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HAUPTBEITRAG / DATA-DRIVEN FUZZY MODELING
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From knowledge-based
to data-driven fuzzy modeling

Development, criticism, and alternative directions

Introduction
Since their inception 50 years ago, marked by Lotfi

Zadeh’s seminal paper [29], and rapid emergence
in the following decades, fuzzy sets and fuzzy logic
have found their way into numerous fields of appli-
cation, such as engineering and control, operations
research and optimization, databases and informa-
tion retrieval, data analysis and statistics, just to
name a few.

While different tools from fuzzy logic and fuzzy
set theory (FST) have been employed in all these
fields, it is fair to say that fuzzy rule models or fuzzy
rule-based systems (FRBS) have received special at-
tention. Indeed, rule-based models have always been
a cornerstone of fuzzy systems and a central aspect
of research in fuzzy logic - the term “fuzzy system”
is mostly even used as a synonym for fuzzy rule-
based system. To a large extent, the popularity of
rule-based models can be attributed to their poten-
tial comprehensibility, a distinguishing feature and
key advantage in comparison to “black-box” models
such as neural networks.

Fuzzy systems provide an interface between hu-
mans and machines: Mathematical concepts such
as fuzzy sets and generalized logical operators
allow for an adequate formalization of vague cog-
nitive concepts and linguistic expressions such as
“high temperature.” Moreover, they provide suitable
means for reasoning with such concepts in a mean-
ingful way. In principle, machines and computers
thus become amenable to human expert know-
ledge [19]. The importance of rule-based methods
can be explained by the fact that human experts of-
ten find it convenient to describe their knowledge in
terms of IF-THEN rules, which typically connect the
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values of a set of (independent) input variables and
those of one or more (dependent) output variables.

While corresponding aspects of knowledge rep-
resentation and reasoning have dominated research
in fuzzy logic for a long time, problems of automated
learning and knowledge acquisition have more and
more come to the fore in recent years [10]. There
are several reasons for this development, notably
the following. First, caused by the awareness of the
well-known “knowledge acquisition bottleneck”
and the experience that a purely knowledge-based
approach to systems design is difficult, intricate,
and tedious most of the time, there has been an
internal shift within fuzzy systems research from
modeling to learning and adaptation,i. e., from the
knowledge-based to the data-driven design of fuzzy
systems [2]. In fact, the latter not only suggests it-
self in applications where data is readily available,
but can sometimes even be essential. In learning on
data streams, for example, models are not only con-
structed once (from a static “batch” of data) but need
to be updated continuously in an online manner [1],
which cannot be accomplished by a human expert.
Second, this trend has been further amplified by the
great interest that the field of knowledge discovery in
databases and its core methodological components,
machine learning and data mining, have attracted in
recent years [7]. Learning from data and data analyt-
ics have become ubiquitous topics in the era of “big
data”
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Abstract
This paper elaborates on a development in (ap-
plied) fuzzy logic that has taken place in the last
couple of decades, namely, the complemen-
tation or even replacement of the traditional
knowledge-based approach to fuzzy rule-based
systems design by a data-driven one. It is argued
that the classical rule-based modeling paradigm
is actually more amenable to the knowledge-
based approach, for which it has originally been
conceived, while being less apt to data-driven
model design. Animportant reason that prevents
fuzzy (rule-based) systems from being leveraged
in large-scale applications is the flat structure of
rule bases, along with the local nature of fuzzy
rules and their limited ability to express complex
dependencies between variables. As an alterna-
tive approach to fuzzy systems modeling, we
advocate so-called fuzzy pattern trees. Due to
its hierarchical, modular structure and the use
of different types of (nonlinear) aggregation op-
erators, a fuzzy pattern tree has the ability to
represent functional dependencies in a more
flexible and more compact way.

This paper starts with a critical consideration
of the transition from knowledge-based to data-
driven fuzzy modeling. The basic claim we make is
that fuzzy (rule-based) systems, which were origi-
nally introduced for the knowledge-based design of
relatively small or at best moderately sized models,
are not very amenable to the data-driven approach
to model construction: they are inappropriate for
large-scale modeling and tend to be inferior to main-
stream machine learning methodology for model
induction and adaptation. In our opinion, the fuzzy
rule-based approach is adopted in a too uncritical
way and is not sufficiently questioned in the research
community. Indeed, apart from several indisputable
advantages, this approach has a number of potential
disadvantages. Two reasons for our reservation will
be detailed in the paper:

— First, because of their flat structure, standard
fuzzy (rule-based) systems are not scalable and
hardly able to capture complex dependencies with
many input variables, which are typical of present
data-intense applications.

