

the query x0. Obviously, this will increase efficiency while preserving the correctness of

the prediction. On the other hand, some precision will be lost, but this effect is usually

limited due to the fact that less similar problems often hardly contribute to the precision

of predictions.

In many applications one is interested in both, a credible solution set and a “point-

estimation” of the solution λx0, i.e., a distinguished element λest
x0
∈ L that can be consid-

ered as representative. The latter can be derived from the credible solution set Cest(x0)

as a generalized median:

λest
x0

df
= arg max

λ∈Cest(x0)

∑
λ′∈Cest(x0)

simL(λ, λ′)

As can be seen, the generalized median is a kind of center-point, namely the element of

the credible solution set which is maximally similar to all other elements.

Let us finally make a note on the specification of the similarity measures simX (·) and

simL(·). Usually, the definition of the latter is uncritical, especially since only the ordinal

structure of this measure is important: A (strictly) monotone transformation of simL(·)
will not change the inference result, i.e., the credible solution set! (As can be shown

formally, it only changes the similarity bounds β = h(α) but not the neighborhoods

Nβ(λ)). For example, in the case where solutions are real numbers (as in regression),
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this means that simL(·) can be defined by any monotone decreasing function of Euclidean

distance.

Regarding the definition of simX (·), the cardinal structure of this measure is important

in so far as it has an influence on the assignment of similarity pairs (the black points in

Fig. 2) to the bins of the (fixed) partition underlying the specification of the similarity

profile. Still, our experiments so far have shown that the profile is rather robust toward

variations of simX (·). This can be explained by the fact that moving a similarity pair from

one bin to another does only have an effect if this pair is a “critical” one that determines

the similarity bound in one of the bins.

3 Extensions of CCBI

One disadvantage of credible case-based inference as outlined above concerns one of its

key ingredients, the concept of a similarity profile. Due to the fact that a similarity

profile provides worst case estimations in the form of lower similarity bounds, it is rather

sensitive toward outliers, i.e., similarity pairs

(α, β) =
(
simX (xı, x), simL(λxı, λx)

)
(13)

with comparatively small β. In fact, as ζ(α) is a lower bound to the similarity of solutions

that belong to α-similar problems, even the existence of a single pair of α-similar problems

having rather dissimilar solutions entails a small lower bound ζ(α). Small bounds in turn

will obviously have a negative effect on the precision of predictions (5). This problem is

illustrated in Fig. 3 for the auto-mpg data set, a benchmark from the UCI repository.5

The picture clearly reveals the aforementioned outlier effect: The similarity profile is

“pressed down” by a relatively small number of similarity pairs (13). In this section,

some extensions of CCBI will be introduced in order to overcome this drawback.

5See section 4 for details concerning the specification of the underlying similarity measures.
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Figure 3: Empirical similarity profile for the auto-mpg data (step function). Each point
corresponds to a pair (α, β) with α = simX (x, y) (abscissa) and β = simL(λx, λy) (ordi-
nate).

3.1 M-Similarity Profiles

As already mentioned above, typically not all encountered cases are stored in the case

base M. In many applications, the case base will even remain more or less fixed. Under

these conditions, not all potential similarity tuples of the form (13) are actually relevant.

In fact, in the course of case-based inference, such tuples are only derived for pairs of

cases

(〈xı, λxı〉, 〈x, λx〉) ∈M× (X × L),

i.e., one of the cases is always an element of the case base. One may benefit from this fact

by adjusting the similarity profile (and the corresponding inference scheme) to the case

baseM. This leads to the concept of anM-similarity profile, which is defined as follows:

For all α ∈ [0, 1],

ζ(α)
df
= inf

〈x,λx〉∈M,y∈X ,simX (x,y)=α
simL (λx, λy) . (14)

The definition of the empirical similarity profile is changed correspondingly: in the defini-

tion (9) of the coefficients βk, the minimum is taken over those problems where xı is in the

case baseM, and x is any problem that has been encountered so far. In this connection,
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it can be shown that inequality (12) in Theorem 3 can be generalized as follows:

Pr
(
λx0 	∈ Cest(x0)

) ≤ 2m

1 + N
,

where N is the number of problems that have been encountered so far. (The proof is

omitted here as it is quite similar to the proof of Theorem 3.)

