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more in cases where the aforementioned model assumptions underlying adaptive
voting are not met. In this sense, weighted voting appears to be a more robust
aggregation strategy.

Key words: Learning by Pairwise Comparison, Label Ranking, Aggregation
Strategies, Classifier Combination, Weighted Voting, MAP Prediction

∗ Corresponding author.
Email addresses: eyke@mathematik.uni-marburg.de (Eyke Hüllermeier),
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1 Introduction

Learning by pairwise comparison (aka all-pairs, one-against-one, round robin
learning, and pairwise classification) is a well-known decomposition technique
which allows one to transform a multi-class classification problem, i.e., a prob-
lem involving m > 2 classes, into a number of binary classification problems
[1]. To this end, a separate model is trained for each pair of class labels.
Typically, the technique produces more accurate models than the alternative
one-against-rest decomposition, which learns one model for each class using
the examples of this class as positive examples and all others as negative ex-
amples. Also, despite the need to train a quadratic instead of a linear number
of models, pairwise classification is computationally not more complex than
one-against-rest. The reason is that the binary classification problems not only
contain fewer training examples (because all examples that do not belong to
either of the two classes are ignored), but the decision boundaries for each
of the problems may also be considerably simpler than for the problems gen-
erated by the one-against-rest technique [2,1,3]. Both techniques are special
cases of a more general approach that uses error correcting output codes to
decompose a multi-class problem into several binary classification problems
[4].

A critical step in pairwise learning is the aggregation of the predictions from
the ensemble of binary models into a final classification. A large number of
strategies have been proposed for this purpose, see for example [5–9]. Since
the aggregation problem also occurs in all other decomposition methods and
in ensemble methods, these research areas as well provide a large number of
aggregation strategies (sometimes called classifier combination schemes); see
for example [10] and references therein. However, since the semantics of these
problems are different, we note that the aggregation strategies from differ-
ent fields are not always interchangeable. In this paper, we solely focus on
aggregating predictions from binary models learned by pairwise comparison.
Judging from the relevant research literature, it is clear that the most com-
monly used aggregation strategy in practice is the simple weighted voting. In
this strategy, the prediction of each binary model is counted as a weighted
“vote” for a class label, and the class with the highest sum of votes is pre-
dicted. Even though weighted voting performs very well in practice, it is often
criticized as being ad-hoc to some extent and for lacking a sound theoretical
basis [11,12].

In this regard, the current paper makes the following three contributions. First,
we propose a formal framework in which the aforementioned aggregation prob-
lem for pairwise learning can be studied in a convenient way. This framework
is based on the setting of label ranking which has recently received attention
in the machine learning literature [13–15,11]. Second, within this framework,
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we develop a new aggregation strategy called adaptive voting. This strategy
allows one to take the strength of individual classifiers into consideration and,
under certain assumptions, is provably optimal in the sense that it yields a
MAP prediction of the class label (i.e., it predicts the label with maximum
posterior probability). 1 Third, we show that weighted voting can be seen
as an approximation of adaptive voting and, hence, approximates the MAP
prediction. This theoretical justification is complemented by arguments sug-
gesting that weighted voting is quite robust toward incorrect predictions of
the binary models. Finally, all these results are confirmed by strong empirical
evidence showing that adaptive voting is indeed able to outperform weighted
voting in a consistent way, albeit by a very small margin. The experimental
results also show that the superiority of adaptive voting only holds as long as
its underlying model assumptions are (approximately) met by the ensemble
of binary models. If these assumptions are strongly violated, weighted voting
is at least competitive and, in this sense, appears to be more robust than
adaptive voting.

The remainder of the paper is organized as follows. In Section 2, we review
learning by pairwise comparison. In Section 3, we present the setting of label
ranking and we argue for analyzing learning by pairwise comparison in this
setting. We introduce the adaptive voting strategy and its underlying formal
model in Section 4. In Section 5, we provide experiments with synthetic data.
In Section 6, we focus on weighted voting and show that it can be seen as an
approximation of adaptive voting. Experimental results on benchmark data
sets are presented in Section 7. The paper ends with concluding remarks and
future work in Section 8.

2 Learning by Pairwise Comparison

Learning by pairwise comparison is a popular decomposition technique that
transforms an m-class classification problem, m > 2, into a number of binary
problems [1]. To this end, a separate model or base classifier Mij is trained
for each pair of labels (λi, λj) ∈ L × L, 1 ≤ i < j ≤ m; thus a number of
m(m − 1)/2 models is needed in total (see Fig. 1). The base classifier Mij is
intended to discriminate instances with class label λi from those having class
label λj.

The binary base classifier Mij is trained using examples of classes λi and
λj only. More specifically, an example (x, λx), i.e., an instance x belonging

1 We consider the strength of a classifier as its ability to separate classes with high
confidence. We will give a precise definition in terms of a parametric probabilistic
model in Section 4.1.
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to class label λx = λi, is considered as a positive example (x, 1). Similarly,
the instance is used to create a negative example (x, 0) to train Mij when
λx = λj. A base classifier can be implemented by any learning algorithm.
Given the outputs of the base classifiers, a decision has to be made for the final
classification of the instance. As mentioned in the introduction, we focus on
the weighted voting (WV) aggregation strategy in order to make this decision.
It is an intuitive and very simple strategy which has shown to be very accurate
in practice.

Without loss of generality, we assume binary classifiers that map instances to
the unit interval [0, 1]. In other words, we work with soft classifiers produc-
ing scores as output, in contrast to discrete classifiers that map to {0, 1} and
thereby produce crisp classifications. The output of a scoring classifier is usu-
ally interpreted as a probability or, more generally, as a degree of confidence in
the classification. Hence, the WV strategy considers the output sij = Mij(x)
as a weighted “vote” for class label λi. Correspondingly, assuming the learners
to be additively reciprocal (which is natural in learning by pairwise compari-
son), we have that 2

sji
df
= 1 − sij ,

and this score is then considered as a weighted vote for class label λj. Finally,
each class label λi is scored in terms of the sum of its votes

si =
∑

1≤j 6=i≤m

sij , (1)

and the class label with the maximal sum of votes is predicted. Possible ties
are often broken at random or are decided in favor of the majority class.

3 The Setting of Label Ranking

The optimal voting strategy that we will present is formally analyzed using the
label ranking setting. In the next three subsections, respectively, we explain
this setting, we show how to use weighted voting to predict a label ranking
on the basis of pairwise classifications, and we discuss several benefits of the
label ranking setting over the conventional classification setting.

2 In other work, additively reciprocal learners are sometimes called learners that
satisfy pairwise consistency; see for example [16].
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3.1 Generalizing the Classification Setting

The setting of label ranking can be seen as an extension of the conventional
setting of classification [13–15,11]. Roughly speaking, the former is obtained
from the latter through replacing single class labels by complete label rankings.
So, instead of associating every instance x from an instance space X with one
among a finite set of class labels L = {λ1, . . . , λm}, we now associate x with a
total order of the class labels. This means that we have a complete, transitive,
and asymmetric relation �x on L where λi �x λj indicates that λi precedes
λj in the ranking associated with x.

It follows that a ranking can be considered (metaphorically) as a special type of
preference relation, and therefore we shall also say that λi �x λj indicates that
λi is preferred to λj given the instance x. To illustrate, suppose that instances
are students (characterized by attributes such as sex, age, and major subjects
in secondary school) and � is a preference relation on a fixed set of study
fields such as Math, CS, Physics. The goal in label ranking is to learn a “label
ranker” in the form of a mapping from the instance space X to the space of
all possible rankings.

