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Abstract. Measures of rank correlation are commonly used in statistics
to capture the degree of concordance between two orderings of the same
set of items. Standard measures like Kendall’s tau and Spearman’s rho
coefficient put equal emphasis on each position of a ranking. Yet, mo-
tivated by applications in which some of the positions (typically those
on the top) are more important than others, a few weighted variants of
these measures have been proposed. Most of these generalizations fail to
meet desirable formal properties, however. Besides, they are often quite
inflexible in the sense of committing to a fixed weighing scheme. In this
paper, we propose a weighted rank correlation measure on the basis of
fuzzy order relations. Our measure, called scaled gamma, is related to
Goodman and Kruskal’s gamma rank correlation. It is parametrized by
a fuzzy equivalence relation on the rank positions, which in turn is speci-
fied conveniently by a so-called scaling function. This approach combines
soundness with flexibility: it has a sound formal foundation and allows
for weighing rank positions in a flexible way. The usefulness of our class
of weighted rank correlation measures is shown by means of experimental
studies using both synthetic and real-world ranking data.

1 Introduction

Rank correlation measures such as Kendall’s tau [11] and Spearman’s rho [20],
which have originally been developed in non-parametric statistics, are used ex-
tensively in various fields of application, ranging from bioinformatics [1] to in-
formation retrieval [21]. In contrast to numerical correlation measures such as
Pearson correlation, rank correlation measures are only based on the ordering of
the observed values of a variable. Thus, measures of this kind are not limited to
numerical variables but can also be applied to non-numerical variables with an
ordered domain (i.e., measured on an ordinal scale) and, of course, to rankings
(permutations) directly.

In many applications, such as Internet search engines, one is not equally in-
terested in all parts of a ranking. Instead, the top positions of a ranking (e.g.,
the first 10 or 50 web sites listed) are typically considered more important than
the middle part and the bottom. Standard rank correlation measures, however,
put equal emphasis on all positions. Therefore, they cannot distinguish disagree-
ments in different parts of a ranking. This is why weighted variants have been
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proposed for some correlation measures, as well as alternative measures specifi-
cally focusing on the top of a ranking [6, 7, 10, 16, 21]. Most of these generaliza-
tions fail to meet desirable formal properties, however. Besides, they are often
quite inflexible in the sense of committing to a fixed weighing scheme.

In this paper, we develop a general framework for designing weighted rank
correlation measures based on the notion of fuzzy order relation, and use this
framework to generalize Goodman and Kruskal’s gamma coefficient [8].1 Our
approach has a sound formal foundation and allows for weighing rank positions in
a flexible way. In particular, it is not limited to monotone weighing schemes that
emphasize the top in comparison to the rest of a ranking. The key ingredients
of our approach, to be detailed further below, are as follows:

– Fuzzy order relations [4] are generalizations of the conventional order re-
lations on the reals or the integer numbers: SMALLER, EQUAL and GREATER.
They enable a smooth transition between these predicates and allow for ex-
pressing, for instance, that a number x is smaller than y to a certain degree,
while to some degree these numbers are also considered as being equal. Here,
the EQUAL relation is understood as a kind of similarity relation that seeks to
model the “perceived equality” (instead of the strict mathematical equality).

– Scaling functions for modeling fuzzy equivalence relations [12]. For each el-
ement x of a linearly ordered domain X, a scaling function s(·) essentially
expresses the degree s(x) to which x can be (or should be) distinguished from
its neighboring values. A measure of distance (or, equivalently, of similarity)
on X can then be derived via accumulation of local degrees of distinguisha-
bility.

– Fuzzy rank correlation [5, 17] generalizes conventional rank correlation on
the basis of fuzzy order relations, thereby combining properties of standard
rank correlation (such as Kendall’s tau) and numerical correlation measures
(such as Pearson correlation). Roughly, the idea is to penalize the inversion
of two items (later on called a discordance) depending on how dissimilar the
corresponding rank positions are: the more similar (less distinguishable) the
positions are according to the EQUAL relation, the smaller the influence of
the inversion on the rank correlation.

The rest of the paper is organized as follows. In the next two sections, we briefly
recall the basics of fuzzy order relations and fuzzy rank correlation, respectively.
Our weighted rank correlation measure, called scaled gamma, is then introduced
in Section 5, and related work is reviewed in Section 6. A small experimental
study is presented in Section 7, prior to concluding the paper in Section 8.