- Second, despite the opposing claims of fuzzy logic
scholars, we argue that fuzzy systems automatically
extracted from data easily lose one of their main
advantages, namely, their interpretability and
cognitive plausibility.

In the second part of the paper, we advocate an al-
ternative approach to fuzzy systems modeling called
fuzzy pattern trees [9,23]." This approach is largely
motivated by the disadvantages of rule-based system
architectures. Because of its hierarchical, modular
structure and the use of different types of (non-
linear) aggregation operators, a fuzzy pattern tree
(FPT) has the ability to represent functional depen-
dencies in a more flexible and more compact way,
thereby offering a reasonable balance between accu-
racy and model transparency. In addition to giving
an overview of the main modeling concepts, we ad-
dress the problems of data-driven model calibration
and FPT structure learning.

Knowledge-based versus
data-driven fuzzy modeling

The knowledge-based approach is at the origin of
fuzzy rule-based systems and closely connected to
the classical expert systems paradigm: A human
expert seeks to formalize her knowledge about the
relationship between certain variables of interest
(for example, a control function mapping system
states to control actions) using IF-THEN rules, tak-
ing advantage of fuzzy sets as a convenient interface
between a qualitative, symbolic and a quantitative,
numerical level of knowledge representation. As an
illustration, consider a recent application from the
textile industry, namely, modeling color yield (K/S)
in polyester high-temperature dyeing as a function
of disperse dye concentration (conc), temperature
(temp), and time. The human expert describes this
dependency using the following rules [17]:

1. If temp is low and time is low and conc is low,
then K/S is very low.

2. If temp is medium and conc is high, then K/S is
high.

3. If temp is high and conc is low, then K/S is
medium.

TIn terms of its content, this part largely overlaps with [21].



4. If temp is low and time is high and conc is low,
then K/S is very low.

5. If temp is high and conc is high, then K/S is very
high.

6. If temp is medium and time is low and conc is
high, then K/§ is medium.

7. If temp is medium and time is high and conc is
high, then K/S is high.

8. If temp is low and time is low and conc is high,
then K/S is low.

A set of informal rules of that kind is then translated
into a mathematical model M by

- assigning a fuzzy subset to each linguistic term
(such as “high temperature”), and thereby a fuzzy
partition for each variable,

- choosing a generalized logical operator for
conjunction (“and”) and implication (“then”),

- specifying an inference procedure such as
Mamdani-Assilian [15] or Takagi-Sugeno
inference [25],

- defining a fuzzification and a defuzzification pro-
cedure (mapping, respectively, nonfuzzy to fuzzy
and fuzzy to nonfuzzy quantities).

As canbe seen, a fuzzy model M of that kind is highly
“parameterized” and involves many degrees of free-
dom: the structure of the rules, the parameters of
fuzzy sets, etc. Eventually, the system as a whole (cf.
Fig. 1) realizes a mapping

fu:RI—SR .

In the case of the above example, this function would
simply map each input triple (conc, temp, time) € R?
to a number K/S € R.

Specifying a fuzzy system in this way is often
a difficult and tedious task. Even if the expert is
able to communicate her knowledge in an appro-
priate form, and willing to accept standard choices

—
T s —_—
xl = FuUzzY
2 N — INFERENCE —Y
xk — - —_—

—

Fig. 1 Structure of a fuzzy (rule-based) system

for fuzzification and defuzzification as well as logi-
cal operators and fuzzy inference, the specification
of a complete and sufficiently consistent know-
ledge base, consisting of the rules and fuzzy sets,

is quite demanding. In particular, the number of
rules may become very large. In our above example,
this number is still rather small because the num-
ber of input attributes is limited to only three. In
general, however, the number of rules quickly grows
with the number of attributes - a point that we shall
come back to below. Finally, “tuning” the system
in case it does not immediately realize the desired
input/output relationship is difficult, too, because
the different components of the system (fuzzy sets,
rules, logical operators, (de-)fuzzification proced-
ures) are interacting in a complicated and highly
nonlinear way.

