
Preference Learning and Ranking

Johannes Fürnkranz, TU Darmstadt
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Definition

Preference learning refers to the task of learning to predict (contextualized)
preferences on a collection of alternatives, which are often represented in the
form of an order relation, on the basis of observed or revealed preference infor-
mation. Supervision in preference learning is typically weak, in the sense that
only partial information about sought structures or indirect information about
an underlying value function are provided; a common example is feedback in
the form of pairwise comparisons between alternatives. Especially important in
preference learning are ranking problems, in which preferences are represented
in terms of total or partial order relations. Such problems can be approached in
two fundamentally different ways, either by learning binary preferences on pairs
of alternatives or by inducing an underlying (latent) value function on single
alternatives.

Motivation and Background

Preference information plays a key role in automated decision making and ap-
pears in various guises in Artificial Intelligence (AI) research [8]. In particu-
lar, the formal modeling of preferences can be considered an essential aspect
of autonomous agent design. Yet, in spite of the existence of formalisms for
representing preferences in a compact way, such as CP-networks [1], modeling
preferences by hand is a difficult task. This is an important motivation for
preference learning, which is meant to support and partly automatize the de-
sign of preference models. Roughly speaking, preference learning is concerned
with the automated acquisition of preference models from observed or revealed
preference information, that is, data from which (possibly uncertain) preference
representations can be deduced in a direct or indirect way.

Computerized methods for revealing the preferences of individuals (users)
are useful not only in AI, but also in many other fields showing a tendency
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for personalization of products and services, such as computational advertising,
e-commerce, and information retrieval, where such techniques are also known
as learning to rank [19]. Correspondingly, a number of methods and tools have
been proposed with the goal of leveraging the manifold information that users
provide about their preferences, either explicitly via ratings, written reviews,
etc., or implicitly via their behavior (shopping decisions, websites visited, and so
on). Typical examples include recommender systems and collaborative filtering,
which can be viewed as special cases of preference learning. A first attempt at
setting a common framework for this emerging subfield of machine learning was
made by Fürnkranz and Hüllermeier [11].

Ranking is one of the key tasks in the realm of preference learning. One can
distinguish between two important types of ranking problems, namely, learning
from object and learning from label preferences. A ranking is a special type of
preference structure, namely a strict total order, that is, a binary relation � on
a set A of alternatives that is total, irreflexive, and transitive. In agreement
with our preference semantics, a � b suggests that alternative a is preferred to
alternative b. However, in a wider sense, the term “preference” can simply be
interpreted as any kind of order relation. For example, a � b can also mean
that a is an algorithm that outperforms b on a certain problem, or that a is a
student finishing her studies before another student b.

Structure of the Learning System

An important difference between object and label ranking concerns the formal
representation of the preference context and the alternatives to be ordered. In
object ranking, the alternatives themselves are characterized by properties, typ-
ically in terms of a feature vector (attribute-value representation). Thus, the
learner has the possibility to generalize via properties of the alternatives, whence
a ranking model can be applied to arbitrary sets of such alternatives. In label
ranking, the alternatives to be ranked are labels as in classification learning,
i.e., mere identifiers without associated properties. Instead, the ranking context
is characterized in terms of an instance from a given instance space, and the
task of the model is to rank alternatives depending on properties of the context.
Thus, the context may change (as opposed to object ranking, where it is im-
plicitly fixed) but the objects to be ranked remain the same. Stated differently,
object ranking is the problem to rank varying sets of objects under invariant
preferences, whereas label ranking is the problem to rank an invariant set of
objects under varying preferences.

Both problems can be approached in two principal ways, either by learning a
value function that induces the sought ranking by evaluating individual alterna-
tives, or by comparing pairs of alternatives, that is, learning a binary preference
relation. Note that the first approach implicitly assumes an underlying total
order relation, since numerical (or at least totally ordered) utility scores enforce
the comparability of alternatives. The second approach is more general in this
regard, as it also allows for partial order relations. On the other hand, this ap-
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proach may lead to additional complications, since a set of hypothetical binary
preferences induced from empirical data may exhibit inconsistencies in the form
of preferential cycles.