1A preliminary version of this paper has been presented in [9], on the occasion of
the German Workshop on Computational Intelligence, Dortmund, Germany, 2013.
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2 Rank Correlation

Consider N ≥ 2 paired observations {(xi, yi)}Ni=1 ⊂ X × Y of two variables X
and Y , where X and Y are two linearly ordered domains; we denote

x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ) .

In particular, the values xi (and yi) can be real numbers (X = R) or rank
positions (X = [N ] = {1, 2, . . . , N}). For example, x = (3, 1, 4, 2) denotes a
ranking of four items, in which the first item is on position 3, the second on
position 1, the third on position 4 and the fourth on position 2.

The goal of a (rank) correlation measure is to capture the dependence be-
tween the two variables in terms of their tendency to increase and decrease (their
position) in the same or the opposite direction. If an increase in X tends to come
along with an increase in Y , then the (rank) correlation is positive. The other
way around, the correlation is negative if an increase in X tends to come along
with a decrease in Y . If there is no dependency of either kind, the correlation is
(close to) 0.

2.1 Concordance and Discordance

Many rank correlation measures are defined in terms of the number C of con-
cordant, the number D of discordant, and the number T of tied data points. Let
P = {(i, j) | 1 ≤ i < j ≤ N} denote the set of ordered index pairs. We call a pair
(i, j) ∈ P concordant, discordant or tied depending on whether (xi−xj)(yi−yj)
is positive, negative or 0, respectively. Thus, let us define three N ×N relations
C, D and T as follows:

C(i, j) =

{
1 (xi − xj)(yi − yj) > 0
0 otherwise

(1)

D(i, j) =

{
1 (xi − xj)(yi − yj) < 0
0 otherwise

(2)

T (i, j) =

{
1 (xi − xj)(yi − yj) = 0
0 otherwise

(3)

The number of concordant, discordant and tied pairs (i, j) ∈ P are then obtained
by summing the entries in the corresponding relations:

C =
∑

(i,j)∈P

C(i, j) =
1

2

∑
i∈[N ]

∑
j∈[N ]

C(i, j)

D =
∑

(i,j)∈P

D(i, j) =
1

2

∑
i∈[N ]

∑
j∈[N ]

D(i, j)

T =
∑

(i,j)∈P

T (i, j) =
1

2

∑
i∈[N ]

∑
j∈[N ]

T (i, j)− N

2
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Note that

C(i, j) +D(i, j) + T (i, j) = 1 (4)

for all (i, j) ∈ P, and

C +D + T = |P| = N(N − 1)

2
. (5)

2.2 Rank Correlation Measures

Well-known examples of rank correlation measures that can be expressed in
terms of the above quantities include Kendall’s tau [11]

τ =
C −D

N(N − 1)/2
(6)

and Goodman and Kruskal’s gamma coefficient [8]

γ =
C −D
C +D

. (7)

As will be detailed in the following sections, our basic strategy for generalizing
rank correlation measures such as γ is to “fuzzify” the concepts of concordance
and discordance. Thanks to the use of fuzzy order relations, we will be able to
express that a pair (i, j) is concordant or discordant to a certain degree (between
0 and 1). Measures like (7) can then be generalized in a straightforward way,
namely by accumulating the degrees of concordance and discordance, respec-
tively, and putting them in relation to each other.

3 Fuzzy Relations

3.1 Fuzzy Equivalence

The notion of a fuzzy relation generalizes the standard notion of a mathematical
relation by allowing to express “degrees of relatedness”. Formally, a (binary)
fuzzy relation on a set X is characterized by a membership function E : X×X −→
[0, 1]. For each pair of elements x, y ∈ X, E(x, y) is the degree to which x is related
to y.