Given these difficulties, it is hardly surprising that
data-driven approaches to fuzzy systems modeling
have been considered as an alternative. In fact, this
alternative suggests itself in case data about the pro-
cess to be modeled is available. Imagine, for instance,
that a set of N measurements

(%> ¥n) = (concy, temp,, time,, K/S,) € R*x R

is available in our above example. One could then
be tempted to “fit” a fuzzy model M to this data,
that is, to search for an instantiation of the model
components such that the induced mapping fus re-
produces the data sufficiently well (i. e., far(x,) = v,
forn=1,...,,N).

Obviously, this process of reverse-engineering
a fuzzy system bears a close resemblance to standard
statistical regression analysis. Seen from this per-
spective, a fuzzy system can simply be considered
as a (nonparametric) regression function. This view
becomes especially apparent for certain types of
fuzzy systems, for example, systems with Gaussian
fuzzy sets and Takagi-Sugeno inference, which are
formally more or less equivalent to common regres-
sion techniques such as radial basis function (RBF)
networks.

Fuzzy systems are of course not limited to the
representation of regression functions but can also
be used for classification, that is, for implement-
ing functions with a categorical output. In this case,
the consequent of single rules is usually a class as-
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signment, i. e., a singleton fuzzy set.” Evaluating

a rule base (a la Mamdani-Assilian) thus becomes
trivial and simply amounts to “maximum match-
ing,” that is, searching the maximally supporting
rule for each class. Thus, much of the appealing in-
terpolation and approximation properties of fuzzy
inference gets lost, and fuzziness only means that
rules can be activated to a certain degree. There are,
however, alternative methods that combine the pre-
dictions of several rules into a classification of the
query [4].

A fuzzy model consists of two types of compo-
nents, a qualitative one that determines the structure
of the model and essentially corresponds to the
(linguistic) rules, and a quantitative one that com-
prises all numerical parameters of fuzzy sets, logical
operators, etc. A plethora of strategies have been
developed for determining these components in
a data-driven way. Especially important in this re-
gard are hybrid methods that combine fuzzy logic
with other “soft computing” methodologies, notably
evolutionary algorithms and neural networks. For
example, evolutionary algorithms are often used
in order to optimize (“tune”) a fuzzy rule base or
for searching the space of potential rule bases in
a (more or less) systematic way [5]. The combina-
tion of fuzzy systems with neural networks leads to
so-called neuro-fuzzy systems [12,18].

In addition to a purely knowledge-based and
a purely data-driven approach, there is of course
also the possibility to combine these two. For ex-
ample, a human expert may specify the qualitative
part of a fuzzy model by providing a set of linguistic
rules, whereas the quantitative part is determined
automatically by an optimization method that
fits the structure to a given set of data. In other
words, the data is used to “calibrate” the struc-
ture of the model as specified by the expert. In the
context of the colour yield application mentioned
above, this approach has been used successfully
in [16].

From a (machine) learning point of view, the
part of the model that is pre-defined by the ex-
pert serves as a restriction of the underlying model

2 More generally, a rule consequent can suggest different classes with different
degrees of certainty.

space, i. e., the set of candidate models the learn-
ing algorithms can choose from (or, using machine
learning terminology, it incorporates an inductive
bias). A restriction of that kind can be very use-
ful, as it may help the algorithm to learn more
quickly and avoid the risk of overfitting the data.
Conversely, if not completely correct, the bias incor-
porated by the expert may also prevent the algorithm
from finding the truly best model. In general, the
importance of incorporating expert knowledge in-
creases with the sparsity of the data. If data abounds,
it can compensate for the expert knowledge, and
purely data-driven approaches are often superior to
knowledge-based or hybrid alternatives, at least in
terms of accuracy.

Limitations of fuzzy rule systems
With the ever increasing availability of data, fostered
by technological advances in data acquisition, stor-
age and management, the data-driven approach to
systems design has become more and more prevalent
in the previous years, not only in the field of fuzzy
logic but in artificial intelligence (AI) in general -
this is why (inductive) machine learning methodol-
ogy has gained in importance as compared to more
classical Al topics of knowledge representation and
(deductive) reasoning.