Learning from Object Preferences

The most frequently studied problem in learning from preferences is to induce a
ranking function r(·) that is able to order any (finite) subset O of an underlying
(possibly infinite) class X of objects. That is, r(·) assumes as input a subset
O ⊆ X of objects and returns as output a permutation τ of {1, . . . , |O|}. The
interpretation of this permutation is that, for objects xi, xj ∈ O, the former is
preferred to the latter whenever τ(i) < τ(j). The objects themselves are typi-
cally characterized by a finite set of features as in conventional attribute-value
learning. The training data consists of a set of exemplary pairwise preferences
x � x′ with x, x′ ∈ X . A survey of object ranking approaches is given by
Kamishima et al. [18].

Note that, in order to evaluate the predictive performance of a ranking
algorithm, an accuracy measure (or loss function) is needed that compares a
predicted ranking with a given reference ranking. To this end, one can refer, for
example, to statistical measures of rank correlation. Expected or empirical loss
minimization is a difficult problem for measures of that kind, especially because
they are not (instance-wise) decomposable.

Many learning to rank problems may be viewed as object ranking problems.
For example, Joachims [17] studies a scenario where the training information
could be provided implicitly by the user who clicks on some of the links in a
query result and not on others. This information can be turned into binary
preferences by assuming a preference of the selected pages over those nearby
pages that are not clicked on. Applications in information retrieval typically
suggest loss functions that put more emphasis on the top and less on the bottom
of a ranking; for this purpose, specific measures have been proposed, such as
the (normalized) discounted cumulative gain [19].

Learning from Label Preferences

In label ranking, preferences are contextualized by elements x of an instance
space X , and the goal is to learn a ranking function X −→ Sm for a fixed
m ≥ 2. Thus, for any instance x ∈ X (e.g., a person), a prediction in the
form of an associated ranking �x of a finite set L = {λ1, . . . , λm} of labels or
alternatives is sought, where λi �x λj means that instance x prefers λi to λj .
Again, the quality of a prediction of that kind is typically captured in terms
of a rank correlation measure (or an associated loss function). The training
information consists of a set of instances for which (partial) knowledge about
the associated preference relation is available. More precisely, each training
instance x is associated with a subset of all pairwise preferences. Thus, despite
the assumption of an underlying (“true”) target ranking, the training data is
not expected to provide full information about such rankings (and may even
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contain inconsistencies, such as pairwise preferences that are conflicting due to
observation errors).

The above formulation essentially follows Fürnkranz and Hüllermeier [10],
though similar formalizations have been proposed independently by several au-
thors; for an overview, see the survey papers by Vembu and Gärtner [23] and
Zhou et al. [24]. Label ranking contributes to the general trend of extend-
ing machine learning methods to complex and structured output spaces [22].
Moreover, label ranking can be viewed as a generalization of several standard
learning problems. In particular, the following well-known problems are spe-
cial cases of learning label preferences: (i) Classification, where a single class
label λ is assigned to each instance x; this is equivalent to the set of preferences
{λ �x λj |λj ∈ L \ {λ}}. (ii) Multi-label classification, where each training ex-
ample x is associated with a subset L ⊆ L of possible labels. This is equivalent
to the set of preferences {λi �x λj |λi ∈ L, λj ∈ L \ L}. In each of the former
scenarios, the sought prediction can be obtained by post-processing the output
of a ranking model f : X −→ Sm in a suitable way. For example, in multi-class
classification, where only a single label is requested, it suffices to project a label
ranking to the top-ranked label.

Applications of this general framework can be found in various fields, for
example in marketing research; here, one might be interested in discovering
dependencies between properties of clients and their preferences for products.
Another application scenario is meta-learning, where the task is to rank learn-
ing algorithms according to their suitability for a new dataset, based on the
characteristics of this dataset [20]. Moreover, every preference statement in the
well-known CP-nets approach [1], a qualitative graphical representation that
reflects conditional dependence and independence of preferences under a ceteris
paribus interpretation, formally corresponds to a label ranking function that
orders the values of a certain attribute depending on the values of the parents
of this attribute (predecessors in the graph representation).

Other Settings

A nunber of variants of the above ranking problems have been proposed and
studied in the literature. For example, a setting referred to as instance rank-
ing is very similar to object ranking. However, instead of relative (pairwise)
comparisons, training data consists of absolute ratings of alternatives; typically
these ratings are taken from an ordinal scale, such as 1 to 5 stars. Moreover,
a predicted ranking is not compared with another (ground-truth) ranking but
with the multi-partition induced by the rating of the alternatives [12].