Formally, a ranking �x can be identified with a permutation τx of the set
{1, . . . ,m}. The class of all permutations of this set is denoted by Sm. For
ease of presentation, it is convenient to define τx such that τx(i) = τx(λi) is
the position of class label λi in the ranking. This permutation encodes the
following ground truth ranking:

λτ−1

x
(1) �x λτ−1

x
(2) �x . . . �x λτ−1

x
(m) , (2)

where τ−1
x

(j) is the index of the class label at position j in the ranking. Clearly,
seen the other way around, we have that τx(i) < τx(j) if and only if λi �x

λj. By abuse of terminology, though justified in light of the above one-to-
one correspondence, we refer to elements τ ∈ Sm as both permutations and
rankings.

In analogy with the conventional classification setting, we do not assume the
existence of a deterministic mapping from instances to permutations. Instead,
every instance is associated with a probability distribution over Sm. This means
that there exists a probability distribution P(· |x) for each x ∈ X such that,
for every τ ∈ Sm,

P(τ |x) (3)

is the probability that τx = τ (i.e., for each permutation there is a probability
that it is the correct permutation for the instance under consideration). As an
illustration, going back to our example, the following probability distribution
may be given for a particular student:
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label ranking τ P(τ |x)

Math � CS � Physics .2526

Math � Physics � CS .3789

CS � Math � Physics .1684

CS � Physics � Math .0421

Physics � Math � CS .0947

Physics � CS � Math .0632

These probability distributions can be used to reduce a ranking to a single
class label prediction. To see this, we note that in the setting of conventional
classification, training data consists of tuples (xk, λxk

) which are assumed to
be produced according to a probability distribution over X ×L. This implies
that we can associate with each instance x a vector of conditional probabilities

px = ( P(λ1 |x), . . . , P(λm |x) ) , (4)

where P(λi |x) denotes the probability of observing the class label λx = λi

given x. Now, in label ranking, the class label λx can be naturally associated
with the top-label in the ranking τx, i.e., λx = τ−1

x
(1). The probability vector

(4) is then the image of the measure in (3) under the mapping τ 7→ τ−1(1).
In other words, P(λi |x) corresponds to the probability that λi occurs as a
top-label in a ranking τ , and it is computed by summing the probabilities of
all possible rankings in which the label is at the first (top) position. In our
example, this yields the following probabilities:

P(Math |x) = .6315, P(CS |x) = .2105, P(Physics |x) = .1579 .

To show that the label ranking setting is a proper generalization of the con-
ventional setting of classification, it is also necessary to have a mapping in the
reverse direction, i.e., a mapping from probability vectors (4) to measures (3).
Such a mapping can be defined in different ways. Since the order of the non-top
labels L \ {λx} is irrelevant in the classification setting, it appears reasonable
to distribute the probability mass P(λi |x) equally on {τ ∈ Sm | τ−1(1) = λi}.
The result is an inverse mapping expressing “indifference” with respect to the
order of non-top labels. In our example, this would give the following proba-
bility distribution over the rankings:
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label ranking τ P(τ |x)

Math � CS � Physics .3158

Math � Physics � CS .3158

CS � Math � Physics .1053

CS � Physics � Math .1053

Physics � Math � CS .0789

Physics � CS � Math .0789

3.2 Predicting a Label Ranking

Pairwise learning for classification can be extended to the setting of label
ranking as follows [17]. It is natural to interpret the output of base classifier
Mij as a decision whether λi �x λj or λj �x λi. Since we are assuming the
most general case of scoring classifiers, we again have to “soften” the preference
decision. This means that the closer the output of Mij to 1, the stronger the
preference λi �x λj is supported. More formally, we express a soft decision by
a valued preference relation Rx for a test instance x:

Rx(λi, λj) =







Mij(x) if i < j

1 −Mij(x) if i > j
. (5)

Given a valued preference relation Rx for an instance x, the question is how
to derive a label ranking from it. This question is non-trivial since such a rela-
tion does not always suggest a unique ranking in an unequivocal way [18,19].
Nonetheless, we remark that the weighted voting strategy can be extended to
the prediction of a label ranking in a consistent and straightforward way. To
this end, class labels are simply ordered according to their total scores, which
are again interpreted as individual degrees of support. Thus, each class label
λi is evaluated by means of the sum of its weighted votes

si =
∑

1≤j 6=i≤m

Rx(λi, λj) , (6)

and a ranking is obtained by ordering according to these evaluations:

λi �x λj ⇔ si > sj . (7)

Like for weighted voting in the classification setting, possible ties can be bro-
ken at random or decided in favour of the majority class. At first sight, this
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prediction rule may appear rather ad-hoc. However, in [11] it has been shown
that, under mild technical assumptions, (7) is a risk minimizer with respect
to the sum of squared rank differences as a loss function on rankings. In other
words, (7) maximizes the expected Spearman rank correlation between the
predicted ranking and the true ranking.

3.3 Benefits of the Label Ranking Setting

We believe that analyzing the learning by pairwise comparison framework in
the label ranking setting is useful for several reasons. Each “vote” of a classifier
has a clear and consistent semantics in this setting, namely the degree that
λi should be ranked higher or lower than λj in τx. More specifically, from a
probabilistic perspective, we have the following intuitive interpretation:

sij = P(λi �x λj) .

This offers an interesting alternative to the conventional classification setting
in which an output sij is usually interpreted as the conditional probability of
λi given that the class is either λi or λj [20]:

sij = P( λx = λi |x, λx ∈ {λi, λj} ) . (8)

Without going into much detail, we mention three reasons why this interpre-
tation is not uncritical, neither semantically nor technically:

• For a new test instance x, which is submitted to all base classifiers, the
interpretation (8) is actually only valid for those Mij for which λx ∈ {λi, λj}
since the probability is conditioned on that event [21]. In other words, a
learner Mij with λx 6∈ {λi, λj} is not “competent” for x and, therefore,
its prediction is meaningless. In label ranking, this problem does not exist
since class label predictions are replaced by preferences and, by definition,
each base classifier is “competent” for all instances (since for each instance
there exists a total order of the class labels).

• Most machine learning techniques, even those that perform well for classifi-
cation, do actually yield poor probability estimates [22,23]. This again calls
the interpretation (8) into question. Current research on classifier calibra-
tion, i.e., transforming classifier outputs into accurate estimations of true
conditional probabilities, is still scarce and often classifier-dependent or re-
lated to characteristics of the data sets; see for example [24] and references
therein.

• Finally, the problem of deriving the probabilities (4) from the pairwise prob-
abilities (8) is non-trivial. It involves m−1 variables and m(m−1)/2 equality
constraints, and thus the system is over-constrained and can only be solved
approximately. Different solution methods have different motivations and
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assumptions, and therefore it is difficult to know which method is most
suitable for the data set under consideration [8].

By approaching the aggregation task within the setting of label ranking, we
avoid the first problem. Adaptive voting, to be introduced in the next section,
addresses also the second issue: Instead of requiring a classifier to output
probabilities directly, we derive probabilities indirectly by fitting a model to
the classifier outputs. Finally, the third problem also does not occur in the
label ranking setting since the probability distribution over all rankings (3)
can be used to derive the posterior probabilities for all the class labels.