Given the original motivation of fuzzy modeling
as a means for expressing expert knowledge, one
may wonder whether this methodology is equally
applicable to the data-driven paradigm and, not less
importantly, to what extent it may usefully com-
plement the arsenal of alternative statistical and
machine learning methods, including neural net-
works, support vector machines, and decision trees,
amongst others. This question especially arises since
standard machine learning methods are amenable to
specific optimization techniques (such as backprop-
agation in the case of neural networks or quadratic
programming in the case of support vector ma-
chines), and therefore much more efficient from an
algorithmic point of view. Indeed, the development
of a machine learning method normally involves
algorithmic and computational considerations from
the very beginning. In the case of fuzzy systems,
these aspects became relevant only later on, and
because of their complex structure, the only way
to identify fuzzy models is via general-purpose opti-
mization tools like the “big hammer” of evolutionary
algorithms.



Since we have been discussing the role of fuzzy
logic in machine learning on a quite general level
elsewhere [10,11], this topic will not be deepened
any further in this article. Instead, because our focus
here is on fuzzy systems in the sense of fuzzy rule
models, the remainder of this section is devoted to
a brief discussion of two issues directly related to
the use of such systems for learning and data-driven
model construction.

The color yield example above is a very simple, low-
dimensional model with three inputs and one output
variable. In spite of its practical relevance, most ap-
plications will typically involve much more inputs -
in modern, data-intense applications, it is not un-
common to deal with hundreds or thousands of
variables. But even if the number of variables goes
beyond a handful, rule-based systems may become
problematic [13]. A major reason that prevents such
systems from scaling to more complex applications
is their flat structure.

Rules are purely local entities that only cover
a small portion of the data space (in the form of
more or less axis-parallel rectangles) and that are
not able to flexibly exploit specific dependencies
or independencies between individual variables.
Therefore, a large number of such rules is typically
needed in order to describe a global relationship
between input and output variables. Regardless of
whether grid-based methods (starting from fuzzy
sets on the individual dimensions and defining rules
as products of these sets) or covering techniques
(starting from multi-dimensional rules/clusters
in the input space and defining fuzzy sets as one-
dimensional projections) are used, the number of
rules will grow exponentially or at least almost ex-
ponentially with the dimensionality of the input
space.

Successful tools for large-scale modeling and
learning, such as graphical models and deep neural
networks, distinguish themselves by the ability to
capture (partial) independencies between variables
and/or by conquering complexity through abstrac-
tion and hierarchical structuring. This is in contrast
to the flat, grid-like structure of standard (fuzzy)
rule bases.

Since a fuzzy system eventually represents a
(real-valued) function, it is of course possible to
combine fuzzy rule-based modeling with generic

hierarchical decomposition techniques. For ex-
ample, suppose a function f(-) with three input
variables can be expressed in the following form:

ey, 2) = g(x, h(y, 2))

Obviously, both g(-) and h(-) can then be expressed
in the form of fuzzy rule bases, giving rise to two
fuzzy systems with two-dimensional input space
instead of one such system with three inputs. In fact,
what is thus obtained is a specific type of hierarchical
fuzzy system — other types have been proposed in the
literature, see [26] for an overview.

Although hierarchical modeling techniques
may to some extent overcome or at least alleviate
the problems mentioned above, it seems that hier-
archical fuzzy systems have their own drawbacks
and have not been widely adopted in practice so
far. In fact, designing such systems, whether in
a knowledge-based or a data-driven way, is not an
easy task. Moreover, there is a risk of further com-
promising the interpretability of fuzzy systems,
which, as will be argued in the next section, is an
issue already in the case of standard (flat) fuzzy rule
bases.

Another type of hierarchical fuzzy system, called
fuzzy pattern trees, will be discussed in Section 4 be-
low. In contrast to rule-based systems, pattern trees
exhibit an inherently hierarchical structure. More-
over, each “inner node” of the hierarchy is realized
in the form of a simple (and easily interpretable) ag-
gregation function (instead of a set of rules wrapped
in a fuzzification and defuzzification procedure).

