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ABSTRACT
Today, so�ware veri�cation tools have reached the maturity to be

used for large scale programs. Di�erent tools perform di�erently

well on varying code. A so�ware developer is hence faced with

the problem of choosing a tool appropriate for her program at hand.

A ranking of tools on programs could facilitate the choice. Such

rankings can, however, so far only be obtained by running all

considered tools on the program.

In this paper, we present a machine learning approach to pre-
dicting rankings of tools on programs. �e method builds upon

so-called label ranking algorithms, which we complement with

appropriate kernels providing a similarity measure for programs.

Our kernels employ a graph representation for so�ware source

code that mixes elements of control �ow and program dependence

graphs with abstract syntax trees. Using data sets from the so�-

ware veri�cation competition SV-COMP, we demonstrate our rank

prediction technique to generalize well and achieve a rather high

predictive accuracy (rank correlation > 0.6).
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1 INTRODUCTION
Over the past years, so�ware analytics [8] has become a very ac-

tive research area. So�ware analytics is concerned with analysing

so�ware source code and its associated artefacts like code reviews,

documentation and bug reports. Such data can today be found in nu-

merous repositories, and analysis can provide insights into various
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sorts of questions in so�ware development, ranging from program

understanding over defect prediction to power consumption.

In this paper, we employ so�ware analytics to get an answer to

the question “What so�ware veri�cation tool do I use for showing

correctness of my program?”. So�ware veri�cation tools today are

numerous, and the past years have seen the tuning of tools to per-

formance and precision, but still not every tool is suitable for every

program and property at hand. So�ware veri�cation competitions

provide a comparison of tools on the basis of given benchmark

veri�cation tasks, i.e., programs together with properties. In the

area of automatic veri�cation, the most prominent competition to-

day is the annual Competition on So�ware Veri�cation SV-COMP

[1]. �e outcome of SV-COMP are rankings of tools (overall and

per categories) computed by means of a scoring schema. �ese

annually published ranking results provide data about the relative

performance of tools and is readily usable for so�ware analytics.

Based on this data, a prediction of a likely ranking of tools on a

given new veri�cation task becomes possible. In this paper, we

develop a method for performing such rank predictions.

Our method for rank prediction builds upon machine learning

methods for the so-called label ranking problem; more speci�cally,

we make use of ranking by pairwise comparison [6] using support

vector machines as base learners. �e key ingredient of our ap-

proach is the de�nition of suitable kernel functions [10], which

act as similarity measures on veri�cation tasks. So far, two other

machine learning methods for selecting (albeit not ranking) tools

or algorithms for veri�cation have been proposed [4, 12], both of

them being based on feature vectors explicitly capturing structural

features of programs (like number of variables, loops, etc.). With

our kernels, we take a di�erent approach: we supply the learning

algorithm with a representation of source code that enables the

learner itself to identify the distinguishing pa�erns. We believe

that our kernels are thus more readily usable for other program

analysis tasks.

We have implemented our technique and carried out experi-

mental (cross-validation) studies using data from SV-COMP 2015

and 2017. �e experiments show that our technique can predict

rankings with high accuracy.

2 REPRESENTING VERIFICATION TASKS
Our objective is to predict rankings of so�ware veri�cation compe-

titions via machine learning. To this end, the learning algorithm

has to be supplied with training data. We start with explaining

what kind of data our rank prediction technique is supplied with,

namely veri�cation tasks and rankings.

De�nition 2.1. A veri�cation task (P ,φ) consists of a program P
(for SV-COMP wri�en in C) and a property (also called speci�cation)

φ (typically wri�en as assertion into the program).
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1 int i; 6 i = 0;
2 int n; 7 while (i <= n)
3 int sn; 8 sn = sn + 2;
4 n = input(); 9 i = i + 1;
5 sn = 0; 10 assert (sn == n*2 || sn == 0);

Figure 1: �e veri�cation task PSUM

Figure 1 shows our running example PSUM of a veri�cation task

(computing n times 2 via addition). In a veri�cation run, a ver-

i�cation tool is run on a veri�cation task in order to determine

whether the program ful�lls the speci�cation. �e outcome of such

a veri�cation run is a pair (TIME, ANSWER), where TIME is the

time in seconds from the start of the veri�cation run to its end,

and ANSWER is either TRUE, FALSE or UNKNOWN. �e ranking

is done via a scoring schema which gives positive and negative

points to outcomes. When the scores of two tools are the same, the

runtimes (of successful runs) determine the ordering.

�e purpose of the machine learning algorithm is to learn from

the provided ranking how tools will perform on speci�c veri�cation

tasks. Our machine learning technique is based on kernel methods
(see e.g. [10]). In general, a kernel can be interpreted as a similarity

measure on data instances (in our case veri�cation tasks), with

the idea that similar results (in our case rankings) are produced

for similar instances. While kernel-based learning algorithms are

completely generic, the kernel function itself is application-speci�c.

