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Abstract. The prediction of structured outputs in general and rankings
in particular has attracted considerable attention in machine learning in
recent years, and different types of ranking problems have already been
studied. In this paper, we propose a generalization or, say, relaxation of
the standard setting, allowing a model to make predictions in the form
of partial instead of total orders. We interpret such kind of prediction as
a ranking with partial abstention: If the model is not sufficiently certain
regarding the relative order of two alternatives and, therefore, cannot
reliably decide whether the former should precede the latter or the other
way around, it may abstain from this decision and instead declare these
alternatives as being incomparable. We propose a general approach to
ranking with partial abstention as well as evaluation metrics for mea-
suring the correctness and completeness of predictions. For two types of
ranking problems, we show experimentally that this approach is able to
achieve a reasonable trade-off between these two criteria.

1 Introduction

The problem of “learning to rank” has recently attracted considerable attention
in machine learning, and different types of ranking problems have been studied,
both theoretically and empirically. Roughly speaking, the goal of methods devel-
oped in this field is to learn a “ranker” that outputs predictions in the form of a
ranking of a set of alternatives. Thus, learning to rank can be seen as a specific
type of structured output prediction [1].

A ranking is commonly understood as a strict total order, i.e., an irreflexive,
asymmetric, and transitive relation. In this paper, we propose a generalization
of the standard setting, allowing a model to make predictions in the form of
partial instead of total orders. We interpret such kind of prediction as a ranking
with partial abstention: If the ranker is not sufficiently certain regarding the
relative order of two alternatives and, therefore, cannot reliably decide whether
the former should precede the latter or the other way around, it may abstain
from this decision and instead declare these alternatives as being incomparable.



The notion of abstention is actually well-known for conventional classifica-
tion, and the corresponding extension is usually referred to as classification with
a reject option [2—4]: The classifier is allowed to abstain from a prediction for
a query instance in case it is not sure enough. An abstention of this kind is an
obvious means to avoid unreliable predictions. Needless to say, the same idea
does also make sense in the context of ranking. In fact, one may even argue
that a reject option becomes even more interesting here: While a conventional
classifier has only two choices, namely to predict a class or to abstain, a ranker
can abstain to a certain degree: The order relation predicted by the ranker can
be more or less complete or, stated differently, more or less partial, ranging from
a total order (conventional ranking) to the empty relation in which all alterna-
tives are incomparable. Later on, we will express the degree of abstention of a
ranker more precisely in terms of a degree of completeness of the partial order
it predicts.

The main contribution of this paper is a general approach to ranking with
partial abstention, which is applicable to different types of ranking problems. In
a nutshell, our approach consists of two main steps. First, a preference relation is
derived that specifies, for each pair of alternatives a and b, a degree of preference
for a over b and, vice versa, a degree of preference for b over a. The idea is that,
the more similar these two degrees are, the more uncertain the learner is. Then,
in a second step, a partial order maximally compatible with this preference
relation, in a sense to be specified later on, is derived as a prediction. In order
to realize the first step, we make use of ensemble learning techniques, although
other possibilities are conceivable.

The remainder of the paper is organized as follows. In the next section, we
briefly review some important ranking problems. Our approach to ranking with
partial abstention is then detailed in Section 3. In Section 4, we address the
question of how to evaluate predictions in the form of partial orders and propose
suitable performance metrics for measuring the correctness and completeness of
such predictions. Section 5 is devoted to experimental studies. For two types
of ranking problems, we show that our approach is indeed able to achieve a
reasonable trade-off between these two criteria. The paper ends with a couple of
concluding remarks in Section 6.

2 Ranking Problems

Following [5], we distinguish three types of ranking problems that have been
studied extensively in the machine learning literature, namely label ranking [6—
8], instance ranking [9], and object ranking [10], to be described in more detail
in the following.

2.1 Label Ranking

Like in the conventional setting of supervised learning (classification), we assume
to be given an instance space X and a finite set of labels Y = {y1,¥2,...,yx}.