Interpretability is one of the core arguments of-
ten put forward by fuzzy scholars in favor of fuzzy
models, regardless of whether these models have
been constructed in a knowledge-based or a data-
driven way. Unfortunately, this argument is not
well supported from a scientific point of view,
which is partly due to the difficulty of measuring
interpretability and model transparency in an ob-
jective manner. Instead, the claim that rules are
more understandable than “formulas” appears to be
a commonplace one that is simply taken for granted.
Without denying the potential usefulness of fuzzy
logic in constructing interpretable models in gen-
eral, we are convinced that current methods for
data-driven construction of fuzzy models produce
results that are not at all more interpretable than any
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other types of model, and often even less. There are
several reasons for this scepticism.

A first problem is connected to the previous dis-
cussion and concerns the size of practically relevant
models. Even if a single rule might be understand-
able, a rule-based model with a certain level of
accuracy will typically consist of many such rules,
which may interact in a nontrivial way and might
be hard to digest as a whole. On top of this, fuzzy
models often allow for rule weighing and may in-
volve complicated inference schemes for aggregating
the outputs of individual rules into an overall pre-
diction. Of course, the problem of complexity is
shared by other, nonfuzzy methods, too. For example,
decision trees are often praised as being highly inter-
pretable, also in mainstream machine learning. This
might indeed be true as long as trees are sufficiently
small. In real applications, however, accurate trees
are often large, comprising hundred of nodes. Again,
interpretability is highly compromised then.

When fuzzy sets are constructed in a data-driven
way, it is not at all clear that these sets can be asso-
ciated with meaningful linguistic labels - let alone
labels the semantic interpretation of which will be
shared among different users. In fact, one should
realize that the fuzzy sets produced are strongly in-
fluenced by the data set, which is a random sample,
and fuzzy partitions might be strongly influenced
by outliers in the data. Moreover, fuzzy sets are in
the first place tuned toward good approximation and
accurate predictions of the function f); implemented
by the fuzzy model, and not toward meaningful
semantics.

Likewise, it is rarely discussed in which way
a model is eventually presented to the user. Are the
fuzzy sets specified in terms of their membership
functions, in which case the user might be over-
loaded with technical details, or is it just presented
in a linguistic form? As mentioned before, the latter
presupposes an appropriate assignment of linguistic
labels to fuzzy sets, which is difficult to establish.

For these reasons, the (alleged) interpretability
of fuzzy systems cannot simply be transferred from
knowledge-based to the case of data-driven fuzzy
modeling. In fact, as an important difference between
these approaches, one should notice that, in the data-
driven approach, the human is nolonger at the origin
of the model but changes her role from the “produc-
er” to the “consumer” of a model. Obviously, a model
constructed by the expert herselfis very close to what

D
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Fig. 2 Example of an FPT modeling colour yield as a function of
concentration, temperature and time

she has in mind. Besides, models of that kind are typ-
ically small, comprising only a few input variables.
Therefore, one can indeed suppose such models to be
understandable. These properties are no longer valid
in the case of a data-driven approach, however.

Fuzzy pattern trees
In this section, the model class of fuzzy pattern
trees [9] is advocated as an interesting alternative
to conventional fuzzy rule models. A fuzzy pattern
tree (FPT) is a modular, hierarchical structure and,
moreover, disposes of a wide spectrum of general-
ized aggregation operators. In a sense, it can be seen
as a generalisation of standard and/or trees.

The characteristic property of the hierarchical
approach, namely the (recursive) partitioning of
a problem into simpler subproblems, with a subse-
quent combination of the corresponding solutions,
appears to be a key prerequisite for the control-
lability of complex systems. Besides, it allows for
the consideration of a system on different levels of
abstraction.

Figure 2 shows an example of an FPT for our pre-
vious example, modeling color yield as a function of
concentration, temperature, and time. The model
specifies fuzzy conditions for “high color yield” and
suggests that the overall yield is a conjunction of two
such conditions: a high temperature and a second
criterion. The second criterion is a complex criterion
which is again decomposed into two subcriteria (low
time and concentration), which are combined by an
average. Figure 3 shows another example, namely, an
FPT modeling the quality of red wine depending on
its chemical properties. Both models have been con-
structed in a data-driven way, using the techniques
to be outlined below.?