3.2 Local Similarity Profiles

The idea of adapting a similarity profile to a given case base, as discussed above, can even

be carried one step further: a similarity profile can be maintained for each individual case

in the case base. We define the profile ζı(·) of the ı-th case 〈xı, λxı〉 as in (4), except that

the infimum is taken only over those pairs of cases that involve the ı-th case itself:

ζı(α)
df
= inf

y∈X ,simX (xı,y)=α
simL (λxı , λy) (15)

Thus, ζı(·) allows for statements of the following kind: If a problem is α-similar to xı, its

solution is at least ζı(α)-similar to λxı . Since ζı(·) is adapted to a single case and, hence,

to a local subregion of the problem space, we call it a local similarity profile. Note that a

local profile can be seen as a suitable scaling of the neighborhood of a case and, hence, is

in line with the idea of using locally adaptive metrics in nearest neighbor methods [14].

In the inference scheme (5), the neighborhoods Nζ(simX (xı,x0))(λxı) are now replaced by the

neighborhoods Nζı(simX (xı,x0))(λxı). We refer to this type of local inference as CCBI-L.

The concept of a local similarity profile allows one to distinguish between typical and

untypical cases. In fact, due to the enforced global validity of a standard similarity

profile, untypical cases and outliers are treated in the same way as typical cases that

are representative of their neighborhood. Consequently, the derivation of tight bounds

from typical cases is prevented: in the inference scheme (5), the neighborhoods of such

cases are as large as those of untypical cases. This effect is obviously avoided by using

local similarity profiles. In this connection, we note that a local similarity profile, as a
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Figure 4: Local empirical similarity profiles of the 9-th (solid line) and 323-rd (dashed
line) car in the auto-mpg data, using an equi-width partition of size 5.

quantification of the typicality of a case, might serve as a good criterion for selecting

“competent” cases to be stored in the case base M [32]. In the auto-mpg data set, for

example, the 9-th car (a pontiac catalina) has a much stronger developed (local) empirical

profile than the 323-rd car (a mazda glc), as shown in Fig. 4. Thus, the former seems to

be much more typical than the latter.

Mathematically speaking, a similarity profile ζ(·) is the lower envelope of all local profiles

ζı(·). Consequently, CCBI-L will usually yield predictions that are more precise than

those of CCBI. The price to pay is a higher computational complexity, since a profile

must be maintained for every case in the case base M. Moreover, it is to be expected

that a prediction in the form of a credible solution set becomes less confident or, stated

differently, that more cases are needed in order to achieve the same level of confidence.

Indeed, it can be proved that inequality (12) in Theorem 3 can now be generalized as

follows:

Pr
(
λx0 	∈ Cest(x0)

) ≤ |M|m
1 + N

,

where N is again the number of problems that have been encountered so far. As can

be seen, the factor 2 in the upper bound is now replaced by |M| and, hence, increases

linearly with the size of the case base. Anyway, the probability of an incorrect prediction

still becomes arbitrarily small if the number of observed cases (N) is large enough in

comparison with the number of cases in the case base.
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3.3 Probabilistic Similarity Profiles

Another idea to increase the robustness of similarity profiles is to replace the determin-

istic similarity bounds ζ(α) by probabilistic bounds. Such probabilistic bounds can be

expressed in terms of (cumulative) probability distribution functions Fα(·), with Fα(β)

being the probability that simL(λx, λy) ≤ β for α-similar problems x, y ∈ X [20]:

Fα(β)
df
= Pr ( simL(λx, λy) ≤ β | simX (x, y) = α) .

In practice it will usually be sufficient to approximate a distribution function by a finite

set of quantiles.