Recall that a conventional equivalence relation on a set X is a binary relation
that is reflexive, symmetric and transitive. For the case of a fuzzy relation E ,
these properties are generalized as follows:

– reflexivity: E(x, x) = 1 for all x ∈ X
– symmetry: E(x, y) = E(y, x) for all x, y ∈ X
– >-transitivity: >(E(x, y), E(y, z)) ≤ E(x, z) for all x, y, z ∈ X
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A fuzzy relation E having these properties is called a fuzzy equivalence relation
[5]. While the generalizations of reflexivity and symmetry are rather straightfor-
ward, the generalization of transitivity involves a triangular norm (t-norm) >,
which plays the role of a generalized logical conjunction [13]. Formally, a func-
tion > : [0, 1]2 −→ [0, 1] is a t-norm if it is associative, commutative, monotone
increasing in both arguments, and satisfies the boundary conditions >(a, 0) = 0
and >(a, 1) = a for all a ∈ [0, 1]. Examples of commonly used t-norms include
the minimum >(a, b) = min(a, b) and the product >(a, b) = ab. To emphasize
the role of the t-norm, a relation E satisfying the above properties is also called
a >-equivalence.

3.2 Fuzzy Ordering

The notion of an order relation ≤ is similar to that of an equivalence relation,
with the important difference that the former is antisymmetric while the latter is
symmetric. A common way to formalize antisymmetry is as follows: a ≤ b and b ≤
a implies a = b. Note that this definition already involves an equivalence relation,
namely the equality = of two elements. Thus, as suggested by Bodenhofer [2], a
fuzzy order relation can be defined on the basis of a fuzzy equivalence relation.
Formally, a fuzzy relation L : X × X −→ [0, 1] is called a fuzzy ordering with
respect to a t-norm > and a >-equivalence E , for brevity >-E-ordering, if it
satisfies the following properties for all x, y, z ∈ X:

– E-reflexivity: E(x, y) ≤ L(x, y)

– >-E-antisymmetry: >(L(x, y),L(y, x)) ≤ E(x, y)

– >-transitivity: >(L(x, y),L(y, z)) ≤ L(x, z)

Furthermore a >-E-ordering L is called strongly complete if

max
(
L(x, y),L(y, x)

)
= 1

for all x, y ∈ X. This is expressing that, for each pair of elements x and y, either
x ≤ y or y ≤ x should be fully true.

A fuzzy relation L as defined above can be seen as a generalization of the
conventional “smaller or equal” on the real or the integer numbers. What is often
needed, too, is a “stricly smaller” relation <. In agreement with the previous
formalizations, a relation of that kind can be defined as follows: A binary fuzzy
relation R is called a strict fuzzy ordering with respect to a >-norm and a >-
equivalence E , or strict >-E-ordering for short, if it has the following properties
for all x, x′, y, y′, z ∈ X [5]:

– irreflexivity: R(x, x) = 0

– >-transitivity: >(R(x, y),R(y, z)) ≤ R(x, z)

– E-extensionality: >(E(x, x′), E(y, y′),R(x, y)) ≤ R(x′, y′)
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3.3 Practical Construction

The above definitions provide generalizations E , L and R of the standard rela-
tions =, ≤ and <, respectively, that exhibit reasonable properties and, moreover,
are coherent with each other. Practically, one may start by choosing an equiva-
lence relation E and a compatible t-norm >, and then derive L and R from the
corresponding >-equivalence.

More specifically, suppose the set X to be a linearly ordered domain, that
is, to be equipped with a standard (non-fuzzy) order relation ≤. Then, given a
>-equivalence E on X, the following relation is a coherent fuzzy order relation,
namely a strongly complete >-E-ordering:

L(x, y) =

{
1 if x ≤ y

E(x, y) otherwise

Moreover, a strict fuzzy ordering R can be obtained from L by

R(x, y) = 1− L(y, x) (8)

The relations thus defined have a number of convenient properties. In particular,
min(R(x, y),R(y, x)) = 0 and

R(x, y) + E(x, y) +R(y, x) = 1 (9)

for all x, y ∈ X. These properties can be interpreted as follows. For each pair of
elements x and y, the unit mass splits into two parts: a degree a = E(x, y) to
which x and y are equal, and a degree 1− a to which either x is smaller than y
or y is smaller than x.

4 Fuzzy Relations on Rank Data

Since we are interested in generalizing rank correlation measures, the underlying
domain X is given by a set of rank positions [N ] = {1, 2, . . . , N} (equipped with
the standard < relation) in our case. As mentioned before, this domain could
be equipped with fuzzy relations E , L and R by defining E first and deriving L
and R afterward. Note, however, that the number of degrees of freedom in the
specification of E is of the order O(N2), despite the constraints this relation has
to meet.