4 Adaptive Voting

We introduce adaptive voting (AV) as a novel aggregation strategy for pairwise
learning. In Section 4.1, we present its formal framework and in Section 4.2,
we show that AV is optimal in the sense that it yields a MAP prediction under
certain model assumptions. Finally, in Section 4.3, we discuss the validity of
these model assumptions.

4.1 Formal Framework

Suppose that, for a particular test instance x, the predictions of all base
classifiers are given by

s(x)
df
= {sij = Mij(x) | 1 ≤ i 6= j ≤ m} . (9)

Adopting a probabilistic perspective, we assume that the output sij is a ran-
dom variable. Its distribution depends on whether λi �x λj or λj �x λi; we
shall denote the former event by Eij and the latter by Eji. For the classifier
Mij to be accurate, it is natural that values of sij close to 1 are more probable
than values close to 0 when Eij occurs, and vice versa when Eji occurs.

More concretely, we need a model for the probabilities P(sij | τ) of observing
scores sij given a ranking τ . In principle, any type of probability distribu-
tion (parametric or non-parametric) can be used for this purpose (compare
our discussion of model assumptions in Section 4.3), and indeed, our frame-
work is completely general in this regard. Yet, we shall subsequently assume
a particular distribution that has reasonable theoretical properties and is also
supported by empirical evidence, namely a truncated exponential distribution:

P(sij | τ) = c · exp (−αij · d(sij)) , (10)
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where c = αij/(1 − exp(−αij)) is a normalizing constant and αij is a positive
scalar. The term d(sij) is the prediction error defined as 1 − sij when Eij

occurs and as sij when Eji occurs. So, in other words, this term is the dis-
tance from the “ideal” outputs 1 and 0, respectively, depending on the event
that occurred. Figure 2 gives an illustration where the score histograms are
obtained from two classifiers applied on a representative benchmark data set.

We note that the higher the constant αij in (10), the more precise the outputs
of the classifer Mij are in the sense of stochastic dominance: For every constant
t ∈ (0, 1), the probability to make a small prediction error d(sij) ≤ t increases
by increasing αij. Hence, adapting αij is a means to take the strength of Mij

into account. This can be done, for example, by using a maximum likelihood
estimation, i.e., by maximizing the log-likelihood function:

LL(αij) =
nij∑

k=1

log P(sk
ij | τk)

= nij log(αij) − nij log(1 − exp(−αij)) − αij

nij∑

k=1

dk , (11)

where nij is the number of examples Mij is trained on, sk
ij = Mij(xk) is

the prediction of the base classifier for the k-th validation instance xk, and
dk ∈ [0, 1] is the corresponding prediction error. To prevent an unwanted bias
we advise to use a separate validation set for parameter fitting. Setting the
derivative of (11) with respect to αij equal to zero gives the following implicit
solution:

αij =

(

d̄ +
1

exp(αij) − 1

)−1

, (12)

where d̄ =
∑nij

k=1 dk/nij is the mean prediction error. This equation cannot be
solved explicitly for αij, but it can be used as an iteration function; see Fig. 3
for a visualization of this function. Thus, starting with an initial value, the
value of αij is updated according to (12), and this is repeated until conver-
gence. A good initial value is 1/d̄ since the second term in the sum of (12)
goes fast to zero when alpha is increased, so the initial value is already close
to the solution, and indeed, the whole iteration converges extremely quickly.

For the sake of simplicity and for ease of exposition, we will now assume equal
prior probabilities for the events Eij and Eji. Then, the following posterior
probabilities pij = P(Eij | sij) and pji = P(Eji | sji) are obtained by applying
Bayes’ rule:

pij =
P(sij |Eij)

P(sij)
=

1

1 + exp(αij(1 − 2sij))
(13)

pji = 1 − pij =
1

1 + exp(−αij(1 − 2sij))
. (14)
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For strong classifiers with a large αij, these probabilities are “reinforcements”
of the original scores sij in the sense that the pij are more toward the extreme
values of 0 and 1. In contrast, original scores are weakened for classifiers with
small αij, i.e., the scores are pushed toward the indifference value of 0.5. Fig-
ure 4 gives an illustration of these effects. Making an idealized assumption of
independence for the base classifiers, the probability P(τ) = P(τ |x) of a rank-
ing τ ∈ Sm, given the predictions (9) and corresponding posterior probabilities
as defined above, is

P(τ) = c ·
∏

i,j∈{1,...,m} : τ(i)<τ(j)

pτ−1(i),τ−1(j) , (15)

where c is a normalizing constant. Essentially, this corresponds to a model
known as Babington Smith in the statistical literature [25]. The resulting
probability distribution over Sm defined by (15) can serve as a point of de-
parture for various types of inferences. In the following, we shall focus on
classification, i.e., estimating the top-label. Needless to say, as the number of
different rankings |Sm| = m! can become very large, it is important to avoid
an explicit construction of the distribution over Sm.

4.2 MAP Classification

In the conventional classification setting, one is interested in the probabilities
P(λk |x), λk ∈ L. Recalling that λx = λk means that λk is the top-label in τx

(see Section 3), we have the following:

P(λk |x) = c ·
∑

τ∈Sm : τ−1(1)=k

P(τ |x)

∝
∏

1≤k 6=i≤m

pki

∑

τ∈Sm :
τ−1(1)=k

∏

2≤i<j≤m

pτ−1(i),τ−1(j)

︸ ︷︷ ︸

∗=1

=
∏

1≤k 6=i≤m

pki . (16)

The expression (*) evaluates to 1 since it is of the form
∑

`∈{0,1}h

∏h
i=1 u

(`i)
i

with u
(0)
i = ui, u

(1)
i = 1 − ui, and by definition ui ∈ [0, 1].

Scoring the class labels λi in terms of the logarithm of their probability gives

wi
df
= log (P(λi |x)) =

∑

1≤j 6=i≤m

log(pij) =
∑

1≤j 6=i≤m

wij , (17)

where the individual adapted scores are defined as

wij
df
= − log(1 + exp(αij(1 − 2sij))) . (18)
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Hence, the MAP prediction

λMAP
x

= arg max
i=1...m

log (P(λi |x)) (19)

is obtained by finding the class label λi for which the sum (17) is maximal.
We call this aggregation strategy adaptive voting because the original scores
sij are replaced by adapted scores wij incorporating the strength of the base
classifiers Mij. In this way, base classifiers with high performance are seen
as more reliable than classifiers with lower performance, and the aggregation
strategy becomes less sensitive to (likely incorrect) outputs from the weak and
unreliable classifiers.

Since the wij are non-positive numbers, it may appear more natural to consider

their negations w̄ij
df
= −wij as positive “penalties”, so that (19) comes down to

predicting the class label with lowest total penalty. Indeed, according to (18),
a class label λi is penalized when sij is small, and the degree of penalization is
in direct correspondence with the probability to observe the output sij given
that λi is the true class label: The smaller sij, the smaller the probability and,
hence, the higher the penalty.

The computational complexity of AV is not much higher than that of WV.
More specifically, fitting the truncated exponential can be done off-line in time
O(m2n). At the classification stage, the only difference between AV and WV
is the transformation from scores sij to adapted scores wij.

4.3 Discussion of Model Assumptions

Even though is is clear that, without any model assumptions, it is impossible
to justify a predictor in a theoretical way, let alone to prove its optimality, it
is legitimate to ask whether our concrete assumptions are reasonable and real-
istic. Therefore, we briefly comment on the two main assumptions underlying
our adaptive voting method.