The representation of hypotheses in the form of step functions can easily be extended to

the probabilistic setting. Let Ak be an interval in the representation (8) of hypotheses.

Moreover, let Sk be the set of similarity degrees simL(λxı, λx) such that simX (xı, x) ∈ Ak.

Rather than assigning to βk the minimum of Sk, as in (9), we now define this bound by

the (1− p)-quantile of Sk, where p is a usually small value such as 0.05. As an empirical

quantile, βk is hence an estimation of the corresponding true quantile of Fα(·). We call

the step function hp(·) given by hp(α) = βk for α ∈ Ak, with βk as defined above, the

empirical p-profile.

Now, suppose that we employ hp(·) in order to derive a prediction

Cest(x0) =

k⋂
ı=1

Nhp(simX (xı,x0))(λxı),

where x1 . . . xk are the k nearest neighbors of the query problem x0. What is the level

of confidence of this prediction? Unfortunately, we do not have enough information to

compute the probability of an incorrect prediction exactly. Still, by making a simplifying

independence assumption à la näıve Bayes, the confidence level (1− p)k can be justified.

Our practical experience has shown that this level still underestimates the true confidence

level in almost any application (cf. section 4).

Of course, probabilistic estimations of the above type can be derived for different values
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p1 < p2 < . . . < p�. Thus, by using this probabilistic variant of CCBI, that we call

CCBI-P, one obtains a nested sequence

Cp�(x0) ⊆ Cp�−1(x0) ⊆ . . . ⊆ Cp1(x0)

of credible solution sets with associated confidence levels. As an advantage of this kind of

“stratified” prediction note that it differentiates between predicted solutions better than

a single credible solution set does: The solutions in Cp�(x0) are the most likely ones, those

in Cp�−1(x0) \ Cp�(x0) are somewhat less likely, and so on.

4 CCBI for Prediction Problems

As mentioned above, an especially simple yet relevant problem class for CBR is given

by prediction problems, including classification and regression as special cases. In this

context, CBR is typically referred to as instance-based learning (IBL) [4, 2]. From a

machine learning point of view, IBL is an interesting alternative to inductive, model-

based methods. Rather than inducing a general model (theory) from the data, IBL

algorithms simply store the data itself [35]. The processing of the data is deferred until a

prediction is actually requested, a property that qualifies IBL as a lazy learning method

[3]. Predictions are then derived by combining the information provided by the stored

examples in one way or other.

Typically, IBL is applied to classification problems, where predictions are derived from

the query’s k nearest neighbors through majority voting. Still, by combining the neigh-

bors’ predictions using a weighted sum rather than majority voting, IBL can also be

employed for the estimation of numeric values [5]. In [22], the predictive performance of

(numeric) IBL was found to be quite able to compete against linear regression (LR) as

a representative of classical statistical approaches. More importantly, the authors cor-

rectly emphasized a key advantage of IBL, namely the fact that it does not assume strong

(structural) properties of the data-generating process, such as linearity in LR.
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This advantage, however, does not come for free. For methods that dispose of an underly-

ing (statistical) model it is usually much simpler to quantify the credibility of a prediction.

In LR, for example, an estimated model can be used for deriving a confidence interval

covering a predicted output with a certain probability. Roughly speaking, this becomes

possible by transferring the credibility of the model itself, estimated on the basis of the

data in conjunction with the model assumptions, to predictions thereof. Interestingly

enough, by deriving predictions in the form of credible sets, CCBI combines advantages

from both instance-based and model-based learning: As an instance-based approach it

requires fewer structural assumptions than (parametric) statistical methods, and yet it

allows for specifying the uncertainty related to predictions.

