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Abstract. Class binarizations are effective methods for improving weak
learners by decomposing multi-class problems into several two-class prob-
lems. This paper analyzes how these methods can be applied to a Naive
Bayes learner. The key result is that the pairwise variant of Naive Bayes is
equivalent to a regular Naive Bayes. This result holds for several aggrega-
tion techniques for combining the predictions of the individual classifiers,
including the commonly used voting and weighted voting techniques.
On the other hand, Naive Bayes with one-against-all binarization is not
equivalent to a regular Naive Bayes. Apart from the theoretical results
themselves, the paper offers a discussion of their implications.

1 Introduction

The Naive Bayes classifier is a Bayesian learner that often outperforms more
sophisticated learning methods such as neural networks, nearest neighbor esti-
mation, or decision tree learning in many application areas. It is widely esteemed
because of its simplicity, versatility, efficiency, and comprehensibility to domain
experts (Kononenko, 1993). Even though the Naive Bayes classifier is directly
amenable to multi-class problems, we consider the question whether its perfor-
mance can be improved by combining it with class binarization methods. This
question is motivated by the fact that class binarization has yielded good results
for other multi-class learners as well (Fürnkranz, 2003).

The paper starts with a brief recapitulation of the Naive Bayes classifier
(Section 2) and class binarization methods (Section 3). The main results are
then presented in Section 4. We first derive a general method for combining
pairwise Bayesian classifiers (Section 4.1), and then show that this method and
the commonly used weighted and unweighted voting techniques are equivalent
to the regular classifier (Sections 4.2 and 4.3). In Section 5, we address the same
question for the alternative one-against-all class binarization technique and show
that, in this case, equivalence to the regular Naive Bayes learner is lost. Finally,
in Section 6, we briefly recapitulate the results and discuss some implications
thereof.
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2 Naive Bayes Classifier

Consider a simple setting of classification learning, in which the goal is to predict
the class c ∈ C = {c1, . . . , cm} of an query input x = (a1, . . . , an), given a
training set of pre-classified examples; instances are characterized in terms of an
attribute-value representation, and ai is the value of the ith attribute.

In general, the classification error can be minimized by selecting

arg max
ci∈C

Pr(ci|x), (1)

i.e., the class with maximum posterior probability. To identify this class, esti-
mates of the conditional probabilities Pr(ci|x), i = 1, . . . ,m, are needed. Bayes
theorem states that

pi = Pr(ci|x) =
Pr(x|ci) · Pr(ci)

Pr(x)
, (2)

and therefore allows one to reverse the original (direct) estimation problem into
a more tractable (indirect) one: instead of estimating the probability of a class
given the input, it suffices to estimate the probability of an input given a class.

The denominator in (2), Pr(x) =
∑

j Pr(x|cj) · Pr(cj), is a normalizing con-
stant that does not influence the solution of the maximization problem (1). Thus,
the following basic version of a Bayesian learner is obtained:

cB = arg max
ci∈C

Pr(x|ci) · Pr(ci)

= arg max
ci∈C

Pr(a1, a2, ..., an|ci) · Pr(ci)

Under the so-called Naive Bayes assumption, which assumes the probabilities
of attributes to be conditionally independent given the class, the difficult esti-
mation of the (high-dimensional) probability Pr(x|ci) can be reduced to the es-
timation of (one-dimensional) class-conditional attribute probabilities Pr(aj |ci):

Pr(x|ci) = Pr(a1, a2, ..., an|ci)
!=

n∏
j=1

Pr(aj |ci)

The probabilities Pr(ci) and Pr(aj |ci) can now be estimated from the training
data, which is typically done by referring to corresponding relative frequencies.
Even though the Naive Bayes assumption is usually violated in practice, and the
probability estimates for Pr(ci|x) are often not very accurate, the Naive Bayes
prediction

cNB = arg max
ci∈C

Pr(ci) ·
n∏

j=1

Pr(aj |ci)


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achieves surprisingly high classification rates. This is because, for a correct clas-
sification, it is only important that the true class receives the highest (estimated)
probability. In other words, only the order of the probability estimates Pr(ci|x)
is relevant, and this order is, to some extent, robust toward deviations of the
estimated from the real probabilities (Domingos and Pazzani, 1997).