4.1 Scaling Functions on Rank Positions

In order to define fuzzy relations even more conveniently, while emphasizing the
idea of weighing the importance of rank positions at the same time, we leverage
the concept of a scaling function as proposed by Klawonn [12]. Roughly speaking,
a scaling function w : X −→ R+ specifies the dissimilarity of an element x from
its direct neighbor elements, and the dissimilarity between any two elements
x and y is then obtained via integration of the local dissimilarities along the
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chain from x to y. In our case, a scaling function can be defined as a mapping
w : [N − 1] −→ [0, 1] or, equivalently, as a vector

w =
(
w(1), w(2), . . . , w(N − 1)

)
∈ [0, 1]N−1 . (10)

Here, w(n) can be interpreted as the degree to which the rank positions n and
n− 1 are distinguished from each other; correspondingly, 1− w(n) can be seen
as the degree to which these two positions are considered to be equal. From the
local degrees of distinguishability, a global distance function is derived on X by
defining

d(x, y) = min

1,

max(x,y)−1∑
i=min(x,y)

w(i)

 . (11)

Put in words, the distance between x and y is the sum of the degrees of distin-
guishability between them, thresholded at the maximal distance of 1. In princi-
ple, accumulations of the degrees of distinguishability other than the sum are of
course conceivable. For example, the maximum could be used as well:

d(x, y) = max
{
w(i) | i ∈ {min(x, y), . . . ,max(x, y)− 1}

}
. (12)

In general, d(x, y) is supposed to define a pseudo-metric on X. Under this con-
dition, it can be shown that the fuzzy relation E defined as

E(x, y) = 1− d(x, y)

for all x, y ∈ X is a>L-equivalence, where>L is the  Lukasiewicz t-norm>L(a, b) =
max(0, a+ b−1) [3]. Relations L and R can then be derived from E as described
in Section 3.3. In particular, we obtain

R(x, y) =

{
d(x, y) if x < y

0 otherwise

According to our discussion so far, the only remaining degree of freedom is the
scaling function s. Obviously, this function can also be interpreted as a weighing
function: the more distinguishable a position n from its neighbor positions, i.e.,
the larger w(n− 1) and w(n), the higher the importance of that position.

An example of a scaling function for N = 12 is shown in Figure 1. This
function puts more emphasis on the top and the bottom ranks and less on the
middle part. According to (11), the distinguishability between the positions 4
and 7 is d(4, 7) = 0.4 + 0.2 + 0.2 = 0.8 (sum of the weights w(i) in the shaded
region). Thus, 4 is strictly smaller than 7 to the degree of R(4, 7) = 0.8, while
both positions are considered equal to the degree E(4, 7) = 0.2.

Note that, with w(i) = Ji < kK, we also cover the top-k scenario as a special
case. Here, the standard < relation is recovered for all elements on the first k
positions, whereas the remaining positions are considered as fully equivalent,
i.e., these elements form an equivalence class in the standard sense.
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Fig. 1: Example of a scaling function.

5 Weighted Rank Correlation

Our approach to generalizing rank correlation measures is based on the “fuzzifi-
ciation” of the relations (1–3) and, correspondingly, the number of concordant,
discordant and tied item pairs. The tools that are needed to do so have already
been introduced in the previous sections. In particular, suppose a fuzzy equiva-
lence relation E and a “strictly smaller” relation R to be derived from a scaling
function w on X, based on the procedure outlined above. For notational conve-
nience, we assume the same scaling function (and hence the same relations) to
be used on both domains X and Y. In principle, however, different functions wX
and wY (and hence relations EX , RX and EY , RY ) could be used.

Now, according to (1), a pair (i, j) ∈ P is concordant if both xi is (strictly)
smaller than xj and yi is smaller than yj , or if xj is smaller than xi and yj is
smaller than yi. Using our fuzzy relation R and a t-norm > as a generalized
conjunction, this can be expressed as follows:

C̃(i, j) = >
(
R(xi, xj),R(yi, yj)

)
+>

(
R(xj , xi),R(yj , yi)

)
(13)

The discordance relation can be expressed analogously:

D̃(i, j) = >
(
R(xi, xj),R(yj , yi)

)
+>

(
R(xj , xi),R(yi, yj)

)
(14)

Finally, the degree to which (i, j) is tied is given by

T̃ (i, j) = ⊥
(
E(xi, xj), E(yi, yj)