�e simplest way of de�ning a kernel is via the inner product of

feature vectors, i.e., vectorial representations of data objects. In the

two approaches existing so far [4, 12], corresponding features of

programs, such as number of loops, are de�ned in an explicit way.

Our approach essentially di�ers in that features are speci�ed in a

more indirect way, namely by systematically extracting (a typically

large number of) generic features from a suitable representation

of the veri�cation task. Selecting the useful features and combin-

ing them appropriately is then basically le� to the learner. For

example, if data objects are graphs, a feature may correspond to a

subgraph, and the value of the feature is 1 if the subgraph is present

and 0 otherwise. In our case, generic features are subgraphs of a

certain depth in our graph representation of the program. As an

example, program PSUM (amongst others) contains a loop with two

assignments.

But how to represent the veri�cation tasks? �e �rst idea is to

use the source code itself (i.e., strings). However, the source code

of two programs might look very di�erent although the underly-

ing program is actually the same (di�erent variable names, while
instead of for loops, etc.). What we need is a representation that

abstracts from such issues but still represents the structure of pro-

grams, in particular dependencies between elements of the program.

�ese considerations (and some experiments comparing di�erent

representations) have led to a graph representation of programs

combining concepts of three existing program representations:

Control �ow graphs: CFGs record the control �ow in pro-

grams and thus the overall structure with loops, condition-

als etc.; these are needed, for example, to see loops.

Program dependence graphs: PDGs [5] represent control

and data dependencies between elements in programs. �is

information is important, e.g., to detect a loop boundary

depending on an input variable (as in program PSUM ).

Abstract syntax trees: ASTs re�ect the syntactical struc-

ture of programs according to a given grammar and can

for instance help to reveal the complexity of expressions.

Unlike CFGs and PDGs but (partly) alike ASTs, we abstract from

concrete names occurring in programs. Nodes in the graph will

thus not be labelled with statements or variables as occurring in

the program, but with abstract identi�ers. We let Lab be the set of

all such labels.

De�nition 2.2. Let P be a veri�cation task. �e graph representa-
tion of P is a graph G = (N ,E, s, t , ρ,τ ,η) with

• N a set of nodes (basically, we build an AST for every

statement in P , and use the nodes of these ASTs),

• E a set of edges, with s : E → N denoting the start and

t : E → N the end node of an edge,

• ρ : N → Lab a labelling function for nodes,

• τ : E → {CD,DD, SD,CF } a labelling function for edges

re�ecting the type of dependence: CD (control dependency)

and DD (data dependency) origin in PDGs, SD (syntactical

dependence) is the “consists-of” relationship of ASTs and

CF (control �ow) the usual control �ow in programs,

• ν : E → {T , F } a function labelling control dependence

edges according to the valuation of the conditional they

arise from. All other edges are labelled true.

We let GV denote the set of all veri�cation task graphs.

Figure 2 depicts the graph representation of the veri�cation task

PSUM . �e rectangle nodes represent the statements in the program

and act as root nodes of small ASTs. For instance, the rectangle

labelled Assert at the bo�om, middle represents the assertion in

line 10. �e gray ovals represent the AST parts below the root

nodes. We de�ne the depth of nodes n, d (n), as the distance of a

node to its root node. As an example, the depth of the Assert-node

itself is 0, the depth of both ==-nodes is 2.

3 PREDICTING RANKINGS
�is section starts with a short description of label ranking and

the method of ranking by pairwise comparison. Moreover, we

introduce our kernel functions on veri�cation tasks.

3.1 Label Ranking
In the se�ing of label ranking (see e.g. [6]), we are interested in

predicting rankings (total orders) � on a �nite set of K alterna-

tives identi�ed by class labels Y = {y1, . . . ,yK }; in our case, the

alternatives correspond to the veri�cation tools to be compared.

Formally, a total order � can be identi�ed with a permutation π of

the set [K] = {1, . . . ,K }. Preferences on Y are “contextualized” by

instances x ∈ X, where X is an underlying instance space; in our

case, instances are programs to be veri�ed. �us, each instance x is

associated with a ranking �x of the label set Y .

�e goal in label ranking is to learn a “label ranker”, that is, a

modelM : X → SK , where SK denotes the class of permutations

of [K]. �e predictions π̂ =M (x ) produced by such a model for

an instance x are evaluated in terms of an accuracy measure such
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as the Spearman rank correlation:

S (π , π̂ ) = 1 −
6

∑K
i=1

(π (i ) − π̂ (i ))2

K (K2 − 1)
∈ [−1, 1]

As training data D, a label ranker uses a set {(xn ,πn )}
N
n=1

of in-

stances with associated rankings.