Attempts have also been made at combining object and label ranking, that
is, to exploit feature representations of both the preference context and the
alternatives to be ranked. One approach is to combine both pieces of information
by means of a joint feature map φ : X ×Y −→ Z and to learn a value function
f : Z −→ R; here, Y is a parametric or structured space of alternatives and
Z ⊆ Rd a joint feature space [22, 20].
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Learning Utility Functions

Evaluating alternatives in terms of a value or utility function is a very natural
way of representing preferences, which has a long tradition in economics and
decision theory [9]. In the object preferences scenario, such a function is a
mapping f : X −→ R that assigns a utility degree f(x) to each object x and,
thereby, induces a linear order on X . In the label preferences scenario, a utility
function fi : X −→ U is needed for every label λi, i = 1, . . . ,m. Here, fi(x) is
the utility assigned to alternative λi in the context x. To obtain a ranking for
x, the alternatives are ordered according to their utility scores, i.e., a ranking
�x is derived such that λi �x λj implies fi(x) ≥ fj(x).

If the training data offers the utility scores directly, preference learning es-
sentially reduces to a standard regression or an ordinal regression problem,
depending on the underlying utility scale. This information can rarely be as-
sumed, however. Instead, usually only constraints derived from comparative
preference information of the form “this alternative should have a higher utility
score than that alternative” are given. Thus, the challenge for the learner is to
find a value function that is as much as possible in agreement with a set of such
constraints.

For object ranking approaches, this idea has first been formalized by Tesauro
[21] under the name comparison training. He proposed a symmetric neural-
network architecture that can be trained with representations of two states
and a training signal that indicates which of the two states is preferable. The
elegance of this approach comes from the property that one can replace the
two symmetric components of the network with a single network, which can
subsequently provide a real-valued evaluation of single states. Similar ideas
have also been investigated for training other types of classifiers, in particular
support vector machines. We already mentioned Joachims [17] who analyzed
“click-through data” in order to rank documents retrieved by a search engine
according to their relevance. Earlier, Herbrich et al. [14] proposed an algorithm
for training SVMs from pairwise preference relations between objects.

For the case of label ranking, a corresponding method for learning the func-
tions fi(·), i = 1, . . . ,m, from training data has been proposed in the framework
of constraint classification, which allows for reducing a label ranking to a single
binary classification problem [13]. The learning method proposed in this work
constructs two training examples, a positive and a negative one, for each given
preference λi �x λj , where the original N -dimensional training example (fea-
ture vector) x is mapped into an (m×N)-dimensional space. In this space, the
learner finds a linear model (hyperplane) f that separates the positive from the
negative examples. Finally, the model f is “split” into m linear value functions
f1, . . . , fm, one for each label.

Learning Preference Relations

An alternative to learning latent utility functions consists of learning binary
preference relations, which essentially amounts to reducing preference learning
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to binary classification. For object ranking, the pairwise approach has been
pursued in [7]. The authors propose to solve object ranking problems by learning
a binary preference predicate Q(x, x′), which predicts whether x is preferred to
x′ or vice versa. A final ordering is found in a second phase by deriving a ranking
that is maximally consistent with these (possibly conflicting) predictions.

For label ranking, the pairwise approach has been introduced in [16] as
a natural extension of pairwise classification, a well-known class binarization
technique. The idea is to train a separate model (base learner)Mi,j for each pair
of labels (λi, λj) ∈ L, 1 ≤ i < j ≤ m; thus, a total number of m(m−1)/2 models
is needed. For training, a preference information of the form λi �x λj is turned
into a (classification) example (x, y) for the learner Ma,b, where a = min(i, j)
and b = max(i, j). Moreover, y = 1 if i < j and y = 0 otherwise. Thus, Ma,b

is intended to learn the mapping that outputs 1 if λa �x λb and 0 if λb �x λa.
This mapping can be realized by any binary classifier. Instead of a {0, 1}-valued
classifier, one can of course also employ a scoring classifier. For example, the
output of a probabilistic classifier would be a number in the unit interval [0, 1]
that can be interpreted as a probability of the preference λa �x λb.