The first main assumption is the independence of predictions produced by the
base classifiers. Even though it is unlikely to be completely valid in practice, we
mention four reasons to defend it. First, independence is routinely assumed
in statistics, mainly because without this simplifying assumption, a formal
analysis is greatly complicated and often not possible at all. Second, special
types of independence assumptions are also made by other successful machine
learning methods, notably the famous Naive Bayes classifier. Third, one may
argue that assuming any specific type of dependency between the classifiers
is at least as speculative as assuming independence. Finally, we note that
the assumption of independence is, at least implicitly, also made by weighted
voting. In this sense, it is even a necessary prerequisite for our goal to establish
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a formal connection between adaptive voting and weighted voting (as we shall
do in Section 6.1).

The second assumption concerns the (conditional) distribution of scores and
is less critical since, as mentioned previously, every type of distribution can in
principle be used. Nevertheless, we would like to give some arguments in favor
of the truncated exponential distribution (10). Using this model essentially
comes down to assuming a monotone behavior, expressing that correct scores
are more probable than incorrect ones. This assumption is clearly reasonable
for better-than-random classifiers and, moreover, is less restrictive than it may
appear at first sight. In fact, the most critical (implicit) property of an expo-
nential model typically concerns the asymptotic behavior (thin tails), which is
often violated by real data. Since we use a truncated distribution, however, this
point is irrelevant in our case. The truncated model is flexible enough to cap-
ture a large family of reasonable shapes, ranging from the extreme boundary
distribution to the uniform (which, by the way, cannot be obtained with the
conventional (non-truncated) exponential). As another advantage, we mention
that our model is easily interpretable since the parameter α is in direct cor-
respondence with the strength of a base classifier. Finally, even though it is
clear that no distribution will be able to agree with all types of classifiers, it
will be shown empirically in Section 7 that (10) is indeed an accurate model
for classifiers such as multilayer perceptrons.

5 Simulation Studies with Synthetic Data

In this section, we present two simulation studies to investigate in more detail
the effectiveness of AV and its robustness toward estimation errors when fitting
the exponential distributions. We compare the classification performance with
WV since this aggregation strategy has shown good performance in practice.

5.1 Experimental Setup and Results

The setup of the simulation studies is as follows. We assume that the scores
sij are generated independently according to the truncated exponential dis-
tribution (10). For a fixed number of classes m, we generate a random set of
αij-values (1 ≤ i < j ≤ m), each one in the range [1, 3], and then proceed as
follows. A random ranking is generated and the output of the base classifiers
are computed according to their distributions. These outputs are directly used
by WV in order to make a final classification, while AV first adapts them to
take the strength of the classifiers into account. The predictions of the aggrega-
tion strategies are compared with the top-label in the ranking. This process is
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repeated for 300.000 times, each time with different rankings and scores. The
test statistic to our interest is the expected relative improvement (a − b)/b,
where a is the classification rate of AV and b that of WV. The expectation is
computed by averaging the results of the single classifications.

In Fig. 5, we show the expected relative improvement as a function of the
strength of the base classifiers. More specifically, each position t ∈ [1, 15] on
the horizontal axis shows the result when the initially generated αij-values are
multiplied with t. The plots are representative for all the initial values that
we have generated; in total we generated 200 curves and at least 95% of these
curves lie in-between the plotted 20 curves. We may formulate the following
three observations. First, AV can improve on WV when its model assumptions
are met. Second, there is hardly any difference between the strategies for
classifiers with large αij (so when we focus on the rightmost part of the curves).
The reason is that, for very strong base classifiers, the true class label is likely
to be a clear winner among all class labels, so an extra adaptation of the
scores becomes unnecessary. Third, the benefit of AV over WV increases with
the number of classes since there are more scores to adapt (and hereby, more
possibilities to correct the final classification of WV). We clearly see this trend
when we consider the absolute values on the vertical axis as well as the variance
among the curves.

The second simulation study investigates the robustness of AV toward errors
in estimating the αij. The outputs of the base classifiers are computed with
the randomly generated αij, but AV uses a noisy version of them in its calcu-
lations. Noise is incorporated by replacing an αij-value by a randomly drawn
number that at most deviates respectively 10%, 20%, and 30% from the true
value. Figure 6 shows the expected relative improvement of AV for each of
these three noise levels. The depicted solid curves are again a representative
set of all 200 curves that we generated. The curve corresponding to the re-
sults obtained by using the true αij is not depicted since it is visually almost
indistinguishable from the other curves. In general, the true curve can be con-
sidered as the highest curve in the figure. For a similar reason, we refrained
from presenting results with m = 10. We may formulate the following three
observations. First, in general, AV is remarkably robust toward estimations
errors in the αij. Second, the robustness increases with the number of classes.
Third, independent of the number of classes, inspecting differences in terms of
absolute numbers indicates that adding noise has most impact for αij < 7 (the
corresponding differences represent more than 95% of all differences). This is
again in agreement with our intuition.
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5.2 Discussion of the Experimental Results

In the above experiments, it is not unintentional that the expected improve-
ment is computed with respect to weighted voting, which is known to perform
extremely well in practice. Moreover, our experiments with real data sets and
classifiers (to be detailed in Section 7) have shown that the predictions of
AV and WV are quite likely to coincide, often with a probability significantly
higher than 0.9.

To explain this observation, we note that a good probability estimation is a
sufficient but not necessary prerequisite for a good classification. More specif-
ically, classification is quite robust toward inaccurate probability estimates:
The classification remains correct as long as the highest estimated probability
(score) is assigned to the true class label. Consequently, AV and WV will co-
incide as long as the label with highest wi does also receive the highest si. In
fact, there is often a relatively clear winner among the candidate classes, espe-
cially if the underlying classification problem is simple or the base classifiers
are strong (or both). Note that, as a consequence, all “reasonable” aggrega-
tion strategies will perform more or less en par in such cases, so that large
differences in performance cannot be expected.

In the next section, the above line of reasoning will be substantiated more
formally by showing that WV indeed provides a good approximation of AV.

6 Weighted Voting

We now focus on the weighted voting strategy, which has shown excellent
performance in practice; see for example [26,12]. We offer a new and formal
explanation of this observation by proving that WV yields an approximation
to the optimal AV prediction. In addition, we argue that WV can sometimes be
considered as being more robust than AV, which is potentially advantageous
from a classification point of view.

6.1 Approximate MAP Prediction

In this section, it will be shown that weighted voting can be seen as an ap-
proximation to adaptive voting, i.e., to the MAP prediction (19). Recalling
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the posterior probabilities (13) we derive from their logarithm:

wij = log(P(sij |Eij)) − log(P(sij |Eij) + P(sij |Eji))

= αij · sij − αij + e(dij, αij) , (20)

where
e(dij, αij)

df
= − log (exp(−αijdij) + exp(−αij(1 − dij))) . (21)

This term, which depends on αij and the prediction error dij = d(sij) of
classifier Mij, is bounded in size by |αij/2− log(2)|. Since exp(x) ≈ 1 + x for
small x, we have that e(dij, αij) is small and nearly constant for small αij. For
larger αij, we have e(dij, αij) ≈ log(1 + e−αij) ≈ 0 at least for dij close to 1 or
close to 0, so that

wij ≈ αij · (sij − 1) . (22)

In summary, we can conclude that

wi ≈
∑

1≤j 6=i≤m

αij · sij −
∑

1≤j 6=i≤m

αij

if the αij are either not too large or if the predictions are precise, which in
turn is likely in case of large αij. We note that this is in perfect agreement
with the results of our simulation studies in which the maximal differences
between AV and WV have been observed for alphas of medium size.