In label ranking, the goal is to learn a “label ranker” in the form of an X — Sy
mapping, where the output space Sy is given by the set of all total orders
(permutations) of the set of labels Y (the notation is leaned on the common
notation Sy for the symmetric group of order k). Thus, label ranking can be
seen as a generalization of conventional classification, where a complete ranking
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is associated with an instance x instead of only a single class label. Here, 7, is
a permutation of {1,2,...,k} such that 7, (i) is the position of label y; in the
ranking associated with .

The training data 7T used to induce a label ranker typically consists of a set
of pairwise preferences of the form y; >z y;, suggesting that, for instance , y;
is preferred to y;. In other words, a single “observation” consists of an instance
x together with an ordered pair of labels (y;,y;).

To measure the predictive performance of a label ranker, a loss function on
rankings is needed. In principle, any distance or correlation measure on rankings
(permutations) can be used for that purpose. An important example is Kendall’s
tau, which counts the number of pairs of labels that are incorrectly ordered and
normalizes this number to the interval [—1, +1]: For two permutations 7 and o,
let ¢ be the number of correctly ordered pairs (,5) € {1,...,k}?, i.e., the pairs
(i,7) with 7 < j and (7 (i) — 7 (j))(o(i) —o(j)) > 0. Likewise, let d be the number
of incorrectly ordered pairs, i.e., the pairs (7, j) with (7(¢)—7(5))(c(:)—0(j)) < 0.
Kendall’s tau, expressing a degree of correlation between m and o, is then given
by

c—d
T T Rk —1)/2 (1)
This coefficient assumes the extreme value 1 if ¢ = 7 and the value —1 if o is
the reversal of 7.

2.2 Instance Ranking

This setting proceeds from the setting of ordinal classification, where an instance
x € X belongs to one among a finite set of classes Y = {y1,¥2,...,yr} and,
moreover, the classes have a natural order: y; < y2 < ... < yi. Training data
consists of a set 7 of labeled instances. As an example, consider the assignment
of submitted papers to categories reject, weak reject, weak accept, and accept.

In contrast to conventional classification, the goal is not to learn a classifier
but a ranking function f(-). Given a subset X C X of instances as an input, the
function produces a ranking, i.e., a (strict) total order >, of these instances as
an output (typically by assigning a score to each instance and then sorting by
scores).

For the case k = 2, this problem is well-known as the bipartite ranking prob-
lem. The case k > 2 has recently been termed multipartite ranking [9]. As an
example, consider the task of a reviewer who has to rank the papers according to



their quality, possibly though not necessarily with the goal of partitioning this
ranking into the above four categories.

Thus, the goal of instance ranking is to produce a ranking > in which in-
stances from higher classes precede those from lower classes. Different types
of accuracy measures have been proposed for predictions of this kind. Typi-
cally, they count the number of ranking errors, that is, the number of pairs
(z,x') € X x X such that @ is ranked higher than @’ even though the former
belongs to a lower class than the latter. In the two-class case, this amounts to
the well-known AUC, the area under the ROC-curve [11]:

1 1 ifx>-a
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where P C X is the set of positive and N C X the set of negative examples in
X 3 Tts generalization to multiple (ordered) classes is known as the concordance
index or C-index in statistics [12].

2.3 Object Ranking

In the setting of object ranking, there is no supervision in the sense that no
output or class label is associated with an object. The goal in object ranking
is to learn a ranking function f(-) which, given a subset Z of an underlying
referential set Z of objects as an input, produces a ranking of these objects as an
output. Again, this is typically done by assigning a score to each instance and
then sorting by scores.

Objects z € Z are commonly though not necessarily described in terms
of an attribute-value representation. As training information, an object ranker
has access to exemplary rankings or pairwise preferences of the form z = 2’
suggesting that z should be ranked higher than z’. This scenario is also known
as “learning to order things” [10].

The performance of an object ranker can again be measured in terms of a
distance function or correlation measure on rankings. In contrast to the setting
of label ranking, however, the number of items to be ordered in the context of
object ranking is typically much larger. Therefore, one often prefers measures
that put more emphasis on the top of a ranking while paying less attention
to the bottom [13]. In Web search, for example, people normally look at the
top-10 results while ignoring the rest. Besides, the target is often not a “true”
ranking but instead a single object or a subset of relevant objects, for example
a set of documents relevant to a query. Evaluation measures especially tailored
toward these types of requirements have been proposed in information retrieval.
Typical examples include precision and recall as well as normalized discounted
cumulative gain (NDCG) [14].