3 Class Binarization

Class binarization techniques turn multi-class problems into a set of binary
problems. Prominent examples include one-against-all binarization (Clark and
Boswell, 1991; Anand et al., 1995; Cortes and Vapnik, 1995; Rifkin and Klau-
tau, 2004), pairwise classification (Friedman, 1996; Hastie and Tibshirani, 1998;
Fürnkranz, 2002), and error-correcting output codes (Dietterich and Bakiri,
1995). A general framework for such techniques is presented in (Allwein et al.,
2000).

The main goal of these methods is to enable machine learning methods which
are inherently designed for binary problems (e.g., perceptrons, support vector
machines, etc.) to solve multi-class problems. However, there is also evidence
that ensembles of binary classifiers may improve the performance of multi-class
learners (Dietterich and Bakiri, 1995; Fürnkranz, 2003).

There are several reasons why such approaches can work. First, the binary
problems are typically less complex and will often have a simpler decision bound-
ary that is easier to model. For example, Knerr et al. (1992) observed that the
classes of a digit recognition task were pairwise linearly separable, while it was
not possible to discriminate each class from all other classes with linear percep-
trons. It is well-known that Naive Bayes is essentially a linear classifier (Duda
and Hart, 1972), and thus it can be expected to profit from such a pairwise
decomposition of the task. Furthermore, a large number of binary classifiers
introduces an ensemble effect in the sense that mistakes of a single classifier
have a smaller impact on the final predictions, thus increasing the robustness
of the classifier. For Naive Bayes classifiers in particular, which is known for
giving good predictions but uncalibrated probabilities, class binarization is of
importance because most calibration techniques operate on two-class problems
(Zadrozny and Elkan, 2002). Finally, regarding computational efficiency, train-
ing a large number of classifiers from subsets of the training examples may be
cheaper than training an entire classifier, in particular when the base classifier
has a super-linear time or space complexity.

4 Pairwise Bayesian Classification

We are primarily interested in pairwise classification, which transforms an m-
class problem into m(m − 1)/2 two-class problems 〈i, j〉, one for each pair of
classes {i, j}, 1 ≤ i < j ≤ m. The binary classifier for problem 〈i, j〉 is trained
with examples of classes ci and cj , whereas examples of classes k 6= i, j are
ignored for this problem. At classification time, a query x is submitted to all
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binary models, and the predictions of the binary classifiers are combined to
yield a final overall prediction.

A pairwise probabilistic classifier, Rij , is therefore trained to estimate pair-
wise probabilities of the form

pij = Pr(ci|x, cij),

that is, the probability of class ci given that the example x either belongs to class
ci or cj (abbreviated as cij). These probabilities can, for example, be estimated
by training a Bayes classifier on training sets Dij which only contain the exam-
ples of classes ci and cj . More specifically, such a Bayes classifier estimates the
pairwise probabilities Pr(ci|x, cij) and Pr(cj |x, cij) of class pair cij as follows:

Pr(ci|x, cij) =
Pr(x|ci, cij) · Pr(ci|cij)

Pr(x|ci, cij) · Pr(ci|cij) + Pr(x|cj , cij) · Pr(ci|cij)

Pr(cj |x, cij) = 1− Pr(ci|x, cij)

Again, a naive implementation of a Bayes classifier expands Pr(x|ci, cij) into
Pr(a1|ci, cij) · Pr(a2|ci, cij) · · ·Pr(am|ci, cij).

4.1 Bayesian Combination of Votes

The probabilities pij = Pr(ci|x, cij) need to be combined into probabilities
(scores) si = Pr(ci|x), a process that is known as pairwise coupling (Hastie
and Tibshirani, 1998; Wu et al., 2004). In particular, we will consider simple
linear combiners of the form

si =
∑
j 6=i

wij · Pr(ci|x, cij) (3)

Interestingly, linear combination of that kind is sufficient to imitate regular Bayes
classification:

Theorem 1. Weighting the pairwise probabilities with

wij =
Pr(cij |x)
m− 1

=
Pr(ci|x) + Pr(cj |x)

m− 1
(4)

reduces a pairwise Bayes classifier to a regular Bayes classifier.