If we furthermore assume that the strengths of the classifiers are not too
different, that is, αij ≈ α for all 1 ≤ i < j ≤ m, then we have

wi ≈ α
∑

1≤j 6=i≤m

sij + const = α · si + const . (23)

In other words, the scores obtained by weighted voting yield an approximate
affine transformation of the theoretically optimal score log(P(λi)) and, hence,
are likely to produce the same or a similar ordering of the class labels λi,
i = 1, . . . ,m. We may conclude that, under the above assumptions, weighted
voting provides a good approximation of the MAP prediction (19).

Nevertheless, the above derivation has also shown that AV and WV may not
coincide in cases where the αij are rather different and, moreover, when some
base classifiers produce poor estimates. Thus, it is still possible that AV will
produce better results in practice, and in fact, this hope is supported by our
simulation results in Section 5. However, recalling that these results have been
obtained under idealized conditions in which the model assumptions under-
lying AV are completely valid, one may also suspect that AV could fail if
these assumptions are not satisfied. And indeed, apart from its approximation
properties, WV seems to have the advantage of making less assumptions and,
therefore, being more robust toward deviations from expected score distribu-
tions. Before presenting experimental results in the next section, we elaborate
on this aspect in more detail.
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6.2 Robustness Toward Inaccurate Scores

The scores (18) are rescalings of the original scores sij ∈ [0, 1] to a poten-
tially larger range [− log(1 + exp(αij)),− log(1 + exp(−αij))] ⊂ (−∞, 0]. It
follows that the sum of these adapted scores, wi, may have a considerably
higher variance than the corresponding si. Moreover, it can happen that a
class is disqualified by a single small adapted score wij or, equivalently, by a
large penalty w̄ij. While being correct and fully legitimate from a theoretical
point of view, the penalization in AV may become problematic if its model
assumptions are violated. In particular, recalling that the w̄ij are in direct
correspondence with the probabilities to observe a score sij given that λi is
the true class, it becomes obvious that an “over-penalization” will occur in
cases where the probability of a small sij is under-estimated by the exponential
model underlying AV.

As an illustration, inspired by our experiments with decision trees (see the next
section), consider the fit of the distribution shown in Fig. 7. Since this distribu-
tion is discrete and far from being exponential, the fit is obviously poor. More
importantly, the probability of a small score 0.05 is strongly underestimated.
Consequently, if this score is output (which happens with probability 0.2), the
class label will be strongly punished and is unlikely to win the adapted voting
procedure.

More concretely, consider a scenario with m = 4 classes, and suppose that all
base classifiers have the distribution shown in Fig. 7. Moreover, suppose that
λ1 is the true class label, and that the following scores are produced:

[sij]i6=j
=













- 0.90 0.90 0.05

0.10 - 0.90 0.80

0.10 0.10 - 0.80

0.95 0.20 0.20 -













Obviously, the learner M14 has made an incorrect prediction. WV tolerates
this error in the sense that it still assigns the highest score (namely 1.85) to
λ1. According to AV, however, class label λ2 is better than λ1: the latter is
penalized by ≈ 2.07, while the former has a smaller penalty of ≈ 2.04. As
explained above, the main reason is that the small score of 0.05 produced by
M14 is over-penalized.

We can see the above effect also from the other way around, that is, the scores
sij used in weighted voting can be considered as “regularized” scores which
are normalized to the range [0, 1], thereby especially reducing the effect of
small scores. While perhaps being suboptimal for probability estimation, this
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can be reasonable from a classification point of view: As long as the true class
receives correct votes, i.e., high scores, nothing will change anyway. However,
if the true class receives one (or even more) incorrect votes, an aggregation
strategy which is tolerant toward low scores is more likely to preserve this class
as the overall winner than a strategy which is more sensitive in this regard.

Interestingly, the situation is to some extent comparable to estimating condi-
tional probabilities of attributes given classes, P(a |λi), in Naive Bayes classi-
fication. Estimating these probabilities by relative frequencies yields unbiased
estimates, but it causes the problem that small probabilities have an extreme
influence on the rank position of a class. In particular, if a single probability is
0 (since the attribute value of a has not yet been observed for λi), then mul-
tiplication of all conditional probabilities causes the probability of the class
label to become 0 as well. In practice, probabilities are therefore estimated
by using a Laplace correction or another smoothing technique [27]. A similar
problem occurs in AV so that, as soon as one of the probabilities pki in (16)
becomes small, the probability of the true class label λk becomes small as
well. Correcting transformed scores in AV is not a trivial task since scores lie
in different intervals (unbounded from one side).

7 Experimental Analysis

In this section, we provide an extensive empirical evaluation and comparison
between WV and AV using benchmark data sets. We also include binary voting
(BV) for two reasons. First, it is often used in practice as an alternative to
WV. Second, this strategy maps the original scores sij to transformations bij ∈
{0, 1} where bij = 1 iff sij ≥ 0.5. So, BV can also be seen as a reinforcement
of the outputs of the base classifiers, although this happens independently
of their strength (in Fig. 4, this reinforcement would correspond to the step
function).

7.1 Data Sets and Base Classifiers

To compare BV, WV, and AV, experiments have been conducted on a col-
lection of 17 benchmark data sets obtained from the UCI machine learning
repository and the StatLib project [28,29]. We have chosen these data sets
because they vary greatly in size, number of classes, and other characteristics
such as class distribution. We performed experiments with several learning
algorithms to produce base classifiers. Below we present three of them. All
learning algorithms produce multi-class classifiers, but it has been shown that
even these classifiers benefit from a pairwise decomposition [7]. In addition,
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and more importantly, we have chosen these algorithms because they are rep-
resentative in the sense that they learn base classifiers that satisfy or do not
satisfy to a certain degree the AV assumptions.

Our first classifier is a multilayer perceptron (MLP) where each network node
has a sigmoid transfer function. As we could verify by statistical goodness-
of-fit tests, the scores produced by MLPs are sufficiently well in agreement
with our model assumptions. That is, the scores sij produced by a classifier
Mij can usually be fitted by an exponential model (10); see again Fig. 2. It
is our hypothesis that AV can outperform WV and BV for this classifier. We
make the same claim for our second classifier, which is a distance-weighted
k-nearest neighbour classifier (k-NN), although admittedly, the exponential
model is this time less clearly pronounced. This classifier computes scores
sij = (

∑k
l=1 el/dl)/(

∑k
l=1 1/dl), where dl is the distance of the l-th neighbor;

moreover, el = 1 if this neighbor is from class λi and el = 0 if its class is λj.
Just for comparison, and also to investigate the robustness of adaptive voting
toward strong violations of its model assumptions, we included a third base
classifier: J48, an implementation of the C4.5 decision tree learner. This clas-
sifier outputs relative class frequencies in the leaves as scores. These scores are
relatively poor and hard to fit by an exponential model; see Fig. 8. In partic-
ular, the scores do often not exhaust the whole interval [0, 1] but instead only
produce a limited number of different values. This makes a good estimation of
the αij difficult. Therefore, we hypothesize that in this case AV will not yield
a gain in performance.