3 Note that we assume > to be a strict order. If ties are allowed, then these are
typically counted by 1/2.



3 Ranking with Partial Abstention

As explained above, the set of alternatives, say, A, to be ordered by a ranker
depends on the type of ranking problem. In label ranking, A is a fixed set of
labels Y, whereas in instance ranking, it is a subset X of the instance space X. A
ranking on A is a strict, total, asymmetric, and transitive relation >, specifying
for all pairs a,b € A whether a precedes b, denoted a > b, or b precedes a.
The key property of transitivity can be seen as a principle of consistency: If a
is preferred to b and b is preferred to ¢, then @ must be preferred to c.

A partial order J on A is a generalization that sticks to this consistency
principle but is not necessarily total. If, for two alternatives a and b, neither
a 1 bnor b 1 a, then these alternatives are considered as incomparable, written
a_lb. Note that, in the following, we still assume strictness of 11, even of this is
not always mentioned explicitly.

3.1 Partial Orders in Learning to Rank

As mentioned before, our idea is to make use of the concept of a partial order
in a machine learning context, namely to generalize the problem of learning
to rank. More specifically, the idea is that, for each pair of alternatives a and
b, the ranker can decide whether to make a prediction about the order relation
between these labels, namely to hypothesize that a precedes b or that b precedes
a, or to abstain from this prediction. We call a ranker having this possibility of
abstention a ranker with partial reject option. Note, however, that for different
pairs of alternatives, the reject decisions cannot be made independently of each
other. Instead, the pairwise predictions should of course be consistent in the sense
of being transitive and acyclic. In other words, a ranker with a (partial) reject
option is expected to make a prediction in the form of a (strict) partial order
7 on the set of alternatives. This partial order is considered as an incomplete
estimation of an underlying (ground-truth) order relation >-: For alternatives
a,b e A, a b corresponds to the prediction that @ > b (and not b > a) holds,
whereas a_Lb indicates an abstention on this pair of alternatives.

In this section, we propose a method that enables a ranker to make predic-
tions of such kind. Roughly speaking, our approach consists of two main steps,
to be detailed in the forthcoming subsections:

— The first step is the prediction of a preference relation P that specifies, for
each pair of alternatives a and b, a degree of uncertainty regarding their
relative comparison.

— In the second step, a (strict) partial order maximally compatible with this
preference relation is derived.

3.2 Prediction of a Binary Preference Relation

Let P be an A x A — [0,1] mapping, so that P(a,b) is a measure of support
for the order (preference) relation a = b. We assume P to be reciprocal, i.e.,

P(b,a) = 1— P(a,b)



for all a,b € A. A relation of that kind can be produced in different ways. For ex-
ample, some ranking methods explicitly train models that compare alternatives
in a pairwise way, e.g., by training a single classifier for each pair of alternatives
[15]. If these models are able to make probabilistic predictions, these can be used
directly as preference degrees P(a,b).

However, since probability estimation is known to be a difficult problem, we
like to emphasize that our method for predicting strict partial orders does only
assume an ordinal structure of the relation P. In fact, as will be seen below, the
partial order induced by P is invariant toward monotone transformations of P.
In other words, only the order relation of preference degrees is important, not
the degrees themselves: If P(a,b) > P(a’,b’), then a >~ b is considered as more
certain than a’ = b'.

Here, we propose a generic approach that allows one to turn every ranker
into a partial ranker. To this end, we resort to the idea of ensembling. Let L
be a learning algorithm that, given a set of training data, induces a model M
that in turn makes predictions in the form of rankings (total orders) = of a set
of alternatives A. Now, instead of training a single model, our idea is to train
k such models M, ..., M}, by resampling from the original data set, i.e., by
creating k bootstrap samples and giving them as input to L. Consequently, by
querying all these models, k rankings 1, ..., > will be produced instead of a
single prediction.

For each pair of alternatives a and b, we then define the degree of preference
P(a,b) in terms of the fraction of rankings in which a precedes b:

Pla,b) = (i@ b} 3)

Thus, P(a,b) = 1 suggests a consensus among the ensemble members, since
all of them agree that a should precede b. On the other hand, P(a,b) ~ 1/2
indicates a highly uncertain situation.