Proof. Noting that

(m− 1) Pr(ci|x) =
∑
j 6=i

Pr(ci|x)

=
∑
j 6=i

Pr(ci|x, cij) · Pr(cij |x),
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replacing wij in (3) by (4) yields

si =
∑
j 6=i

wij · Pr(ci|x, cij)

=
1

m− 1

∑
j 6=i

Pr(ci|x, cij) · Pr(cij |x)

=
1

m− 1

∑
j 6=i

Pr(ci|x)

= Pr(ci|x) = pi

ut

This result is interesting, as it shows that an optimal Bayes decision can in
principle be derived from an ensemble of pairwise learners. Or, stated differently,
the binary decomposition of the original multi-class problem does not cause a loss
of information. Moreover, the result shows how the weights wij should ideally
be defined. As will be seen later on, the voting methods commonly used in
practice refer to more simple weighting schemes, which can hence be considered
as approximations of the ideal weights wij .

Anyway, as mentioned previously, the main interest in classification does not
concern the probability estimates Pr(ci|x, cij) themselves, but only the resulting
predictions. In the following, we will show that the use of voting or weighted
voting will yield the same predictions as the Naive Bayes classifier.

4.2 Weighted Voting

Weighted Voting simply sums up the pairwise probability estimates of each class,
i.e., it uses wij ≡ 1 in (3):

cWV = arg max
ci

∑
j 6=i

Pr(ci|x, cij)

Weighted voting has been frequently used in empirical studies and maintained
a good performance. More importantly, Hüllermeier and Fürnkranz (2004) have
shown that pairwise classification with weighted voting optimizes the Spearman
rank correlation between the predicted ranking of all class labels and the true
ranking, given that the predicted pairwise probabilities are unbiased estimates
of their true values.

Theorem 2. A pairwise Naive Bayes classifier with weighted voting predicts
the same class ranking as a regular Naive Bayes classifier, i.e.,

Pr(ci|x) ≤ Pr(cj |x) ⇔
∑
k 6=i

Pr(ci|x, cik) ≤
∑
k 6=j

Pr(cj |x, cjk)

Pr(ci|x) < Pr(cj |x) ⇔
∑
k 6=i

Pr(ci|x, cik) <
∑
k 6=j

Pr(cj |x, cjk)
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Proof. Let pi = Pr(ci|x) and si =
∑

k 6=i Pr(ci|x, cik). Then

si − sj = (pij − pji) +
∑

k 6=i,j

pik − pjk

=
pi − pj

pi + pj
+

∑
k 6=i,j

pk(pi − pj)
(pi + pk)(pj + pk)

From this, it immediately follows that (pi < pj) ⇒ (si < sj), and that (pi ≤
pj) ⇒ (si ≤ sj). The other directions can thus be obtained by contraposition:
(si < sj) ⇒ (pi < pj) and (si ≤ sj) ⇒ (pi ≤ pj). ut

Obviously, due to their construction, the pairwise probabilities pij are in full
agreement with the total order induced by the regular Bayes probabilities pi. In
particular, it is interesting to note that these probabilities satisfy a certain type
of transitivity property, namely

(pij < 1/2) ∧ (pjk < 1/2) ⇒ (pik < 1/2). (5)

This obviously holds, since pij < 1/2 means that pi < pj , pjk < 1/2 means that
pj < pk, and therefore pi < pk, which in turn implies pik < 1/2. It deserves
mentioning, however, that, for many other pairwise base classifiers, this type
of transitivity is not guaranteed. In fact, it is well possible that classifier Rik

predicts class ck, classifier Rkj predicts class cj , but classifier Rij , predicts class
ci, resulting in a tie between the three classes. In fact, for rule learning algorithms
not even symmetry will hold, i.e., Rij 6= Rji (Fürnkranz, 2002).

On the other hand, one should also note that transitivity of a pairwise clas-
sifier is not enough to imply equivalence to the original (m-class) classifier. For
example, suppose that p1 = 0.6, p2 = 0.3, p3 = 0.1. The pairwise classifier with
p12 = p13 = 0.6 and p23 = 0.9 is clearly transitive in the sense of (5) and also in
agreement with the ranking c1 � c2 � c3. Still, weighted voting gives s1 = 1.2,
s2 = 1.3, s3 = 0.5, and therefore the ranking c2 � c1 � c3.