7.2 Experimental Setup

In our experiments, we used the WEKA machine learning software [30]. The
experimental setup was as follows. For all three base learners we used the
default options, except for a variable learning rate in MLP, a fixed number of 10
nearest neighbours in k-NN, and Laplace correction for probability estimation
in J48. Stratified ten-fold cross validation is applied and repeated for five
times, each time with a different random permutation of the data set. The
alpha values for AV are obtained by maximum likelihood estimation on an
independent 20% subset of the training data. Ties among the ranking of class
labels occurred for binary voting, but only sporadic on some data sets. We
simply resolved these ties at random.

7.3 Experimental Results

In a first experiment, we compute error rates as averages over the cross-
validation runs. For readability and completeness, we refrained from presenting
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error rates for all aggregation strategies and base classifiers in the main text;
instead, these test statistics are gathered in the appendix in Tables A.1-A.3.
We summarized these values as pairwise win-loss-equal statistics and with
critical distance (CD) diagrams. Since both evaluation methods agreed on the
conclusions that we can draw from them, we will only present the CD diagrams
since they are easier to understand; see Fig. 9. These diagrams depict the re-
sult of the Nemenyi test which has been advocated as stronger than other
widely-used significance tests [31]. The test compares the average ranks of the
strategies over all data sets. A lower average rank implies a better aggregation
strategy (thus, strategies on the right side in the diagrams are better) and
strategies that are not significantly different when compared to each other are
connected through a bold line. The significance level is α = 0.05 which implies
that two strategies are significantly different when the difference between their
average ranks is at least CD = 0.88.

The results confirm what could be expected from our theoretical considerations
and the simulation results. More specifically, for MLPs we have a significant
improvement by AV when compared to WV. Also, from the fact that BV is
ranked better than WV, we can conclude that reinforcements are beneficial,
yet the strength of the classifiers have to be taken into account. For the nearest
neighbour classifier we have identical observations and conclusions although
we cannot guarantee that the differences are statistically significant. For J48,
the classifier that strongly violates our model assumptions, we see that WV
wins significantly from BV, but not from AV which this time is ranked second.
As a side note, we also tried to use unpruned decision trees with the idea that
increasing the number of possible scores (making the score distribution less
discrete) could give rise to a better fit of the exponential model. However,
from statistical tests, we did not see a significant gain when using unpruned
trees.

As a final experiment, we are interested in the robustness of the strategies
with respect to inaccurate scores of the base classifiers. To investigate this
issue, we note that the final classifications of the aggregation strategies often
coincide; see Table C.1 for details. This implies that the strategies often make
mistakes for the same instances, and a measure for how severe the mistake
is will give a good indication about the robustness of the strategy toward
inaccurate votes. For this reason, we apply experiments in the same setting as
above but replace the error rate as a loss function by the normalized position
error which is defined by

τ−1(λx) − 1

m − 1
∈ {0, 1/(m − 1), . . . , 1} ,

where we recall that τ−1(λx) is the position of the true class label λx in the
predicted ranking τ and m the number of classes [32]. Hence, the larger the
normalized position error, the further away the true class label is from the
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top position in the predicted ranking. Values of this performance metric are
gathered in the appendix in Tables B.1-B.3 and corresponding CD diagrams
are presented in Fig. 10.

Interestingly, the ranking of the aggregation strategies is indeed sometimes
different compared to that when we consider error rate. For MLP we still have
the same ranking and for k-NN we have that AV changed second place with
BV, but differences are not significant. The ranking for J48 shows that AV
makes the largest incorrect predictions in the sense that, when an incorrect
prediction is made, the true class label is not at all among the labels that
try to compete for the top label in the predicted ranking. So, large variance
among the scores in combination with inaccurate votes is disadvantageous for
adaptive voting. Weighted voting and binary voting are clearly more robust.
All these results are again in correspondence with our previous theoretical
analysis, simulation studies, and discussions.

In light of the above results, we may also explain why the binary voting strat-
egy performs quite reasonable in terms of error rate and normalized position
error, despite its apparent simplicity. In a sense, BV can be seen as a com-
bination of AV and WV. Like AV, it reinforces scores sij, albeit in a fixed
rather than adaptive manner (always mapping to 0 or 1). Thus, it considers
all classifiers as perfect, an assumption which is only approximately true for
an ensemble of strong learners. Like WV, however, the scores remain in the
unit interval and thereby BV is less sensitive toward inaccurate probability
estimates than AV (recall the discussion in Section 6.2).

7.4 Beyond the Truncated Exponential Distribution

Throughout the paper, we advocated the truncated exponential distribution
for fitting scores, in particular as it ensures monotonicity while still being
quite flexible. Yet, an obvious question is whether, in some cases, a more flex-
ible model could be advantageous. To address this question, we conducted
additional experiments with two other types of distributions, namely the beta
distribution and kernel density estimation. In the following, we briefly sum-
marize our main findings, without going into technical details.

The beta distribution is a family of continuous probability distributions on
the unit interval, well-known in the field of statistics [33]. Depending on its
two scalar parameters, the distribution can be a U-shaped curve, straight line,
strictly convex, monotone increasing or decreasing, and so on. Nevertheless,
for MLP, AV with the exponential is still the best aggregation strategy. As
expected, AV with beta distribution comes close, since the beta distribution
is often shaped as an exponential. For J48, AV performs much better with a
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beta distribution, but it is still worse than WV (albeit this time there is no
statistically significant difference). For the third base learner, weighted k-NN,
we obtained poor results despite several efforts to improve the fits. We found
that, in this case, the beta distribution is too flexible and often gives non-
monotone distributions that severely over- or underestimate the probability
of unseen scores (which occur frequently for this classifier).

The application of a kernel density estimator was more difficult, especially
as the results turned out to be extremely sensitive toward the choice of the
bandwidth. Moreover, even a careful tuning of this critical parameter could
not avoid that, in some cases, quite non-intuitive (e.g., non-monotone) density
functions were produced as estimates. And indeed, for MLP and k-NN, we were
unable to outperform the results obtained with the truncated exponential.

In summary, we may conclude that more flexibility is not necessarily an ad-
vantage. On the one hand, it is true that more flexible models can in principle
yield better approximations. On the other hand, fitting such models is also
more difficult and more likely to fail. Roughly speaking, a good fit of a simple
model, even if it is slightly too restrictive, is often better than a poor fit of a
more flexible model which is difficult to estimate.

8 Conclusions and Outlook

In this paper, we have studied the problem of aggregating predictions in pair-
wise classification, a special binary decomposition technique commonly used
in practice. In this regard, two important contributions have been made. First,
the method of adaptive voting has been derived in the formal framework of
label ranking. Adaptive voting is a generalized voting strategy in which the
predictions of base classifiers are adapted according to their strength. Under
our model assumptions, it is provably optimal in the sense of yielding a MAP
prediction of the class label of a test instance. Second, we offered hitherto
missing theoretical arguments in favour of weighted voting as a quasi-optimal
aggregation strategy in pairwise classification and, thereby, improve the un-
derstanding of its good performance in practice. Roughly speaking, weighted
voting approximates the optimal adaptive voting prediction. Moreover, com-
pared with adaptive voting, it has the additional advantage of being more
robust in situations where the AV model assumptions are violated. Our em-
pirical results are in perfect agreement with all theoretical considerations.
In summary, we have shown that weighted voting is quite competitive, even
though slight but consistent improvements can be achieved by adaptive voting,
provided its underlying model assumptions are approximately valid.