)
,

where ⊥ is the t-conorm associated with > (i.e., ⊥(u, v) = 1−>(1− u, 1− v)),
serving as a generalized logical disjunction. Generalizing (4), the three degrees
sum up to 1, i.e.,

C̃(i, j) + D̃(i, j) + T̃ (i, j) ≡ 1 , (15)

and either C̃(i, j) = 0 or D̃(i, j) = 0. In other words, a pair (i, j) that has origi-
nally been concordant (discordant) will remain concordant (discordant), at least
to some extent. However, since E may introduce a certain indistinguishability
between the positions xi and xj or the positions yi and yj , the pair could also
be considered as a partial tie.
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Given the above fuzzy relations, the number of concordant, discordant and
tied data points can be obtained as before, namely by summing over all ordered
pairs (i, j) ∈ P:

C̃ =
∑

(i,j)∈P

C̃(i, j) , D̃ =
∑

(i,j)∈P

D̃(i, j) , T̃ =
∑

(i,j)∈P

T̃ (i, j) .

According to (15),

C̃ + D̃ + T̃ = |P| = N(N − 1)

2
,

which generalizes (5). Using these quantities, rank correlation measures ex-
pressed in terms of the number of concordant and discordant pairs can be gen-
eralized in a straightforward way. In particular, a generalization of the gamma
coefficient (7) is obtained as

γ̃ =
C̃ − D̃
C̃ + D̃

. (16)

It is worth mentioning that the weighted rank correlation measure thus defined
exhibits a number of desirable formal properties, which it essentially inherits
from the general fuzzy extension of the gamma coefficient; we refer to [17], in
which these properties are analyzed in detail.

6 Related Work

Weighted versions of rank correlation measures have not only been studied in
statistics but also in other fields, notably in information retrival [21, 10, 6, 16].
Most of them are motivated by the idea of giving a higher weight to the top-
ranks: in information retrieval, important documents are supposed to appear in
the top, and a swap of important documents should incur a higher penalty than
a swap of unimportant ones.

Kaye [10] introduced a weighted, non-symmetric version of Spearman’s rho
coefficient. Costa and Soares [6] proposed a symmetric weighted version of Spear-
man’s coefficient resembling the one of Kaye. Another approach, based on av-
erage precision and called AP correlation, was introduced by Yilmaz et al. [21].
Maturi and Abdelfattah [16] define weighted scores Wi = wi with w ∈ (0, 1) and
compute the Pearson correlation coefficient on these scores. All four measures
give higher weight to the top ranks.

Two more flexible measures, not restricted to monotone decreasing weights,
have been proposed by Shieh [19] and Kumar and Vassilivitskii [14]. In the
approach of Shieh [19], a weight is manually given to every occurring concordance
or discordance through a symmetric weight function w : [N ]× [N ] −→ R+:

τw =

∑
i<j wijCij −

∑
i<j wijDij∑

i<j wij
=

∑
i<j wij(Cij −Dij)∑

i<j wij
. (17)

The input parameter for w are the ranks of a reference ranking πref , which is
assumed to be the natural order (1, 2, 3, . . . , N). Therefore, this approach is not
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symmetric. To handle the quadratic number of weights, Shieh proposed to define
them as wij = vivj with vi the weight of rank i.

Kumar and Vassilivitskii [14] introduce a generalized version of Kendall’s dis-
tance. Originally, they proposed three different weights: element weights, position
weights, and element similarities. The three weights are defined independently
of each other, and each of them can be used by its own for weighting discordant
pairs. Here, we focus on the use of position weights. Like in our approach, Ku-
mar and Vassilivitskii define N − 1 weights δi ≥ 0, which are considered as costs
for swapping two elements on adjacent positions i + 1 and i. The accumulated
cost of changing from position 1 to i ∈ {2, . . . , N} is pi =

∑i−1
j=1 δj , with p1 = 0.