3.3 Prediction of a Strict Partial Order Relation

On the basis of the preference relation P, we seek to induce a (partial) order
relation J on A, that we shall subsequently also denote by R. Thus, R is an
A x A — {0,1} mapping or, equivalently, a subset of A x A, where R(a,b) =1,
also written as (a,b) € R or a R b, indicates that a 1 b.

The simplest idea is to let a R b iff P(a,b) = 1. The relation R thus defined
is indeed a (strict) partial order, but since a perfect consensus (P(a,b) € {0,1})
is a strong requirement, most alternatives will be declared incomparable. Seeking
a prediction that is as informative as possible, it is therefore natural to reduce
the required degree of consensus. We therefore proceed from an “a-cut” of the
relation P, defined as

Ra ={(a,b) | P(a,b) = a} (4)



for 0 < a < 1. A cut of that kind provides a reasonable point of departure, as
it comprises the most certain preference statements while ignoring those com-
parisons (a,b) with P(a,b) < a. However, it is not necessarily transitive and
may even contain cycles. For example, suppose @ >=1 b > ¢, b =2 ¢ >2 a and
¢ >3 a =3 b. Clearly, P(a,b) = P(b,c) = P(c,a) = 2/3, rendering Ry /3 a cycli-
cal relation. While transitivity is easily enforced by computing the transitive
closure of R, absence of cycles is not as easily obtained. Intuitively, it seems
natural that for larger «, cycles become less probable. However, as the example
shows, even for o > 1/2, cycles can still occur. Furthermore, the larger «, the
less informative the corresponding R.

Consequently, we propose to look for a minimal «a (denote it as a*) such that
the transitive closure of R, (denote it as R,) is a strict partial order relation
[16]. This R~ will be the predicted strict partial order relation R, and we call
a* the consensus threshold. By minimizing this threshold, we maximize R, as
well as its transitive closure R, and thereby also the information extracted from
the ensemble on the basis of which P was computed. In the remainder of this
section, we deal with the problem of computing o* in an efficient way.

3.4 Determination of an Optimal Threshold

Suppose that P can assume only a finite number of values. In our case, according
to (3), this set is given by D = {0,1/k,2/k,...,1}, and its cardinality by &k + 1,
where k is the ensemble size. Obviously, the domain of « can then be restricted
to D. The simplest approach, therefore, it to test each value in D, i.e., to check
for each value whether R, is acyclic, and hence R, a partial order. Of course,
instead of trying all values successively, it makes sense to exploit a monotonicity
property: If R, is not acyclic, then Rg cannot be acyclic either, unless 8 > «.
Consequently, a* can be found in at most log,(k+ 1) steps using bisection. More
specifically, by noting that o* is lower-bounded by

1
o= + max min (P(a,b), P(b,a)) (5)
and trivially upper-bounded by «, = 1, one can repeatedly update the bounds
as follows, until o, — oy < 1/k:

(i) set « to the middle point between «; and «,

(ii) compute R

(iii) compute R, (e.g., using the Floyd-Warshall’s algorithm [17])
(iv) if R, is a partial order, set v, to «

(v) else set a; to «

111

This procedure stops with a* = «;. The complexity of this procedure is not
worse than the transitive closure operation, i.e., it is at most O(|A[?).

As shown in [16], the same result can be computed with another algorithm
that is conceptually simpler (though equally costly in terms of complexity, at
least theoretically). This algorithm operates on an |A| x |A| matrix R initialized



with the entries P(a,b) (recall that A is the set of alternatives). It repeatedly
performs a transitive closure operation at all the levels of D simultaneously:

R(a,b) + max (R(a, b), rcngi(( min(R(a, c),R(c, b)) )) (6)

for all @,b € A, until no further changes occur. These transitive closure oper-
ations can be seen as a correction of inconsistences in P (a is to some degree
preferred to b, which in turn is to some degree preferred to ¢, but a is not suf-
ficiently preferred to ¢). Since these inconsistencies do not occur very often, the
number of update operations needed to stabilize R is normally quite small; in
practice, we found that we rarely need more then one or two iterations.