4.3 Unweighted Voting

An even simpler combination scheme for the predictions of pairwise classifiers is
unweighted voting. To classify a new example, each of the learned base classifiers
determines which of its two classes is the more likely one. The winning class
receives a vote, and the algorithm eventually predicts the class that accumulates
the highest number of votes. Essentially, it adds up the number of cases where
class ci has a higher pairwise probability than some other class cj , i.e., the
number of indexes j such that Pr(ci|x, cij) ≥ 0.5 holds:

cV = arg max
ci

∑
j 6=i

[Pr(ci|x, cij)] =
∑
j 6=i

[Pr(ci|x, cij)]
Pr(ci|x, cij)

· Pr(ci|x, cij)
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where [x] is the rounding operator that returns dxe if x ≥ bxc + 1/2 and bxc
otherwise; thus, wij = [Pr(ci|x,cij)]

Pr(ci|x,cij)
in (3).

Again, we can show that this algorithm is equivalent to a regular Naive Bayes
learner.

Theorem 3. A pairwise Naive Bayes classifier with unweighted voting predicts
the same class ranking as a regular Naive Bayes classifier.

Proof. Let pi = Pr(ci|x) and pij = Pr(ci|x, cij) = pi/(pi +pj). Ignoring the issue
of ties (i.e., pi 6= pj for all i 6= j), one obviously has (pi < pj) ⇔ (pij < pji).
Therefore, the number of votes received by class ci is

si =
∑
k 6=i

[pik]

and just corresponds to the number of classes ck such that pi > pk. Therefore,
the class with the k-th highest probability receives m − k votes, which in turn
means that the two rankings are identical. ut

Remark 1. The above result can easily be generalized to the case of ties: If one
splits up a vote in the case pij = 1/2, i.e., both classes receive one half of the
vote, then si = sj iff pi = pj .

From the above proof it becomes immediately clear that the result in principle
holds for all probabilistic or scoring classifiers that are “class-order-invariant”
in the following sense: A class ci receives a higher score than class cj in the
original m-class problem if and only if it is also favored in the direct (pairwise)
comparison with cj . In other words, the pairwise order between ci and cj is not
reversed due to the consideration of additional classes, i.e., it is not influenced
by the complementary set of classes C \ {ci, cj}. This property, which is quite
interesting by itself, is obviously satisfied by a Bayes classifier but does not
necessarily hold for other classifiers. Note that a class-order-invariant classifier
also satisfies the transitivity property (5).

The above result is also interesting in light of the well-known robustness
of Naive Bayes classification. As it shows in a rather explicit way, the main
prerequisite for correct classification or, more generally, ranking of class labels,
is not a very accurate estimation of probabilities. In fact, these probabilities are
used by the pairwise classifier only in a very crude way, namely in the form of
binary votes. Therefore, the only important thing is to correctly decide which
among two given classes is the more probable one.

5 One-Against-All Class Binarization

In the previous section, we have seen that three versions of pairwise Naive Bayes
classification are equivalent to a regular Naive Bayes classifier. At first sight,
this is somewhat surprising, because what the Naive Bayes classifier does is
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modeling separate probability distributions for each individual class ci first, and
predicting the class with the maximum probability afterward. Thus, it seems to
have much more in common with one-against-all classifiers than with pairwise
decomposition. However, it is not difficult to see that just the opposite is true,
at least for the naive implementation of Bayes classification.

In one-against-all classification, an m-class problem is split into m binary
problems that discriminate one class ci, i = 1 . . .m, from all other classes. These
classifiers are trained using all examples of class ci as positive examples and the
examples of the union of all other classes ci =

⋃
j 6=i cj as negative examples. If

we compare the two probabilities

Pr(ci|x)OA =
Pr(x|ci) · Pr(ci)

Pr(x|ci) · Pr(ci) + Pr(x|
⋃

j 6=i cj) · Pr(
⋃

j 6=i cj)

Pr(ci|x)NB =
Pr(x|ci) · Pr(ci)

Pr(x|ci) · Pr(ci) +
∑

j 6=i Pr(x|cj) · Pr(cj)

we can see that the difference lies in the normalizing constant, which in the case
of the one-against-all Naive Bayes classifier estimates the probabilities from the
sum of all counts over all classes cj , j 6= i, whereas the regular Naive Bayes
classifier sums the probabilities over these classes.