Moreover,

p̄i(π1, π2) =
pπ1(i) − pπ2(i)

π1(i)− π2(i)
(18)

is the average cost of moving element i from position π1(i) to position π2(i);
if π1(i) = π2(i) then p̄i = 1.The weighted discordance of a pair (i, j) is then
defined in terms of the product of the average costs for index i and j:

D̂δ(i, j) =

{
p̄i(π1, π2)p̄j(π1, π2) if (i, j) is discordant

0 otherwise
. (19)

Finally, the weighted Kendall distance Kδ is given by

Kδ = D̃δ =

N−1∑
i=1

N∑
i+1

D̂δ(i, j) . (20)

Note that (20) is indeed a distance and not a correlation measure. To enable a
comparison with τω and γ̃ in the next section, we define

Ĉδ(i, j) =

{
p̄i(π1, π2)p̄j(π1, π2) if (i, j) is concordant

0 otherwise
(21)

as the weighted concordance of a pair (i, j), and finally another weighted version
of gamma:

γ̃δ =
C̃δ − D̃δ

C̃δ + D̃δ

.

7 Experiments

Needless to say, an objective comparison of weighted rank correlation measures
is very difficult, if not impossible. Even in the case of standard measures, one
cannot say, for example, that Kendall’s tau is “better” than Spearman’s rho.
Instead, these are simply different measures trying to capture different types of
correlation in the data.

Nevertheless, we conducted some controlled experiments with synthetic data,
for which there is a natural expectation of how the measures are supposed to
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behave and what results they should ideally produce. We compare our approach
with those of Shieh as well as Kumar and Vassilivitskii, since these are able
to handle non-monotone weight functions, too. For the purpose of these ex-
periments, our measure γ̃ was instantiated with the maximum in (12) and the
product t-norm in (13) and (14).2

7.1 First Study

In a first experiment, we generated rank data by sampling from the Plackett-Luce
(PL) model, which is a parameterized probability distribution on the set of all
rankings over N items. It is specified by a parameter vector v = (v1, v2, . . . vN ) ∈
RN+ , in which vi accounts for the “skill” of the ith item. The probability assigned
by the PL model to a ranking represented by a permutation π is given by

P(π |v) =

N∏
i=1

vπ−1(i)

vπ−1(i) + vπ−1(i+1) + . . .+ vπ−1(N)
, (22)

where π(i) is the position of item i in the ranking, and π−1(j) the index of the
item on position j. This model is a generalization of the well-known Bradley-
Terry model [15], a model for the pairwise comparison of alternatives, which
specifies the probability that “a wins against b” in terms of va/(va + vb). Ob-
viously, the larger va in comparison to vb, the higher the probability that a is
chosen. Likewise, the larger the parameter vi in (22) in comparison to the pa-
rameters vj , j 6= i, the higher the probability that the ith item appears on a
top rank. Moreover, the more similar the skill parameters, the more likely two
items are reversed. Thus, a ranking drawn from a PL model is more stable, and
hence more “reliable”, in regions in which the difference between the skill values
(sorted in decreasing order from highest to lowest) is large, and less stable in
regions in which this difference is small.

Instead of defining the skills v directly, it is more convenient to define them
via the representation of PL as a Thurstone model with scores following a Gum-
ble distribution. The means µi of this distribution translate into PL-parameters
via vi = exp(µi

β ), with β the scaling parameter of the Gumble distribution.
For our experimental study, we generated mixtures of c = 4 PL distributions,

i.e., data sets consisting of four clusters. To this end, c reference rankings were
first generated by sampling from the PL distribution with µ = (30, 29, . . . , 1) and
β = 0.3, i.e., these references are perturbations of the identity πid = (1, 2, . . . , n).
Then, a score vector

µ(0) = (18, . . . 14, 13.1, 12.3, . . . , 9.6, . . . , 9.6, 9.5, 9.3, . . . , 5.9, 5, . . . , 1)

is defined, which reflects high stability in the top and bottom ranks, and low sta-
bility in the middle ranks, and new score vectors µ(i), i = 1, . . . , c, are generated

2Of course, other instantiations are conceivable; however, tuning our measure by
optimizing the choice of operators was beyond the scope of the experiments.
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by permuting µ(0) according to the reference rankings; each of these rankings
µ(i) defines the center of a cluster. Finally, 200 rankings are sampled from each of
the PL models with parameter µ(i) and β = 0.3, and these rankings are assigned
label i.

We produced 100 such data sets with rankings of length 30. As a weight
vector, which corresponds to the scaling function (10) for γ̃ and defines the
transitions costs δi for γ̃δ, we used

w = (1, 1, 1, 1, 0.9, . . . , 0.1, 0, 0, 0, 0.1, . . . , 0.9, 1, 1, 1, 1) .