Algorithm 1

Require: training data 7, test data D, ensemble size k, base learner L

Ensure: amatrix R encoding partial order information for alternatives in D (R(¢,5) =
1 means d; > dj, where d;,d; € D)

initialize R as zero matrix
generate k bootstrap samples from 7T
constitute the ensemble with k rankers trained using L
get k rankings of alternatives in D
for each of k£ rankings do
for every pair of alternatives d;,d; € D do
if d; = dj then
set R(3,7) :=R(4,5) + 1/k
end if
end for
: end for
: repeat
for every entry in R do
R(i,7) := max (R(4,j), maxgep(min(R(i, k), R(k, 7)) ))
end for
: until No entry in R is changed.
: for every entry in R do

el el el el

18 a:=max;; min(R(4,j),R(j,17))
19: end for

20: for every entry in R do

21:  if R(4,j) > o then

22: R(i,j) =1

23:  end if

24: end for

By construction, thresholding the final relation R at a level « will yield the
transitive closure of relation R,, in (4). Therefore, a* can be taken as

ot = % + max (R(a, b) | R(a,b) < R(b,a)) , (7)



which is obviously the smallest « that avoids cycles. The whole procedure is
summarized in Algorithm 1.

Finally, we note that, as postulated above, a* in (7) yields a maximal partial
order as a prediction. In principle, of course, any larger value can be used as well,
producing a less complete relation and, therefore, a more “cautious” prediction.
We shall come back to this issue in Section 4.

3.5 Illustrating Example

We illustrate our approach by means of a small two-dimensional toy example for
the case of bipartite ranking. Suppose that the conditional class distributions of
the positive and the negative class are two overlapping Gaussians. A training
data set may then look like the one depicted in Fig. 1 (left), with positive ex-
amples as black and negative examples as white dots. Given a new set of query
instances X to be ranked, one may expect that a learner will be uncertain for
those instances lying close to the overlap region, and may hence prefer to abstain
from comparing them.

Fig. 1. Left: training data and ensemble models; right: partial order predicted for a set
of five query instances.

More specifically, suppose that a linear model is used to train a ranker.
Roughly speaking, this means fitting a separating line and sorting instances
according to their distance from the decision boundary. Fig. 1 (left) shows several
such models that may result from different bootstrap samples. Now, consider the
five query instances shown in the right picture of Fig. 1. Whereas all these models
will rank instance 1 ahead of 2, 3 and 4, and these in turn ahead of 5, instances
2, 3 and 4 will be put in various orders. Applying our approach as outlined
above, with a proper choice of the threshold «, may then yield the strict partial
order indicated by the arrows in the right picture of Fig. 1. A prediction of
that kind agrees with our expectation: Instance 1 is ranked first and instance
5 last; instance 2, 3 and 4 are put in the middle, but the learner abstains from
comparing them in a mutual way.



4 Evaluation Measures

If a model is allowed to abstain from making predictions, it is expected to reduce
its error rate. In fact, it can trivially do so, namely by rejecting all predictions, in
which case it avoids any mistake. Clearly, this is not a desirable solution. Indeed,
in the setting of prediction with reject option, there is always a trade-off between
two criteria: correctness on the one side and completeness on the other side. An
ideal learner is correct in the sense of making few mistakes, but also complete
in the sense of abstaining but rarely. The two criteria are normally conflicting:
increasing completeness typically comes along with reducing correctness and vice
versa.

4.1 Correctness

As a measure of correctness, we propose a quantity that is also known as the
gamma rank correlation [18] in statistics, although it is not applied to partial
orders. Instead, it is used as a measure of correlation between rankings (with
ties). As will be seen, however, it can also be used in a more general way.

Let T, be the ground-truth relation on the set of alternatives A. If this
relation is a total order, like in label ranking, then @ . b if @ precedes b
and b 1, a if b precedes a; exactly one of these two cases is true, i.e., we
never have a_L,b. Interestingly, in the case of instance ranking, it is not entirely
clear whether the ground-truth is a total or a partial order. The goal of most
learning algorithms for AUC maximization is to sort instances x according to
their probability of belonging to the positive class, P(y = 1| x).* Seen from this
point of view, the underlying ground-truth is assumed to be a complete order. On
the other hand, this complete order is never known and, therefore, can never be
used as a reference for evaluating a prediction. Instead, only the class information
is provided, and given a concrete test sample, evaluation measures like AUC do
not care about the relative order of instances from the same class. In that sense,
the ground-truth is treated like a partial order: @ 1, b whenever a is positive
and b negative (or, in the multi-class case, if the class of a is higher than the
class of b), while a_L.b when a and b belong to the same class.