3 The wine quality data, which contains ten input attributes, can be found at
https://archive.ics.uci.edu/ml/datasets/Wine+Quality.
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Fig. 3 Example of an FPT modeling the quality of red wine

In the following, the model class of fuzzy pattern
trees will be described in more detail. Then, the data-
driven design of FPTs will be addressed, which can
be restricted to the calibration of model parameters
or even comprise the identification of the model
structure. For technical details of fuzzy pattern tree
learning, we refer the reader to [23, 24].

An FPT realizes a mapping from an input space
X =X, x---xX,, to an output space Y. Thus, in-
puts are vectors x = (x1, ..., X,,,), the components x;
of which assume values in Xj; for simplicity, we will
subsequently assume that all domains X; are numer-
ical (i. e., subsets of R). As for the output, we shall
consider two cases, namely the binary one where
Y = {0, 1}, and the numerical one with Y = R or
Y =[a,b] CR.

An FPT is a binary tree having the following
properties:

- Each inner node N; is associated with a (binary)
aggregation operator A; : [0, 11> = [0, 1].

- The root node N is additionally associated with
a function v: [0, 1] — Y (defuzzifier).

- Each leaf node L is associated with a membership
function 1 : X,y — [0, 1] (fuzzifier).

Given a query input x = (xy, ..., X;;) € X, an FPT
is evaluated in a recursive way according to the
following rules:

- The root computes v(Ay(y;, ¥,)) and thus defines
the output of the tree; y; and y, are, respectively,
the outputs produced by the left and right child
node.

- Each inner node N; computes A;(y, y,) as an output,
where y; and y, are again the outputs of the left and
right child node, respectively.

- Each leaf node computes 14;(x,j)).

Thus, in an FPT, the inputs x; are propagated from
the bottom (leaf nodes) to the top (root). Combining
the 14; and the A; into a single “fuzzifier” 1 and an
aggregation A, respectively, the mapping defined by
an FPT can be written in a somewhat sloppy way as
V(A(pe(x))). In the following, we shall discuss the
components of an FPT in a little more detail.

Fuzzification and defuzzification. Each domain X;
is discretized by means of a fuzzy partition, and the
fuzzy sets are marked with linguistic terms such as
‘large’, ‘medium, or ‘small’ (making sure that these
terms are meaningful descriptions). The definition
of the function v: [0,1] — Y and its inverse v™' :

Y — [0, 1] depend on Y. For Y = [a, b], one may
simply let v (z) = (z—a)/(b— a). Like in the case of
neural networks, the case Y = R suggests a sigmoid
transformation: v (z) = (1 + exp(-a- z))fl. In the
case of a binary output, we simply set v(z) = 1ifz>6
and v(z) = 0 otherwise, where 0 <6 < 11is a threshold
(v7! is then the identity by definition).

Aggregation functions. Aggregation functions are
functions with specific properties, such as mono-
tonicity and commutativity; in general, they are
defined for two arguments, but thanks to their as-
sociativity, they can be extended to functions of
arity » in a canonical way. In the literature, one
distinguishes three types of aggregation functions:
conjunctive, compensatory, and disjunctive [8].
When defining an order relation < on aggrega-
tion functions in agreement with the standard
(pointwise) order on functions, then conjunctive
aggregations A are those with A < min, compen-
satory (averaging) those with min < A < max, and
disjunctive those for which max < A.

If A < A’ for two aggregations A and A’, then A
can be said to be “more strict” than A": Given the
same inputs (e. g., the degree of fulfillment of two
criteria), A’ will always produce a value at least as
high as the one produced by A. The conjunctive
and disjunctive aggregation generalizes, respec-
tively, the logical AND and OR, whence the former
is more strict than the latter. The averages are lo-
cated in-between these two classes. They produce
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t-norms averages t-conorms
E—
very strict very tolerant
MIN MAX

Fig. 4 Spectrum of aggregation functions

a compromise between the input values and fill the
“gap” between the minimum and the maximum (see
Fig. 4).