The formal framework that we have used for our analysis of aggregation strate-
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gies is interesting in its own right and may provide the basis for further de-
velopments. Indeed, one should note that there is space for further improving
adaptive voting, namely by relaxing some model assumptions mainly needed
to adhere to corresponding properties of weighted voting. For example, one
could think of incorporating prior probabilities in the estimation of the condi-
tional class probabilities pij, and using asymmetric distributions to model the
scores produced by a classifier Mij (i.e., the distribution of scores given that
λi �x λj is not necessarily the same, except for reflection, as the distribution
of scores given that λj �x λi). Also, the maximum likelihood approach for es-
timating the strengths of base classifiers is susceptible to over-fitting, so using
other estimation techniques might be advisable.

We finally note that our framework of label ranking is quite general and not
restricted to the conventional classification problem. Instead, it also allows
for studying other problems including multi-label classification and, of course,
label ranking itself. Problems of that kind shall be addressed in future work.
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Fig. 1. Basis structure of learning by pairwise comparison: (a) decomposition into
binary classification problems, (b) base classifiers provide predictions, and (c) ag-
gregation into one final prediction for the test instance.
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Fig. 2. Two examples of an empirical distribution of sij (gray bars) and sji (white
bars) together with the estimated exponential distributions. The base classifier de-
picted in (a) is visibly more certain and accurate in its predictions than the classifier
in (b). The height of the bars are scaled to match the estimated distributions.
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Fig. 3. The iteration procedure as a function of αij where the mean prediction error
is respectively: 0.12 (solid curve), 0.2 (dashed curves), and 0.3 (dotted curve). The
diagonal is shown for seeing that the iteration function converges quickly.
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Fig. 4. Original scores sij (solid curve) and transformations pij (dashed curves) for
αij-values 1.5, 5, and 10. The higher the value of αij , the more we approach the
step function, representing the strongest reinforcement possible.
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Fig. 5. Expected relative improvement in classification rate comparing AV and WV
for: (a) m = 3, (b) m = 6, and (c) m = 10. Relative improvements are shown as a
function of the strength of the base classifiers.
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Fig. 6. Expected relative improvement in classification rate comparing AV and WV
for: (a) m = 3, (b) m = 6 when noise is added to the alphas (top row: 10%, middle
row: 20%, and bottom row: 30%). Relative improvements are shown as a function
of the strength of the base classifiers.
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Fig. 7. A score distribution with three possible values (0.05, 0.8, and 0.9) for λi � λj .
The corresponding probabilities are 0.20, 0.13, and 0.67. The maximum likelihood
fit gives a value of αij ≈ 1.3947.
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Fig. 8. Two examples of an empirical distribution of the scores sij for λi �x λj to-
gether with the estimated exponential distribution when using J48 as base classifier.
The height of the bars are scaled to match the estimated distributions.
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Fig. 9. Comparison of aggregation strategies on the basis of the Nemenyi test, using
the error rate as performance metric: (top) MLP, (middle) k-NN, and (below) J48.
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Fig. 10. Comparison of aggregation strategies on the basis of the Nemenyi test, using
the normalized position error as performance metric: (top) MLP, (middle) k-NN,
and (below) J48.

29



A Detailed Results for Error Rate

Table A.1
The error rate for BV, WV, and AV on the 17 data sets using multilayer perceptron
as the base classifier. Reported values are the averages over the test folds followed
by the standard deviation.

data set BV WV AV

analcat-author .0029 ± .0057 .0033 ± .0064 .0033 ± .0059

balance-scale .1412 ± .0296 .1403 ± .0306 .1409 ± .0304

cars .2950 ± .0664 .2930 ± .0596 .2920 ± .0603

cmc .4719 ± .0391 .4717 ± .0405 .4706 ± .0399

eucalyptus .3394 ± .0703 .3348 ± .0674 .3344 ± .0637

glass .5121 ± .0620 .5345 ± .0571 .5279 ± .0592

mfeat-fourier .1582 ± .0258 .1626 ± .0253 .1585 ± .0270

mfeat-karhunen .0370 ± .0133 .0364 ± .0138 .0363 ± .0141

mfeat-morpho .2853 ± .0250 .2841 ± .0264 .2837 ± .0257

mfeat-zernike .1683 ± .0210 .1747 ± .0216 .1673 ± .0204

optdigits .0168 ± .0047 .0177 ± .0048 .0164 ± .0047

pendigits .0187 ± .0041 .0192 ± .0041 .0174 ± .0038

page-blocks .0509 ± .0066 .0628 ± .0066 .0494 ± .0071

segment .0551 ± .0148 .0562 ± .0158 .0552 ± .0147

vehicle .2643 ± .0443 .2621 ± .0442 .2618 ± .0432

vowel .1984 ± .0347 .2491 ± .0418 .2105 ± .0416

waveform .1374 ± .0143 .1371 ± .0144 .1372 ± .0144
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Table A.2
The error rate for BV, WV, and AV on the 17 data sets using distance-weighted
k-nearest neighbour as the base classifier. Reported values are the averages over the
test folds followed by the standard deviation.

data set BV WV AV

analcat-author .0036 ± .0073 .0036 ± .0073 .0036 ± .0073

balance-scale .1077 ± .0284 .1064 ± .0280 .1056 ± .0268

cars .2434 ± .0652 .2484 ± .0633 .2434 ± .0652

cmc .5257 ± .0341 .5255 ± .0361 .5243 ± .0363

eucalyptus .4518 ± .0548 .4556 ± .0568 .4531 ± .0546

glass .3268 ± .0815 .3349 ± .0813 .3268 ± .0815

mfeat-fourier .1833 ± .0266 .1831 ± .0240 .1833 ± .0266

mfeat-karhunen .0384 ± .0121 .0391 ± .0126 .0384 ± .0121

mfeat-morpho .2892 ± .0257 .2887 ± .0253 .2890 ± .0256

mfeat-zernike .1902 ± .0195 .1904 ± .0198 .1902 ± .0195

optdigits .0128 ± .0047 .0131 ± .0046 .0128 ± .0047

pendigits .0073 ± .0024 .0074 ± .0024 .0073 ± .0024

page-blocks .0419 ± .0080 .0422 ± .0081 .0419 ± .0080

segment .0476 ± .0117 .0475 ± .0121 .0476 ± .0117

vehicle .2869 ± .0414 .2893 ± .0438 .2869 ± .0414

vowel .0729 ± .0282 .3974 ± .0583 .0729 ± .0282

waveform .2063 ± .0166 .2058 ± .0165 .2063 ± .0166

Table A.3
The error rate for BV, WV, and AV on the 17 data sets using J48 as the base clas-
sifier. Reported values are the averages over the test folds followed by the standard
deviation.