This section is meant to convey a first idea of how CCBI can be applied to prediction

problems and how it performs in practice. To this end, we present some experiments, in

which we compared our approach to standard IBL (nearest neighbor estimation [12]). It

should be noted in advance, however, that a fair comparison is difficult, especially since

the methods provide predictions of different kind. For example, the main purpose of CCBI

is to derive estimations in the form of credible sets, whereas IBL aims at producing good

point estimations in the first place. As a consequence, standard IBL and CCBI are not

directly comparable. And indeed, the main purpose of our studies is not to show that one

approach is better than the other one, but instead that CCBI can reasonably complement

standard IBL. Besides, the experiments are intended to support the theoretical results

of the previous sections and to underpin our claim that CCBI combines advantages from

both instance-based and model-based learning.

We performed experiments for regression problems, that is, prediction of numerical out-

puts. In this case, a training example is a tuple 〈x, λx〉, where x = (x1 . . . xm) is a vector of

values for the input attributes, numerical or nominal, and λx is a value for the (numerical)

output attribute. As a similarity measure, we used

simX (x, y)
df
= exp

(
− γ

1

m

∑
ı

d(xı, yı)

)
, (16)

where the distance d(·) is defined as |xı− yı| for numerical attributes and assumes values
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Figure 5: Approximation of x �→ x2 (solid line) in the form of a confidence band, using
CCBI (shaded region) and linear regression (region between dashed lines). The examples
are indicated by black points.

0 and 1 for ordinal features (i.e., d(xı, yı) = 0 if xı = yı and = 1 otherwise). To guarantee

that all attributes do approximately have the same influence – a point of critical impor-

tance in IBL [22] – each input attribute is first re-scaled linearly to the unit interval. To

facilitate the interpretation of quality measures, we re-scaled the output attribute in the

same way.

Since our main objective is to compare IBL and CCBI under equal conditions, we refrained

from “tuning” both methods. Particularly, we neither included feature selection nor

feature weighting.6 Besides, we did not put much effort in optimizing the constant γ in

(16); γ = 5 seemed to produce reasonable results, and we used this value throughout our

experiments. The partition of the unit interval underlying the similarity hypothesis in

CCBI was always defined as a simple equi-width partition of size 10 for the global version

and (since there are less training examples in the local approach) of size 5 for CCBI-L.

4.1 An Illustration using Artificial Data

The first example is a simple regression problem and mainly serves as an illustration.

The function to be learned is given by the polynomial x �→ x2. Moreover, n training

examples 〈xı, λxı〉 are given, where the xı are uniformly distributed in X = [0, 1] and the

6It is well-known that irrelevant features can badly deteriorate instance-based learning methods and,
on the other hand, that feature weighting can greatly improve performance [36].
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Figure 6: Approximation of x �→ x2 (solid line) in the form of a confidence band, using
CCBI-L and linear regression (region between dashed lines).

λxı are normally distributed with mean (xı)
2 and standard deviation 1/10. As mentioned

above, we employed (16) with γ = 5 as a similarity measure for instances. Given a random

sample (case base)M, we first induce a similarity hypothesis for an underlying equi-width

partition of size m = 5. Using this hypothesis and the sampleM, we derive a prediction

λx for all instances x ∈ [0, 1] (resp. for the discretization {0, 0.01, 0.02 . . .1}). Note that

such a prediction is simply an interval. The union of these intervals yields a confidence

band for the true mapping x �→ x2. Fig. 5 shows a typical inference result for n = 25.

Moreover, Fig. 6 shows a result for n = 75, using local similarity profiles (CCBI-L).

According to our estimation (12), the degree of confidence for n = 25 is 16/26. This, how-

ever, is only a lower bound, and empirically (namely by averaging over 1,000 experiments)

we found that the level of confidence is almost 0.9. To draw a comparison with standard

statistical techniques, the figures also show the 0.9-confidence band obtained for the re-

gression estimation (and the same samples). As can be seen, CCBI yields predictions

of roughly the same precision, CCBI-L is even slightly more precise. This finding was

also supported for estimation problems with other functions and input spaces of higher

dimension.