This weight vector seeks to account for the fact that, according to our con-
struction, the middle positions of the observed rankings are less reliable and,
therefore, should have a lower weight in the computation of similarities between
rankings. The weight vector for τω is derived from w, so as to make it maximally
comparable, and is given by vi = (wi−1 + wi)/2 with w−1 = 1 and wn = 1.

For each correlation measure and each data set, we applied a k-nearest neigh-
bor classifier with the correlation as a similarity measure. Here, the idea is the
following: the better the similarity between rankings is reflected by a correlation
measure, the stronger the performance of the classifier is supposed to be. The
classifiers were validated by averaging one hundred repetitions of a 10-fold cross
validation. In the end, we also averaged over all data sets. The results are shown
in Figure 2. As can be seen, γ̃δ and γ̃ are performing more or less on par, with a
slight advantage for γ̃. Moreover, they both outperform τω, which is nevertheless
much better than the classical Kendall’s tau (Figure 2(b)).

In Figure 3, two exemplary data sets are visualized using a kernel-PCA [18]
for dimensionality reduction, using the different correlation measures to produce
the similarity matrices. Every data point is colored according to its original class
membership. As can be seen, the classical Kendall’s tau is hardly able to separate
the classes, whereas γ̃δ, γ̃, and τω are at least able to separate three of the four
classes. Despite following quite different approaches, the results of these three
measures appear to be surprisingly similar.

7.2 Second Study

The second experiment is meant to explore the behavior of the rank correlation
coefficients when comparing two rankings of a specific type. We compared a
ranking πid = (1, 2, . . . , 11, 12) with rankings πi→1 = (2, 3, . . . i, 1, i+ 1, . . . , 12)
in which the ith item is moved from rank i to rank 1 and all items with index
smaller i are shifted one position to the right. Each time the index i is incre-
mented, another discordant pair is created, hence the similarity between πid and
πi→1 should be monotone decreasing in i. Moreover, the higher the weight of the
position i, the more pronounced the decrease should be.

Only γ̃ meets this expectation for all 6 weight vectors that have been consid-
ered (Figure 4). For instance, in Figure 4(a), γ̃δ shows an increasing weighting
of discordance with an increasing item index, although the weights are decreas-
ing. The strange behavior of τω can be explained by the way in which weights
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Fig. 2: Both plots show the average accuracy against the neighborhood size k.
The right plot additionally shows the results for classical Kendall’s tau.

wij = vivj are generated. In particular, as soon as one of the items has a small
weight, all discordances in which this item is involved will have a small influence,
too.

8 Conclusion and Future Work

We introduced a new approach to weighted rank correlation based on fuzzy
order relations, as well as a concrete measure called scaled gamma. The latter
allows for specifying the importance of rank positions in a quite flexible and
convenient way by means of a scaling function. Thanks to the underlying formal
foundation, such a scaling function immediately translates into a concrete version
of our measure, in which the rank positions are processed within an appropriate
weighting scheme.

First experimental studies with synthetic data are promising and suggest the
usefulness of our approach. Experiments of this type will be continued in future
work, not only with synthetic but also with real data. Moreover, let us again
highlight that our extension of gamma is actually not a single measure but a
family of measures, which is parameterized by the weight function w as well
as the generalized logical conjunction (t-norm) used to define concordance and
discordance. While the former will typically be specified as an external parameter
by the user, the (fuzzy) logical operators offer an interesting degree of freedom
that could be used to optimally adapt the measure to the application at hand.
Again, this is an interesting direction for future work. Finally, going beyond
the gamma coefficient, we also intend to apply our generalization to other rank
correlation measures.
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Fig. 3: Visualization of 30-dimensional ranking data sets. Every column shows
one data set, every row one rank correlation coefficient. (a) – (b) Kendall’s tau,
(c) – (d) γ̃δ, (e) – (f) τω, (g) – (h) γ̃.
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Fig. 4: Behavior of γ̃δ, τω, and γ̃ in the “item i on rank 1” setting. The following
weight vectors are used: (a) (1 0.9, . . . , 0.1, 0), (b) (1 0.8, . . . , 0, 0.2, . . . , 1), (c)
(1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1), (d) (0, 0.1, . . . , 0.9, 1), (e) (0, 0.2, . . . , 1, 0.8, . . . , 0), (f)
(0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0)
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