Now, let T be a predicted (strict) partial order, i.e., a prediction of J.. We
call a pair of alternatives a and b concordant if they ought to be compared,
because —(a_L.b), and are indeed compared in the correct way, that is,

(ed.bANadb)V (bd.aAbIa) .

Likewise, we call @ and b discordant if they ought to be compared, but the
comparison is incorrect, that is,

(a3, bAbTa)V(bIdiaNnaTdb).

Note that, if al,b (there is no need to compare a and b) or aLb (abstention
on a and b), then the two alternatives are neither concordant nor discordant.

4 Indeed, this prediction maximizes the ezpected AUC on a test set.



Given these notions of concordance and discordance, we can define

_ G- 1D]

CR(O,3.) = m ) (8)

where C' and D denote, respectively, the set of concordant and discordant pairs
of alternatives. Obviously, CR(3, 3.) = 1 for J,=3 and CR(3,3.) = -1 if O
is the inversion of ..

It is also interesting to mention that (8) is indeed a proper generalization
of commonly used measures for the complete (non-partial) case, in the sense of
reducing to these measures if 1 is a total order. In particular, it is easy to see
that (8) reduces to Kendall’s tau (1) in the case of label ranking (where 1, is
a total order, too), and to the AUC measure (2) in the case of instance ranking
(where T, is a partial order).

4.2 Completeness

To measure the degree of completeness of a prediction, a straightforward idea
is to punish the abstention from comparisons that should actually be made
(while ignoring or, say, tolerating comparisons that are made despite not being
necessary). This leads to the following measure of completeness:

¢l +1D)

CP(D) BN

)

5 Experimental Results

As mentioned before, our method described in Section 3 can be applied to differ-
ent ranking problems in a generic way. In this section, we present experimental
results for two of the ranking problems outlined in Section 2, namely instance
ranking and label ranking.

5.1 Instance Ranking

To test our method in the instance ranking scenario, we have selected a set
of 16 binary classification data sets from the UCI repository and the Statlog
collection®. We have used logistic regression as a base learner and produced
ensembles of size 10.

The values reported in Table 1 are averages over five repetitions of a 10-
fold cross-validation. Comparing the correctness of predictions in terms of (8), it
can be seen that our approach of partial abstention generally leads to improved
performance. In fact, it is never worse and yields better results most of the
time, sometimes with significant margins. Moreover, this gain in performance
comes with an acceptable loss in terms of completeness. Indeed, the degrees of
completeness are quite high throughout, often significantly above 90%.



Table 1. Results for instance ranking: mean values and standard deviations for cor-
rectness and completeness.

correctness correctness
data set #attr. #inst. with abstention w/o abstention completeness
breast 9 286  0.330£0.150  0.318£0.141 0.578%0.074
breast-w 9 699  0.988+0.014  0.98740.015 0.982+0.015
horse colic 22 368  0.7344+0.135  0.697+0.142 0.790+0.044
credit rating 15 690  0.85840.062  0.827£0.065 0.888%0.038
credit german 20 1000 0.610+£0.088  0.5684+0.084 0.741+0.060
pima diabetes 8 768  0.684+0.084  0.666+0.086 0.81940.047
heart statlog 13 270  0.811£0.102  0.797£0.101 0.890%0.060
hepatitis 19 155 0.7094+0.292  0.69740.271 0.797+0.084
ionosphere 34 351 0.771+0.174  0.7224+0.190 0.814+0.098
kr-vs-kp 36 3196 0.992+0.006  0.980£0.007 0.99140.006
labor 16 57 0.9904+0.049  0.985+0.060 0.98940.052
mushroom 22 8124  1.000+0.000 1.000+£0.000 0.808+0.017
thyroid disease 29 3772  0.890%0.071 0.883+0.070 0.92840.040
sonar 60 206  0.6844+0.224  0.575+0.271 0.5754+0.056
tic-tac-toe 9 958  0.25340.127  0.221£0.120 0.908+0.013
vote 16 435  0.981£0.032  0.976£0.036 0.91340.035