In this connection, it should again be mentioned that linear resp. polynomial regression

makes many more assumptions than CCBI. Especially, the type of function to be estimated

must be specified in advance: Knowing that this function is a polynomial of degree 2 in our

example, we took the model x �→ β0+β1x+β2x
2 as a point of departure and estimated the
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name size # var.
01 breast-tumor 277 1/8
02 cholesterol 297 6/7
03 cleveland 297 6/7
04 cpu 209 6/1
05 housing 506 12/1
07 pharynx 193 1/10
08 sensory 576 0/11
09 strike 625 5/1
10 bodyfat 252 14/0
11 pollution 60 15/0
12 pw-linear 200 10/0
13 auto-price 159 15/0
15 bolts 40 7/0
16 cloud 108 4/2
18 fruitfly 125 2/2
19 lowbwt 189 7/2
20 fishcatch 71 5/2
21 echo-months 61 6/3
22 quake 2178 3/0
23 auto-mpg 392 4/0

Table 1: Data sets used in the experiments: name, number of examples, number of
predictor variables (numerical/nominal).

coefficients βı. Usually, however, such knowledge will not be available. For instance, the

performance of LR becomes much worse due to typical overfitting effects when adapting

a polynomial of degree k > 3 to the data. Moreover, the confidence band for LR is only

valid if the error terms follow a normal distribution (as they do in our case but not in

general).

4.2 Real-World Regression Problems

We also applied CCBI to several real-world data sets from the UCI repository and the

Statlib archive.7 The data is summarized in table 1.

In order to test the effectiveness of the probabilistic strategy for CCBI, we have applied

this approach to the data sets with different values for the parameter p (namely p =

0, 0.02, 0.04). The following performance measures were derived by means of a leave-one-

7http://www.ics.uci.edu/˜mlearn, http://lib.stat.cmu.edu/
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out cross-validation:

(1) The correctness or empirical confidence (CONF) measured in terms of the relative

frequency of correct predictions (predicted interval covers true value).

(2) The precision of predictions (PREC) measured in terms of the average length of a

predicted interval.

(3) The mean absolute error (MAE) measured in terms of the average distance between

the true value and the point estimation (center of the interval).

As a neighborhood size for CCBI-P we used k = 20. Again, note that this parameter

is less important in CCBI than in k-NN estimation. As mentioned previously, dissimilar

neighbors will often hardly influence the prediction in terms of a credible set. And indeed,

we observed that even though varying this parameter has an effect for small k, increasing

k beyond ≈ 15 hardly changed the results.

The results for this series of experiments are summarized in table 2. As can be seen, the

use of probabilistic bounds yields an extreme gain of precision at the cost of a mostly

slight deterioration of the confidence. This finding, which basically holds true for all data

sets, clearly provides strong evidence for the effectiveness of the probabilistic extension of

CCBI: By varying the parameter p, a smooth tradeoff between confidence and precision

can be achieved. Regarding the quality of the CCBI point estimation, the influence of

p is less strong, though in general, more precise estimations come along with a slightly

more accurate point estimation.

Admittedly, there are some data sets for which CCBI performs poorly, either in terms of

confidence or in terms of precision or both. Looking at the characteristics of these data

sets, there are two plausible explanations. Firstly, confidence and precision is weak if the

size of the data set is too small. Of course, this is natural, since statistically confident

and precise predictions cannot be made on the basis of sparse data. Secondly, CCBI

seems to have problems with data sets in which nominal attributes prevail. As a plausible

explanation, note that in this case there exist only a small number of different similarity