3.2 Ranking by Pairwise Comparison
We tackle the label ranking problem using the method of ranking by
pairwise comparison (RPC), a meta-learning technique that reduces

a label ranking task to a set of binary classi�cation problems [6].

More speci�cally, the idea is to train a separate model Mi, j for

each pair of labels (yi ,yj ) ∈ Y , 1 ≤ i < j ≤ K , and to combine the

predictions of these models into an overall ranking.

�eMi, j are binary classi�ers, which, given an instance x , are

supposed to predict 1 if yi �x yj and 0 if yj �x yi . In our approach,

we train these classi�ers using support vector machines [10], ex-

tracting the binary target values from the rankings observed for

the training instances. �e �nal ranking is obtained by sorting the

labels yi in decreasing order of their Borda-scores

∑
j,i Mi, j (x ).

SVMs are so-called “large margin” classi�ers separating positive

from negative training instances in Rm by means of a linear hyper-

plane. �ey can be turned into �exible nonlinear classi�ers using

the idea of “kernelization”, which requires a kernel function on X.

De�nition 3.1. A function k : X × X → R is a positive semi-
de�nite kernel i� k is symmetric, i.e., k (x ,x ′) = k (x ′,x ), and

N∑
i=1

N∑
j=1

cic jk (xi ,x j ) ≥ 0

for arbitrary N , arbitrary instances x1, . . . ,xN ∈ X and arbitrary

c1, . . . , cN ∈ R.

Next, we address the question of how to de�ne appropriate

kernel functions on veri�cation tasks.

Algorithm 1 relabel (Graph relabelling)

Input: G = (N ,E, s, t , ρ,τ ,ν ) graph

z : Σ∗ → Σ injective compression function

η : N → 2
E

neighbour function

m iteration bound

Output: relabelled graph G
1: for i = 1 tom do
2: for n ∈ N do
3: Auд(n) :=

〈
z
(
ρ (s (e )) ⊕ τ (e ) ⊕ ν (e )

)
| e ∈ η(n)

〉
4: Auд(n) := sort (Auд(n))
5: str (n) := concat (Auд(n))
6: str (n) := ρ (n) ⊕ str (n)
7: ρ (n) := z (str (n))

8: return G

3.3 Graph Kernels for Veri�cation Tasks
Veri�cation tasks are represented by speci�c graphs, whence our

kernel needs to operate on graphs. As our graphs are represen-

tations of programs with several thousand lines of code, we have

chosen to proceed from our own kernel development based on

Weisfeiler-Lehman subtree kernels [11], which are known to scale

well to large graphs.

Weisfeiler-Lehman (WL) kernels are extensions of the WL test

of isomorphism between two discretely labelled, undirected graphs

[13]. �is test basically compares graphs according to their node

labels. For taking edges into account, node labels are extended with

information about neighbouring nodes in three steps: Concatenate

label of node n with labels of its neighbours (Augmentation), sort

this sequence according to prede�ned order on labels (Sorting), com-

press thus obtained sequences into new labels (Compression). �ese

steps are repeated until the node label sets of the two graphs di�er

or a prede�ned bound on the number of iterations is exhausted.

For making this WL test act as a kernel for veri�cation tasks, we

made three adaptations to the graph relabelling, giving rise to Algo-

rithm 1: (1) extension to directed multigraphs, (2) customization to

speci�c neighbours of nodes, and (3) integration of edge labels. In

Algorithm 1, we use the notation 〈. . . | . . .〉 for list comprehensions,

de�ning a sequence of values. We let Σ = Nwith the usual ordering

≤ and map all node identi�ers and edge labels to N. �e functions

sort and concat sort sequences of labels (in ascending order) and

concatenate sequences, respectively.

De�nition 3.2. Let Gi = (Ni ,Ei , si , ti , ρi ,τi ,νi ), i = 1, 2 be graph

representations of veri�cation tasks, z : Σ∗ → Σ a compression

function,m ∈ N an iteration bound, d ∈ N a depth for subtrees and

ηi : Ni → 2
Ei

neighbour functions. �e veri�cation graph kernel
k
(d,m)
η1,η2,z : GV × GV → R is de�ned as

k
(d,m)
η1,η2,z (G1,G2) =

m∑
i=1

kd
(
relabel (G1, z,η1,m),
relabel (G2, z,η2,m)

)
with

kd (G,G ′) =
∑
n∈N

∑
n′∈N ′

kdδ (n,n
′) and

kdδ (n,n
′) =

{
δ (ρ1 (n), ρ2 (n

′)) if d (n) ≤ d ∧ d (n′) ≤ d
0 else

,
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Table 1: SV-COMP 2017 – Prediction accuracy (mean and
standard deviation) in terms of the Spearman rank correla-
tion