We conducted a second experiment with the aim to investigate the trade-
off between correctness and completeness. As was mentioned earlier, and to
some extent already confirmed by our first experiment, we expect a compromise
between both criteria insofar as it should be possible to increase correctness at
the cost of completeness. To verify this conjecture, we varied the threshold « in
(4) in the range [a*, 1]. Compared to the use of a*, larger thresholds will make
the predictions increasingly incomplete; at the same time, however, they should
also become more correct. Indeed, the results we obtained are well in agreement
with these expectations. Fig. 2 shows typical examples of the trade-off between
correctness and completeness for two data sets.

Finally, it is interesting to look at the maximal chains of a predicted partial
order. A maximal chain of a partially ordered set X is a maximal subset C C X
that is totally ordered, like the set of elements depicted as black nodes in the
following partial order:

O

The remaining elements X \ C' can then be considered as those that cannot
be inserted into the order in a reliable way, and are hence ignored. Since each
maximal chain is a total order, it can be visualized in terms of an ROC curve.

® www.ics.uci.edu/~mlearn/MLRepository.html, 1ib.stat.cmu.edu/
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Fig. 2. Instance ranking with partial abstention: Trade-off between correctness and
completeness for selected data sets.

A typical example for the sonar data set is shown in Fig. 3. As can be seen, the
curves for the maximal chains tend to dominate the original ROC curve for this
data, suggesting that the ranking of elements in the individual chains is indeed
more reliable than the ranking of the complete data.

5.2 Label Ranking

In view of a lack of benchmark data for label ranking, we resorted to multi-class
data sets from the UCI repository and turned them into label ranking data by
following the procedure proposed in [15]: A naive Bayes classifier is first trained
on the complete data set. Then, for each example, all the labels present in the
data set are ordered with respect to the predicted class probabilities (in the case
of ties, labels with lower index are ranked first).®

The setting of this experiment is similar to the one we did for instance rank-
ing. We performed five repetitions of a 10-fold cross-validation and used an
ensemble size of 10. As a label ranking method, we used the ranking by pairwise
comparison approach [15], again with logistic regression as a base learner.

The results, summarized in Table 2, convey the same message as before:
Correctness can be improved at the cost of completeness, and compared to the
case of instance ranking, the loss in completeness is even much smaller here; see

5 The data sets are available at www.uni-marburg.de/fb12/kebi/research.
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Fig. 3. ROC curves for the maximal chains of a predicted partial order (dashed lines)
and the complete data (solid line) for the sonar data.

also Fig. 4, in which we show the same kind of trade-off curves as for the case
of instance ranking.

Table 2. Results for label ranking: mean values and standard deviations for correctness
and completeness.

correctness correctness
data set  #attr. #classes #inst. with abstention w/o abstention completeness
iris 4 3 150  0.910+0.062 0.8851+0.068 0.99140.063
wine 13 3 178  0.94040.051 0.9214+0.053 0.988+0.067
glass 9 6 214 0.89240.039 0.88240.042 0.990+0.030
vowel 10 11 528  0.657+0.019 0.647+0.019 0.988+0.016
vehicle 18 4 846  0.858+0.026 0.85440.025 0.992+0.039
authorship 70 4 841 0.94140.016 0.9104+0.015 0.989+0.043
pendigits 16 10 10992 0.933£0.002 0.93240.002 0.99940.005
segment 18 7 2310  0.938+0.006 0.93440.006 0.998+0.011

6 Conclusions and Future Work

In this paper, we have addressed the problem of “reliable” prediction in the
context of learning to rank. In this regard, we have made the following main
contributions:

— Based on the idea of allowing a learner to abstain from an uncertain com-
parison of alternatives, together with the requirement that predictions are
consistent, we have proposed a relaxation of the conventional setting in which
predictions are given in terms of partial instead of total orders.