degrees simX (x, y). If these degrees are not well distributed over the unit interval, an
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CONF PREC MAE CONF PREC MAE CONF PREC MAE
01 0.9856 .8817 .1680 .8159 .5879 .1696 .7329 .4041 .1714
02 0.9663 .5918 .1271 .8013 .3310 .0909 .6599 .2398 .0909
03 1.0000 .8695 .3136 .9024 .5800 .2555 .7576 .3981 .2344
04 0.9809 .0665 .0187 .8278 .0404 .0177 .7608 .0274 .0187
05 1.0000 .6134 .0904 .8538 .3185 .0689 .7787 .2146 .0643
07 0.9896 .7895 .2069 .8083 .5596 .1807 .7202 .4670 .1791
08 1.0000 .9184 .1194 .8333 .4118 .1250 .7326 .2826 .1222
09 0.9888 .7758 .3506 .8368 .1551 .0727 .7296 .1104 .0608
10 0.9802 .3946 .0607 .8333 .2095 .0620 .6984 .1881 .0663
11 0.9500 .4974 .1173 .7500 .3267 .1232 .6333 .2682 .1140
12 0.9800 .5526 .0955 .8200 .3267 .0908 .7300 .2727 .0921
13 0.9623 .2484 .0583 .7547 .1404 .0509 .6792 .1223 .0544
15 0.9250 .5802 .2021 .6250 .3903 .1801 .4750 .1965 .1483
16 0.9537 .2956 .0714 .7963 .2157 .0739 .7315 .1848 .0779
18 0.9520 .8692 .2411 .7760 .5743 .2004 .6240 .4549 .1947
19 0.9577 .5292 .0934 .7937 .3281 .0950 .6508 .2584 .0983
20 0.9437 .2014 .0506 .8732 .1876 .0544 .7183 .1330 .0487
21 0.9344 .7245 .2520 .8033 .6601 .2542 .7049 .5443 .2322
23 0.9923 .6389 .1180 .8316 .3775 .0956 .7015 .2855 .0905

Table 2: Results for CCBI-P: Confidence, precision, and mean absolute error of predictions
for p = 0 (left), p = 0.02 (middle), and p = 0.04 (right).

equi-with partition is likely to produce a poor and unbalanced similarity profile. In this

case, the use of an adaptive partition (in line with equi-frequency histograms) seems to

be advised, an option that we did not exploit so far but that should definitely be given a

try.

We also found that the CCBI point estimations are on average slightly inferior to the point

estimations produced by standard k-NN estimation (see also table 3 below), even though

there are some exceptions where the former are even better than the latter. Nevertheless,

the investigation of the statistical (Pearson) correlation between the precision (PREC) of

CCBI estimations and the mean absolute error of the standard k-NN estimations (results

omitted due to space restrictions) showed a significant positive correlation between these

two quantities. This finding suggests that the width of the CCBI confidence interval is

a good indicator of the accuracy of a k-NN prediction. Consequently, it might be an

interesting idea to complement the latter by the former, i.e., to take the k-NN prediction

as a point estimation and the CCBI prediction as a confidence interval.
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CONF PREC MAE 1-NN 3-NN 5-NN 7-NN 9-NN
01 0.8159 .3700 .1387 .2349 .1798 .1747 .1736 .1738
02 0.7407 .2159 .0782 .1263 .1020 .0960 .0926 .0899
03 1.0000 .2104 .0934 .1692 .1546 .1549 .1556 .1531
04 0.8038 .0530 .0202 .0165 .0241 .0288 .0306 .0309
05 0.8261 .1416 .0516 .0683 .0573 .0612 .0653 .0680
07 0.7254 .2926 .1135 .1989 .1578 .1429 .1394 .1367
08 0.8281 .1326 .0663 .1431 .1279 .1288 .1236 .1178
09 0.8432 .0913 .0328 .0344 .0279 .0296 .0291 .0293
10 0.8254 .1608 .0580 .0686 .0523 .0533 .0556 .0568
11 0.8333 .2263 .0865 .1234 .1166 .1044 .1098 .1087
12 0.8600 .1899 .0696 .1138 .0879 .0832 .0823 .0851
13 0.7547 .1203 .0424 .0498 .0502 .0539 .0562 .0589
15 0.7000 .1718 .0754 .1482 .1285 .1112 .1311 .1397
16 0.7407 .2432 .0916 .0887 .0805 .0773 .0872 .0963
18 0.7680 .4226 .1458 .2317 .1690 .1641 .1597 .1580
19 0.8201 .2087 .0724 .1074 .0961 .0901 .0889 .0891
20 0.7042 .0928 .0342 .0305 .0396 .0583 .0634 .0639
21 0.7541 .4917 .1660 .1999 .2020 .1965 .1869 .1878
22 0.9752 .4235 .1472 .1710 .1448 .1412 .1402 .1396
23 0.8571 .2757 .0727 .0900 .0765 .0750 .0735 .0742

Table 3: Results for CCBI-L: Confidence, precision, and mean absolute error of predic-
tions; mean absolute error for k-NN point estimations with k = 1, 3, 5, 7, 9.