As usual in fuzzy logic, we make use of the class
of triangular norms (t-norms) for modeling the logi-
cal conjunction. T-norms are monotone, associative
and commutative functions [0, 1]*> — [0, 1] having
1 as a neutral element [14]. Correspondingly, the
dual class of t-conorms (which is characterized by
the same properties except having o instead of 1 as
a neutral element) serves for modeling the logical
disjunction. Especially appealing from a modeling
point of view is the use of parametrized families of
such norms (such as the Dubois-Prade family [6]),
because they allow one to control the “strictness” of
an aggregation by means of a single parameter. As
an averaging operator, we make use of the so-called
Choquet integral, which closes the gap between the
minimum and the maximum [8] and covers the
weighted arithmetic mean as well as the ordered
weighted average (OWA) operator [27] as special
cases.

The fuzzy sets at the leaf nodes of an FPT, applied
to the respective variables, can be considered as
(unary) predicates and perhaps expressed linguis-
tically (e. g., “the level of alcohol is high”). Likewise,
the membership function associated with the root
defines a fuzzy predicate that we have considered
in a generic way as “the outcome is high” so far.
The inner part of an FPT defines a criterion for the
fulfillment of this predicate, which is recursively
composed of subcriteria. Eventually, an FPT thus
specifies (fuzzy) conditions on the input variables
that guarantee “a high output,” or, more generally,
that the predicate at the root node is satisfied to

a high degree.

A human expert will typically design a model of
this kind in a “top-down” manner, that is, by decom-
posing criteria into subcriteria in a recursive way.
The advantages of such an approach are well-known
in other fields, too; as an example, let us mention the
analytic hierarchy process in decision support [20].

For each criterion, one has to determine the way in
which the subcriteria ought to be combined (con-
junctive, compensatory, disjunctive) and how the
corresponding aggregations are parametrized (e. g.,
the strictness of a conjunction or the weights of the
subcriteria in the arithmetic mean).

The hierarchical structure guarantees a certain
modularity of the approach, which is also helpful
for the interpretation of an FPT: Each criterion is
“explained” by the respective subcriteria and the ag-
gregation. Again, this explanation can be continued
in a recursive way, completely independently of the
rest of the model. Thus, not only the model itself
can be analyzed, but also a concrete prediction: The
numerical output of a node is explained by its inputs,
i. e, the degree of fulfillment of the subcriteria, plus
the aggregation of these inputs.

In [22], an extension of the FPT approach is pro-
posed in which a model is specified in terms of an
ensemble of pattern trees. For instance, instead of
using a single tree in our example, which specifies
the conditions for a “high quality” (and immediately
implies a low quality if these conditions are not satis-
fied), one may add corresponding trees for “medium
quality” and “low quality”. To make an overall pre-
diction, it is then necessary to combine the outputs
of these trees.

This approach is close to rule-based fuzzy sys-
tems: Each FPT can be associated with a rule or
a set of rules with equal or similar consequent; the
aggregation of the outputs of the trees then essen-
tially corresponds to the step of defuzzification in
rule systems. Yet, FPTs arguably have a number of
advantages, notably the following.

A hierarchical instead of a flat structure often
allows models to be represented in a more compact
way. One reason is that, in the class of FPTs, much
more transformations preserving equivalence are
possible than in the class of rule models; for example,
while the expression max{min{A, B}, min{A, C}} can
be considered as a disjunction of two rules with an-
tecedents A A B and A A C, respectively, the same
is not true for the logically equivalent expression
min{A, max{B, C}}. Moreover, the class of analytical
expressions that can be represented, as well as the
“degree of nonlinearity”, are significantly increased
thanks to the possibility of recursion. For example,
with an FPT of depth k it is possible to model all



monomials of degree k by just using the simple prod-
uct as a t-norm, even if all membership functions are
linear.

In this regard, it is interesting to note that simi-
lar advantages of “deep” over “flat” structures have
also been observed in other domains, currently for
example in the field of deep learning [3]: Although
it is true that neural networks with a single hidden
layer exhibit universal approximation capabilities,
the practical realization of this theoretical property
may require an extremely large number of neurons
in this layer. The same approximation quality might
be achieved with a significantly smaller number of
neurons if these are distributed on several layers and
connected in a proper way. Likewise, the universal
approximation property of fuzzy systems typically
comes at the price of an excessively large number of
rules.