— We have proposed a generic approach to predicting partial orders or, accord-
ing to our interpretation, ranking with partial abstention, which is applicable
to different types of ranking problems.
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Fig. 4. Label ranking with partial abstention: Trade-off between correctness and com-
pleteness for selected data sets.

— We have introduced reasonable measures for evaluating the performance of
a ranker with (partial) reject option, namely measures of correctness and
completeness. These measures are proper generalizations of conventional and
commonly used measures for total orders.

— Empirically, we have shown that our method is indeed able to trade off accu-
racy against completeness: The correctness of a prediction can be increased
at the cost of reducing the number of alternatives that are compared.

The extension from predicting total to predicting partial orders as proposed in
this paper opens the door for a multitude of further studies. Here, we mention
just one example of an interesting direction for future work, which concerns
the type of target order 1, to be predicted. In this paper, we have essentially
assumed that the target is a complete order, and a prediction in terms of a partial
order J an incomplete estimation thereof, even though it was already mentioned
that, in the case of instance ranking (AUC maximization), the target may also be
considered as a partial order. However, even in that case, our evaluation measure
does not penalize the prediction of an order relation between two instances a and
b from the same class. In other words, we do not penalize the case where a 1 b
even though al,b. Now, if 7, is a true partial order, it clearly makes sense
to request, not only the correct prediction of order relations a . b between
alternatives, but also of incomparability relations a_ L .b. Although the difference
may look subtle at first sight, the changes will go beyond the evaluation of
predictions and instead call for different learning algorithms. In particular, in



this latter scenario, a_Lb will be interpreted as a prediction that a and b are
incomparable (al.b), and not as a rejection of the decision whether @ 1, b
or b 1. a. Nevertheless, the two settings are of course related, and we plan to
elaborate on their connection in future work.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

. Bakir, G., Hofmann, T., Scholkopf, B., Smola, A., Taskar, B., Vishwanathan, S.,

eds.: Predicting structured data. MIT Press (2007)
Chow, C.: On optimum recognition error and reject tradeoff. IEEE Transactions
on Information Theory 16(1) (1970) 41-46

. Herbei, R., Wegkamp, M.H.: Classification with reject option. Canadian Journal

of Statistics 34(4) (2006) 709-721

Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge
loss. Journal of Machine Learning Research 9 (2008) 1823-1840

Firnkranz, J., Hillermeier, E., eds.: Preference Learning. Springer-Verlag (2010)
Har-Peled, S., Roth, D., Zimak, D.: Constraint classification for multiclass classi-
fication and ranking. In Becker, S., Thrun, S., Obermayer, K., eds.: Advances in
Neural Information Processing Systems 15 (NIPS-02). (2003) 785-792
Firnkranz, J., Hiillermeier, E.: Pairwise preference learning and ranking. In: Proc.
ECML-03, 13th European Conference on Machine Learning, Cavtat-Dubrovnik,
Croatia (September 2003)

Dekel, O., Manning, C., Singer, Y.: Log-linear models for label ranking. In: Ad-
vances in Neural Information Processing Systems. (2003)

Fiirnkranz, J., Hiillermeier, E., Vanderlooy, S.: Binary decomposition methods for
multipartite ranking. In: Proceedings ECML/PKDD-2009, European Conference
on Machine Learning and Knowledge Discovery in Databases, Bled, Slovenia (2009)
Cohen, W., Schapire, R., Singer, Y.: Learning to order things. Journal of Artificial
Intelligence Research 10 (1999) 243-270

Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8)
(2006) 861-874

Gnen, M., Heller, G.: Concordance probability and discriminatory power in pro-
portional hazards regression. Biometrika 92(4) (2005) 965-970

Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal of
Discrete Mathematics 17(1) (2003) 134-160

Manning, C., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

Hiillermeier, E., Fiirnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artificial Intelligence 172 (2008) 1897-1917

Rademaker, M., De Baets, B.: A threshold for majority in the context of aggre-
gating partial order relations. In: Proc. WCCI-2010, World Congress on Compu-
tational Intelligence, Barcelona, Spain (2010)

Floyd, R.: Algorithm 97: Shortest path. Communications of the ACM 5 (1962)
Goodman, L., Kruskal, W.: Measures of Association for Cross Classifications.
Springer-Verlag, New York (1979)