In a second series of experiments, we have employed the local version CCBI-L. The re-

sults are summarized in table 3. As it was to be expected from our theoretical analysis,

predictions become more precise but less confident in comparison with the global version

of CCBI. Apart from that, it is interesting to note that CCBI-L yields extremely good

point estimations. In fact, more often than not, these point estimations are better than

those of standard k-NN. Recalling that CCBI is actually not intended to produce point

estimations, at least not in the first place, this is a surprisingly good an indeed unexpected

result.

5 Related Work

As mentioned previously, formal approaches to CBR in general, and the formalization of

the CBR hypothesis in particular, have not received very much attention as yet. There

are, of course, a few notable exceptions. In [15], for example, it is shown that a special
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version of the CBR hypothesis is correct on average, in the sense that problems with sim-

ilar features are more likely to have the same solution, given that the similarity measure

is appropriately defined. Two important differences to our approach deserve mentioning:

Firstly, we assume a similarity measure to be given, that is, our approach does not re-

quire the specification of an ideal measure (see also comments below) but remains valid

regardless of the similarity measure employed. Secondly, we are not directly concerned

with the probability of a correct versus incorrect prediction (which only makes sense if |L|
is small, a requirement rarely fulfilled in CBR), but rather with the derivation of credible

sets which are likely to cover the true output (solution).

In [25], the authors consider the problem to quantify the extent to which the CBR hypoth-

esis holds for a particular application at hand. To this end, they propose a measure of the

problem–solution regularity. In contrast to our concept of a similarity profile, however,

this is a one-dimensional measure. Besides, it is not used for the purpose of prediction

but rather as a kind of trigger for the maintenance of the CBR system.

Regarding the aspect of uncertainty in CBR, the importance of being able to assign

degrees of confidence to predictions has been pointed out by several authors (e.g. [10]).

In [11], different confidence measures for case-based (nearest neighbor) predictions are

proposed and evaluated, and this work has been continued in [13] in connection with a

concrete CBR application (Spam filtering). More generally, the problem to characterize

the reliability of an estimation has recently received attention in the machine learning

field as well [24, 28]. Again, however, note that assessing the confidence of a single point

estimate, as done in the aforementioned papers, is quite different from the goal that we

have pursued in the current paper, namely deriving predictions in the form of credible

sets.

6 Summary, Conclusions, and Future Work

In this paper, we have proposed a method for supporting the retrieval of candidate solu-

tions in case-based reasoning. Our method, called credible case-based inference (CCBI),
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exploits problem solving experience in the form of a case base in order to predict a set

of promising candidates that might solve a new problem. The corresponding inference

scheme is based on a formalization of the heuristic CBR hypothesis suggesting that similar

problems have similar solutions. As CCBI has interesting theoretical properties, notably

the fact that a prediction covers the true solution with high probability, it contributes to

a formal foundation of CBR. Besides, let us highlight the following three points:

(1) As CCBI hardly assumes more than the specification of similarity measures for prob-

lems and solutions, it is quite general and widely applicable. In fact, note that no kind of

transitivity is assumed for the similarity measures, which means that the structure of the

problem space X and the solution space L might be weaker than that of a metric space

(which is a point of great practical relevance in CBR). Consequently, CCBI predictions

can be derived in many situations where standard methods (e.g. from statistics) are not

applicable.