Kernel / Data Set SAFETY TERMINATION MEMSAFETY

kCF (CFG) .635 ± .003 .657 ± .007 .755 ± .004

kDD (data dependency) .618 ± .003 .635 ± .006 .754 ± .007

kCD (control dependency) .627 ± .002 .637 ± .006 .756 ± .005

kCD,DD (PDG) .630± .005 .644 ± .003 .757 ± .007
kCF,CD,DD (PDG + CFG) .632 ± .004 .658 ± .009 .756 ± .003

weighted combination .634 ± .003 .664 ± .010 .756 ± .003

features of Demyanova et al. [4] .560 ± .004 .560 ± .006 .717 ± .001

default predictor .452 ± .003 .339 ± .004 .668 ± .001

where δ is a Dirac kernel de�ned as δ (u,w ) = 1 if u equals w and 0

otherwise.

Theorem 3.3. �e function k (d,m)
η1,η2,z as de�ned above is a kernel,

i.e., it is positive and semi-de�nite.

Our kernels can now be used in a support vector machine within

the ranking by pairwise composition approach outlined above.

4 EXPERIMENTAL EVALUATION
We have implemented the above described technique as to evaluate

the performance of our method for rank prediction. Here, we

report on SV-COMP 2017 data. We compared six variants of our

kernel with respect to prediction accuracy, each of which focuses

on di�erent aspects of a program. Such kind of customization of

kernels becomes possible thanks to the two neighbouring functions

η1 and η2. In our case, neighbours are chosen according to the type

of edge connecting them. We de�ne η` , ` ∈ {CD,DD, SD,CF } to be

η` (n) = {e | τ (e ) = ` ∧ t (e ) = n}, and let ηL (n) =
⋃

`∈L η` (n) for

a node n. For our kernels, we always use the same neighbouring

function on both graphs. Hence, we will just use the edge labels

employed in neighbouring functions as indizes for kernels. Our

experiments include kernels k {CF } , k {CD } , k {DD } , k {CD,DD } , and

k {CF,CD,DD } . In addition, we included an equally weighted linear

combination kl in of some of our kernels, which is de�ned as

kl in (G1,G2) =
1

3
k {CF } (G1,G2) +

1

3
k {CD } (G1,G2) +

1

3
k {DD } (G1,G2)

To get an insight on how the prediction accuracy performs com-

pared to state-of-the-art approaches, we also included the accuracy

achieved by using the feature vectors from Demyanova et al. [4].

In addition, we constructed a default predictor for comparison: the

default predictor takes all rankings of the data set used for learning,

determines the ranking which minimizes the distance (wrt. Spear-

man rank correlation) to these rankings and always predicts this

default ranking without any learning.

We constructed the following data sets for our experiments:

SAFETY, TERMINATION, and MEMSAFETY. Each data set consists

of several veri�cation tasks (up to 500) and participating tools

(up to 11) and is taken from the SV-COMP 2017 benchmark sets.

To examine the prediction accuracy for each con�guration, we

performed a 10-fold cross-validation. �e overall accuracy is then

the average over all the accuracies encountered in each step.

In Table 1, we report the average prediction accuracies (and

standard deviations) in terms of the Spearman rank correlation;

note that an average accuracy of 0 would be obtained by guessing

rankings at random, while +1 stands for predictions that perfectly

coincide with the true ranking (and −1 for completely reversing

that ranking). As can be seen, our approach shows a rather strong

predictive performance. Depending on the veri�cation task, dif-

ferent kernels achieve the best results, though the di�erences in

performance are statistically non-signi�cant. More importantly,

our approach signi�cantly outperforms the one of Demyanova et

al. [4] as well as the default predictor on all tasks.

5 CONCLUSION
In this paper, we have proposed a method for predicting rankings of

veri�cation tools on given programs. Such rankings can be used by

developers to choose a tool for a program or for building portfolio

solvers. Our rank prediction technique builds on existing methods

for label ranking via pairwise comparison. To this end, we have

developed an expressive representation of source code, capturing

various forms of dependencies between program elements.

Our approach can be seen as a tool for algorithm selection, a

problem that has also been tackled by other authors [4, 12, 14]. �e

use of Weisfeiler-Lehman kernels has been studied by Sahs and

Khan [9] and Li et al. [7]. Corazza et al. [3] employ kernels on pro-

grams for clone detection (however, tree kernels on ASTs, not graph

kernels). A machine learning approach to so�ware veri�cation it-

self has recently been proposed by Chen et al. [2]. However, to the

best of our knowledge, the use of machine learning for predicting

rankings of veri�cation tools has never been tried so far.
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