As explained in Section 3.1, fuzzy rule-based
models can be used within a hierarchical modeling
scheme, too. Therefore, the above remarks need to
be put in perspective. Nevertheless, labeling an inner
node with a single aggregation function appears
to be all the more simpler than describing each such
aggregation in the form of a fuzzy rule-based system.

Indeed, the use of a larger class of aggregation
functions, including generalized averaging opera-
tors, is another important advantage of FPTs. This is
nicely exemplified by the weighted sum: While this
operator allows one to describe linear or piecewise
linear functions with a single node, the approxima-
tion of such functions with axis-parallel rules can
become very complex.

One may argue that the use of different types of
aggregation operators may compromise the inter-
pretability of an FPT. In our opinion, however, this
is not the case: Each operator itself is easily inter-
pretable, and thanks to the modularity of an FPT, it
can indeed be considered independently of the rest
of the model.

In the case of data-driven design, (possibly noisy)
data about the input/output behavior of the system
under consideration is supposedly available:

T = {(x,,,y,,)}i]:1 CXxY,

where x, is an observed input vector and y, the
corresponding output. These data can be used to

replace or at least to complement the knowledge-
driven model construction of an expert. Indeed,
while human experts are often able to describe the
qualitative structure of a model, including the type
of aggregation (conjunctive, compensatory, disjunc-
tive), they find it hard to parametrize the operators.
An obvious idea, then, is to adapt the parameters to
the data in an optimal way - a process we refer to
as model calibration. Without going into technical
detail, we refer to [28] for an approach to calibrating
fuzzy pattern trees.

If no prior knowledge is available, one can try to
extract both the model structure and the parameters
from the data. This is a problem of model induction
typical of machine learning and comparable, for ex-
ample, to the learning of Bayesian networks, which
also consist of a qualitative (the graph structure)
and a quantitative part (the conditional probability
distributions). In [23], a top-down approach to FTP
induction is proposed. The core of our learning al-
gorithm is a beam search, a heuristic search strategy
that maintains a set of candidate solutions (FPTs in
our case), and the problem of parameter estimation
is embedded in this process. In [24], several exten-
sions of the above algorithm are proposed that aim
at making it faster without compromising predic-
tive accuracy. These extensions include the use of
adaptive sampling schemes as well as heuristics for
guiding the growth of pattern trees. Again, a detailed
exposition of such technical details is beyond the
scope of this article.

Conclusion
Fuzzy modeling was originally conceived as a hu-
man/machine interface, namely, for translating
informal rules involving linguistic terms with
vague semantics into precise mathematical models
amenable to computerized information processing.
In the spirit of the classical expert systems paradigm,
which dominated research in Al in the 1980s, fuzzy
systems have been used quite successfully in many
applications. More recently, however, the interest has
shifted from the traditional knowledge-based ap-
proach to systems design to a data-driven one, that
is, the automatic extraction of fuzzy models from
data.

Although this development is a coherent re-
action to the increased availability of data and
completely in line with the growing importance of
machine learning, we suspect that traditional fuzzy
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systems lose most of their merits when being de-
signed in a purely data-driven manner. Moreover, as
a tool for model induction and predictive modeling,
fuzzy approaches have a hard time competing with
modern machine learning methodology, especially
with regard to algorithmic aspects, computational
efficiency, and theoretical foundations (guarantees
for generalization performance, support of model
selection, etc.). The scalability of fuzzy systems is
severely hampered by the flat structure of standard
rule bases, and even if this problem could in princi-
ple be mitigated by hierarchical variants, large-scale
applications of whatever kind of fuzzy system are
difficult to find. One of the key advantages of the
traditional approach, namely, interpretability and
model transparency, tends to become questionable
for the data-driven approach. Moreover, a proper
handling of fuzziness in knowledge representation
is no longer needed, since data is normally precise,
and the alleged fuzziness “learned” from the data is
at best suspicious.

Needless to say, our criticism of the traditional
rule-based paradigm should not be misunderstood
as denying the usefulness of fuzzy logic in machine
learning in general. For example, the model archi-
tecture of pattern trees, which we reviewed in the
second part of the paper, is an interesting alternative
with many appealing properties — the use of general-
ized (fuzzy) logical and averaging operators is one of
the key features of this approach. For a broader dis-
cussion of how fuzzy logic can contribute to machine
learning, we refer to [11].
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