Since the equality relation

Pr

x|
⋃
j 6=i

cj

 · Pr

⋃
j 6=i

cj

 =
∑
j 6=i

Pr(x|cj) · Pr(cj)

generally holds, there is indeed no difference for a true Bayesian classifier. How-
ever, this equality is not valid for the probability estimates that are derived by
Naive Bayes. If we use

f(c) = Pr(c)
n∏

k=1

Pr(ak|c)

to denote the score that Naive Bayes computes for each class c, then

f(
⋃
j 6=i

cj) 6=
∑
j 6=i

f(cj)

and, consequently, Pr(ci|x)OA 6= Pr(ci|x)NB . In particular, the probabilities
Pr(ci|x)OA will in general not sum up to 1 (

∑
i Pr(ci|x)OA 6= 1, but instead

Pr(ci|x)OA + Pr(ci|x)OA = 1 for all i = 1, . . . ,m).
To see that this may also lead to different classifications (rankings of class

labels), let us consider a sample problem with three classes A, B, and C, and 10
examples for each of them. We have two binary attributes X and Y . For X = 1
we have observed 15 examples distributed as (1, 10, 4). Likewise, for Y = 1, we
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have 12 examples distributed as (8, 1, 3). This gives

f(A) = Pr(A) · Pr(X = 1|A) · Pr(Y = 1|A) =
1
3
· 1
10

· 8
10

=
2
75

f(A) = Pr(A) · Pr(X = 1|A) · Pr(Y = 1|A) =
2
3
· 14
20

· 4
20

=
7
75

Analogously, we get

f(B) =
1
30

, f(B) =
11
120

; f(C) =
1
25

, f(C) =
33
200

For a regular Naive Bayes, normalization yields

Pr(A|X = 1, Y = 1)NB =
f(A)

f(A) + f(B) + f(C)
=

4
15

,

Pr(B|X = 1, Y = 1)NB =
5
15

; Pr(C|X = 1, Y = 1)NB =
6
15

,

and therefore the prediction C, whereas

Pr(A|X = 1, Y = 1)OA =
f(A)

f(A) + f(A)
=

8
36

,

Pr(B|X = 1, Y = 1)OA =
8
30

; Pr(C|X = 1, Y = 1)OA =
8
41

,

and class B is predicted.

6 Discussion

The results obtained in this work, showing that various pairwise versions of
a Naive Bayes classifier are equivalent to a regular Naive Bayes classifier, are
interesting for several reasons. As a first consequence, decomposing a multi-class
problem into a pairwise ensemble of binary classifiers does not work for Naive
Bayes classifiers, that is, it is not possible no improve classification performance
in this way.

The weights derived in Theorem 1 are not specific to Naive Bayes, but ap-
ply to probabilistic algorithms in general. It remains to be seen whether this
technique can be applied to other base classifiers as well. The main practical
impediment is the estimation of Pr(cij |x). For example, one could try to esti-
mate them using a pairwise variant of Naive Bayes that predicts a pair of classes
instead of a single class. First experiments with a few related variants, presented
in (Sulzmann, 2006), were not very encouraging, however.

Hüllermeier and Fürnkranz (2004) have shown that weighted voting opti-
mizes the Spearman rank correlation, provided the pairwise probabilities are
estimated correctly. In this work, we have shown the equivalence of Naive Bayes
to pairwise Naive Bayes using weighted voting. Combining these two results lets
us conclude that the regular Naive Bayes also optimizes the Spearman rank cor-
relation. The main problem, of course, is that its probability estimation is biased
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because of the independence assumption, which will in general not hold. How-
ever, just as the bias in the probability estimation does not necessarily affect the
prediction of the top rank (Domingos and Pazzani, 1997), it might well turn out
that its effect on the entire ranking of the classes is not very strong; the equiv-
alence result for pairwise Naive Bayes with unweighted voting in Section 4.3 is
clearly indicative in this regard, as is the generally good performance of Naive
Bayes on ranking tasks (Zhang and Su, 2004). We plan to elaborate on this issue
in future work.

Another interesting issue concerns the generalization of the results obtained
in this paper. For example, we already mentioned that the equivalence between
regular Bayes and pairwise Bayes with unweighted voting in principle holds for
all “class-order-invariant” classifiers. Finding a characterizing property of a sim-
ilar kind appears to be more difficult in the case of weighted voting. For Bayes
classification, there is a very simple relationship between the multi-class proba-
bilities pi and the pairwise probabilities pij : the latter are directly proportional
to the former. As we have seen, this relationship assures that the order of the
classes remains unchanged, that is, this property is sufficient to guarantee equiv-
alence. However, it is presumably not a necessary condition.
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