In fact, even though in our experiments we employed CCBI only for regression problems, it

can be applied to more complex output spaces in exactly the same manner. For example,

it could be used to predict rankings in so-called label ranking problems [19, 16], or other

types of structured output like trees or graphs that might represent solutions in a CBR

context. In these cases, a CCBI prediction would be given by a credible subset of ranking,

trees, or graphs, respectively.

(2) CCBI works for any pair of similarity measures, even if these measures are not defined

in an optimal way. That is, the predictions remain correct with high probability, even

though they might become rather imprecise. This, however, should not be seen as a

disadvantage. On the contrary, CCBI does not pretend a precision or credibility of case-

based predictions which is actually not justified. Instead, imprecise predictions can be

taken as an indication that either CBR is not appropriate for the application, or at least

that the similarity measures are not well specified.

(3) As a formalization of the CBR hypothesis, the concept of a similarity profile, which

plays a key role in CCBI, is interesting by itself. In particular, a similarity profile clearly

shows to what extent the CBR hypothesis actually holds true for the application at hand.
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Moreover, the concept of a local similarity profile supports the selection of representative

and, hence, useful cases to be stored in the case base.

In section 4, we have applied CCBI to regression problems. In this regard, it is worth

mentioning that CCBI in a sense unifies diverse types of prediction problems. Moreover,

it combines advantages from both, instance-based and model-based (statistical) learning:

As an instance-based approach it requires fewer structural assumptions than (parametric)

statistical methods, and yet it allows for specifying the uncertainty related to predictions.

Empirical results presented for regression problems suggest that CCBI performs rather

well in practice. In particular, even though it is not designed to produce point estimations,

it is quite competitive to standard IBL in this regard. Besides, it yields useful predictions

in the form of credible sets, which is of course its key advantage.

From a (case-based) problem solving point of view, prediction appears to be the most

simple problem class, mainly because there is no need for adaptation. In the experimental

part we have focused on this type of problem as it allows for a systematic evaluation of

the prediction quality of CCBI, and since corresponding benchmark data is available.

Regarding future work, an interesting idea is to go one step further and apply CCBI in

the context of search-oriented CBR as briefly touched on in the introduction. We conclude

the paper by giving a brief outline of this idea.

According to the view of transformational adaptation taken in [8], case-based problem

solving can be cast as a search process. Within the related model, (potential) cases

correspond to search states and adaptation operators play the role of search operators.

Now, the key idea is to use CCBI in order to complement this model in a reasonable way.

In fact, in [8] the authors note that, according to their approach, CBR could principally

be realized by enumerating the search space completely. Understandably, they look at this

idea with reservation, immediately pointing to the enormous complexity it brings about.

Our approach applies exactly to this problem: CCBI supports CBR by predicting a

promising (“credible”) subset of search states, thereby focusing search to promising cases

and providing important information to a search method which is applied for actually

finding a solution. From the perspective of CBR, this approach might not merely be seen
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as an application. In conjunction with the ideas presented in [8], it could contribute in a

more general way to a formal framework of CBR in which (transformational) adaptation

is realized as a search process and (case-based) experience is used in order to concentrate

on promising regions of the related search space.

Indeed, in [8], the concept of similarity is integrated into problem solving by means of a,

say, “ideal” similarity measure. By pointing to optimal initial search states, this measure

somehow guarantees the retrieval of cases which can be adapted easily. Needless to say,

finding such measures will be difficult in practice, if possible at all. CCBI takes a different

(more pragmatic) approach: It takes any similarity measure as a given input, even if this

measure is not “ideal”. It then derives a set of promising search states rather than

the optimal initial state, and the precision of this prediction depends on how ideal the

similarity measure actually is.
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S. Wess. Developing industrial case-based reasoning applications: The INRECA

methodology, volume 1612 of LNAI. 2 edition, 2003.

[8] R. Bergmann and W. Wilke. Towards a new formal model of transformational adap-

tation in case-based reasoning. In H. Prade, editor, ECAI-98, 13th European Con-

ference on Artificial Intelligence, pages 53–57, 1998.
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