data set BV WV AV

analcat-author .0471 ± .0231 .0440 ± .0230 .0492 ± .0243

balance-scale .2063 ± .0384 .2066 ± .0398 .2070 ± .0401

cars .1641 ± .0621 .1664 ± .0588 .1689 ± .0620

cmc .4715 ± .0424 .4696 ± .0415 .4694 ± .0415

eucalyptus .3781 ± .0515 .3742 ± .0553 .3736 ± .0554

glass .2949 ± .0879 .2763 ± .0854 .2744 ± .0879

mfeat-fourier .2165 ± .0256 .2058 ± .0264 .2087 ± .0249

mfeat-karhunen .1170 ± .0240 .1060 ± .0236 .1079 ± .0247

mfeat-morpho .2748 ± .0208 .2731 ± .0224 .2731 ± .0219

mfeat-zernike .2430 ± .0238 .2326 ± .0252 .2330 ± .0259

optdigits .0578 ± .0099 .0513 ± .0099 .0527 ± .0108

pendigits .0302 ± .0050 .0285 ± .0049 .0293 ± .0053

page-blocks .0293 ± .0060 .0290 ± .0058 .0294 ± .0062

segment .0320 ± .0117 .0320 ± .0108 .0318 ± .0103

vehicle .2880 ± .0605 .2801 ± .0577 .2858 ± .0549

vowel .1966 ± .0359 .1994 ± .0410 .1964 ± .0378

waveform .2371 ± .0221 .2323 ± .0224 .2331 ± .0227
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B Detailed Results for Normalized Position Error

Table B.1
The normalized position error for BV, WV, and AV on the 17 data sets using
multilayer perceptron as the base classifier. Reported values are the averages over
the test folds followed by the standard deviation.

data set BV WV AV

analcat-author .2974 ± .1496 .2976 ± .1506 .3054 ± .1546

balance-scale .3463 ± .1586 .3869 ± .1878 .4743 ± .2412

cars .3870 ± .0996 .3825 ± .1042 .3782 ± .1079

cmc .4373 ± .0789 .4364 ± .0781 .4399 ± .0791

eucalyptus .4055 ± .1020 .4062 ± .1051 .4120 ± .1113

glass .2530 ± .0324 .2549 ± .0337 .2858 ± .0438

mfeat-fourier .4062 ± .2098 .4082 ± .2093 .4076 ± .2097

mfeat-karhunen .3758 ± .1937 .3735 ± .1920 .3726 ± .1918

mfeat-morpho .4095 ± .1953 .4144 ± .1986 .4079 ± .1948

mfeat-zernike .3968 ± .2034 .4005 ± .2033 .3999 ± .2051

optdigits .5045 ± .1172 .5064 ± .1179 .5024 ± .1173

pendigits .3530 ± .1864 .3514 ± .1855 .3518 ± .1869

page-blocks .0385 ± .0095 .0384 ± .0081 .0372 ± .0079

segment .4808 ± .2457 .4792 ± .2438 .4794 ± .2412

vehicle .4479 ± .1463 .4452 ± .1416 .4424 ± .1487

vowel .4130 ± .1997 .4163 ± .1968 .4153 ± .2025

waveform .4590 ± .2125 .4590 ± .2126 .4594 ± .2139
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Table B.2
The normalized position error for BV, WV, and AV on the 17 data sets using
distance-weighted k-nearest neighbour as the base classifier. Reported values are
the averages over the test folds followed by the standard deviation.

data set BV WV AV

analcat-author .3033 ± .1534 .3025 ± .1530 .2908 ± .1460

balance-scale .3964 ± .1965 .3994 ± .2011 .4614 ± .2475

cars .3803 ± .1073 .3801 ± .1064 .3816 ± .1158

cmc .4467 ± .0675 .4472 ± .0682 .4459 ± .0672

eucalyptus .4155 ± .0909 .4142 ± .0927 .4197 ± .1023

glass .3423 ± .0719 .3388 ± .0738 .3524 ± .0883

mfeat-fourier .4206 ± .2159 .4197 ± .2156 .4006 ± .2034

mfeat-karhunen .3715 ± .1975 .3719 ± .1978 .3793 ± .2000

mfeat-morpho .4106 ± .1975 .4077 ± .1959 .4011 ± .1940

mfeat-zernike .4143 ± .2118 .4145 ± .2122 .4158 ± .2127

optdigits .4146 ± .2068 .4155 ± .2072 .4513 ± .2280

pendigits .3527 ± .1861 .3537 ± .1867 .3587 ± .1934

page-blocks .0415 ± .0121 .0411 ± .0120 .0391 ± .0099

segment .4713 ± .2397 .4726 ± .2406 .4431 ± .2351

vehicle .4667 ± .1439 .4674 ± .1440 .4560 ± .1420

vowel .4001 ± .1986 .4045 ± .1787 .3951 ± .1998

waveform .4651 ± .1961 .4651 ± .1960 .4650 ± .1967

Table B.3
The normalized position error for BV, WV, and AV on the 17 data sets using J48
as the base classifier. Reported values are the averages over the test folds followed
by the standard deviation.

data set BV WV AV

analcat-author .3288 ± .1564 .3295 ± .1604 .3364 ± .1635

balance-scale .3116 ± .1105 .3124 ± .1102 .4762 ± .2049

cars .3869 ± .1403 .3956 ± .1464 .4077 ± .1571

cmc .4285 ± .0825 .4322 ± .0820 .4301 ± .0841

eucalyptus .4075 ± .0993 .4050 ± .0998 .4139 ± .1162

glass .3501 ± .0752 .3481 ± .0771 .3564 ± .0857

mfeat-fourier .4204 ± .2057 .4227 ± .2057 .4252 ± .2077

mfeat-karhunen .3816 ± .1864 .3790 ± .1861 .3865 ± .1879

mfeat-morpho .3910 ± .1909 .3942 ± .1929 .3970 ± .1906

mfeat-zernike .4175 ± .2021 .4188 ± .2032 .4173 ± .2010

optdigits .4125 ± .2029 .4128 ± .2029 .4243 ± .2079

pendigits .3503 ± .1856 .3471 ± .1851 .3653 ± .2008

page-blocks .0406 ± .0137 .0411 ± .0138 .0418 ± .0125

segment .4079 ± .2187 .4065 ± .2158 .4118 ± .2165

vehicle .4544 ± .1397 .4546 ± .1402 .4458 ± .1371

vowel .4156 ± .2001 .4181 ± .2006 .4151 ± .1974

waveform .4646 ± .1882 .4647 ± .1902 .4648 ± .1885
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C Rate of Prediction Agreement

Table C.1
Rate of agreement of the predictions of binary voting and adaptive voting with
respect to the predictions of weighted voting. Test statistics are shown dependent
on the used base classifier.

data set MLP k − NN J48

BV AV BV AV BV AV

anal-author .9990 .9990 1 1 .9888 .9905

balance-scale .9923 .9933 .9584 .9827 .9978 1

cars .9084 .9655 .9897 .9897 .9768 .9788

cmc .9339 .9127 .9829 .9815 .9484 .9746

eucalyptus .9476 .9522 .9367 .9386 .9481 .9674

glass .9430 .9776 .9776 .9776 .9159 .9430

mfeat-fourier .9725 .9739 .9862 .9862 .9550 .9612

mfeat-karhunen .9863 .9869 .9968 .9968 .9566 .9603

mfeat-morpho .8535 .8632 .9889 .9889 .9715 .9752

mfeat-zernike .9466 .9536 .9936 .9936 .8568 .8990

optdigits .9925 .9943 .9995 .9995 .9788 .9780

pendigits .9932 .9946 .9999 .9999 .9911 .9910

page-blocks .9769 .9772 .9989 .9989 .9986 .9987

segment .9911 .9919 .9965 .9965 .9934 .9932

vehicle .9173 .9548 .9898 .9898 .9357 .9541

vowel .8681 .8606 .6667 .6667 .9364 .9422

waveform .9996 .9996 .9995 .9995 .9924 .9945
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