At classification time, a query x0 ∈ X is submitted to the complete ensemble
of binary learners. Thus, a collection of predicted pairwise preference degrees
Mi,j(x), 1 ≤ i, j ≤ m, is obtained. The problem, then, is to turn these pairwise
preferences into a ranking of the label set L. To this end, different ranking
procedures can be used. The simplest approach is to extend the (weighted)
voting procedure that is often applied in pairwise classification: For each label
λi, a score

Si =
∑

1≤j 6=i≤m

Mi,j(x0)

is derived (where Mi,j(x0) = 1 −Mj,i(x0) for i > j), and then the labels are
ordered according to these scores. Despite its simplicity, this ranking procedure
has several appealing properties. Apart from its computational efficiency, it
turned out to be relatively robust in practice and, moreover, it possesses some
provable optimality properties in the case where Spearman’s rank correlation
is used as an underlying accuracy measure. Roughly speaking, if the binary
learners are unbiased probabilistic classifiers, the simple “ranking by weighted
voting” procedure yields a label ranking that maximizes the expected Spear-
man rank correlation [15]. Finally, it is worth mentioning that, by changing
the ranking procedure, the pairwise approach can also be adjusted to accuracy
measures other than Spearman’s rank correlation.

Other Approaches

Referring to the type of training data and the loss function to be minimized on
this data, learning value functions and learning preference relations are some-
times called the “pointwise” and “pairwise” approach to preference learning,
respectively. This is distinguished from the “listwise” approach, in which a loss
is defined on a predicted ranking directly. This can be done, for example, on
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the basis of probabilistic models of ranking data, such as the Plackett-Luce
model. The idea, then, is to learn the parameters of a probabilistic model using
statistical methods such as maximum likelihood estimation (or, equivalently,
minimizing logarithmic loss). Methods of this kind have been proposed both
for object ranking [3] and label ranking [5].

Yet another alternative is to resort to the idea of local estimation techniques
as prominently represented, for example, by the nearest neighbor estimation
principle: Considering the rankings observed in similar situations as represen-
tative, a ranking for the current situation is estimated on the basis of these
neighbor-rankings, namely, by finding a suitable consensus among them; essen-
tially, this is a problem of rank aggregation [4].

Future Directions

As already said, preference learning is an emerging branch of machine learning
and still developing quite dynamically. In particular, new settings or variants
of existing frameworks will certainly be proposed and studied in the future. As
for ranking problems, for example, an obvious idea and reasonable extension is
to go beyond strict total order relations and instead allow for incomparability
or indifference between alternatives, and for representing uncertainty about
predicted relations [6]. Another interesting direction is to combine preference
learning with online learning, i.e., to predict preferences in an online setting.
First steps in the direction of online preference learning have recently been
made with a preference-based variant of the multi-armed bandit problem [2].

See Also

Class Binarization, Classification, Meta-Learning, Multi-armed bandit, Multi-label Classification,
Online Learning, Rank Correlation, Regression
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Rank Correlation

Definition

Rank correlation measures the correspondence between two rankings τ and τ ′ of
a set of m objects. Various proposals for such measures have been made, espe-
cially in the field of statistics. Two of the best-known measures are Spearman’s
Rank Correlation and Kendall’s tau:
Spearman’s Rank Correlation [26] calculates the sum of squared rank dis-
tances and is normalized such that it evaluates to −1 for reversed and to +1 for
identical rankings. Formally, it is defined as follows:

(τ, τ ′) 7→ 1−
6
∑m

i=1(τ(i)− τ ′(i))2

m(m2 − 1)
(1)

Kendall’s tau [25] is the number of pairwise rank inversions between τ and τ ′,
again normalized to the range [−1,+1]:

(τ, τ ′) 7→ 1−
4
∣∣{(i, j) | i < j, τ(i) < τ(j) ∧ τ ′(i) > τ ′(j)}

∣∣
m(m− 1)

(2)

Spearman’s rank correlation and Kendall’s tau give equal weight to all rank-
ing positions, which is not desirable for all applications. For example, ranking
problems in information retrieval are often evaluated with the (normalized)
discounted cumulative gain (NDCG), which assigns more weight to the lower
ranking positions (cf. learning to rank).
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