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Abstract. The learning of predictive models that guarantee monotonic-
ity in the input variables has received increasing attention in machine
learning in recent years. While the incorporation of monotonicity con-
straints is rather simple for certain types of models, it may become a more
intricate problem for others. By trend, the difficulty of ensuring mono-
tonicity increases with the flexibility or, say, nonlinearity of a model. In
this paper, we advocate the so-called Choquet integral as a tool for learn-
ing monotone nonlinear models. While being widely used as a flexible
aggregation operator in different fields, such as multiple criteria decision
making, the Choquet integral is much less known in machine learning so
far. Apart from combining monotonicity and flexibility in a mathemat-
ically sound and elegant manner, the Choquet integral has additional
features making it attractive from a machine learning point of view.
Notably, it offers measures for quantifying the importance of individual
predictor variables and the interaction between groups of variables. As
a concrete application of the Choquet integral, we propose a general-
ization of logistic regression. The basic idea of our approach, referred
to as choquistic regression, is to replace the linear function of predictor
variables, which is commonly used in logistic regression to model the log
odds of the positive class, by the Choquet integral.

1 Introduction

A proper specification of the type of dependency between a set of predictor
(input) variables X1, . . . , Xm and the target (output) variable Y is an important
prerequisite for successful model induction. The specification of a corresponding
hypothesis space imposes an inductive bias that, amongst others, allows for the
incorporation of background knowledge in the learning process. An important
type of background knowledge is monotonicity: Everything else being equal, the
increase (decrease) of a certain input variable Xi can only produce an increase
in the output variable Y (e.g., a real number in regression, a class in ordered
classification, or the probability of the positive class in binary classification).
Adherence to this kind of background knowledge may not only be beneficial for
model induction, but is often even considered as a hard constraint. For example,



no medical doctor will accept a model in which the probability of cancer is not
monotone increasing in tobacco consumption.

The simplest type of dependency is a linear relationship:

Y =
m∑
i=1

αiXi + ε , (1)

where α1, . . . , αm are real coefficients and ε is an error term. Monotonicity can
be guaranteed quite easily for (1), since monotonicity in Xi is equivalent to the
constraint αi ≥ 0. Another important advantage of (1) is its comprehensibility.
In particular, the direction and strength of influence of each predictor Xi are
directly reflected by the corresponding coefficient αi.

Perhaps the sole disadvantage of a linear model is its inflexibility and, coming
along with this, the supposed absence of any interaction between the variables:
The effect of an increase of Xi is always the same, namely ∂Y/∂Xi = αi, re-
gardless of the values of all other attributes. In many real applications, this
assumption is not tenable. Instead, more complex, nonlinear models are needed
to properly capture the dependencies between the inputs Xi and the output Y .

An increased flexibility, however, typically comes at the price of a loss in terms
of the two previous criteria: comprehensibility is hampered, and monotonicity is
more difficult to assure. In fact, as soon as an interaction between attributes is
allowed, the influence of an increase in Xi may depend on all other variables, too.
As a simple example, consider the extension of (1) by the addition of interaction
terms, a model which is often used in statistics:

Y =
m∑
i=1

αiXi +
∑

1≤i<j≤m
αijXiXj + ε . (2)

For this model, ∂Y/∂Xi is given by αi+
∑
j 6=i αijXj and depends on the values of

all other attributes, which means that, depending on the context as specified by
these values, the monotonicity condition may change from one case to another.
Consequently, it is difficult to find simple global constraints on the coefficients
that assure monotonicity. For example, assuming that all attributes are non-
negative, it is clear that αi ≥ 0 and αij ≥ 0 for all 1 ≤ i ≤ j ≤ m will
imply monotonicity. While being sufficient, however, these constraints are non-
necessary conditions, and may therefore impose restrictions on the model space
that are more far-ranging than desired; besides, negative interactions cannot be
modeled in this way. Quite similar problems occur for commonly used nonlinear
methods in machine learning, such as neural networks and kernel machines.

In this paper, we advocate the use of the (discrete) Choquet integral as a
tool that is interesting in this regard. As will be argued in more detail later on,
the Choquet integral combines the aforementioned properties in a quite conve-
nient and mathematically elegant way: By its very nature as an integral, it is
a monotone operator, while at the same time allowing for interactions between
attributes. Moreover, the existence of natural measures for quantifying the im-
portance of individual and the interaction between groups of features, it provides
important insights into the model, thereby supporting interpretability.



The rest of this paper is organized as follows. In the next section, we give
a brief overview of related work. In Section 3, we recall the basic definition
of the Choquet integral and some related notions. In Section 4, we propose a
generalization of logistic regression in which the Choquet integral is used to
model the log odds of the positive class. Experimental results are presented in
Section 5, prior to concluding the paper with a few remarks in Section 6.

2 Related Work

As already mentioned, the problem of monotone classification has received in-
creasing attention in the machine learning community in recent years,1 despite
having been introduced in the literature much earlier [1]. Meanwhile, several ma-
chine learning algorithms have been modified so as to guarantee monotonicity in
attributes, including nearest neighbor classification [2], neural networks [3], de-
cision tree learning [4,5], rule induction [6], as well as methods based on isotonic
regression [7] and piecewise linear models [8].

Instead of modifying learning algorithms so as to guarantee monotone mod-
els, another idea is to modify the training data. To this end, data pre-processing
methods such as re-labeling techniques have been developed. Such methods
seek to repair inconsistencies in the training data, so that (standard) classifiers
learned on that data will automatically be monotone [9, 10].

Although the Choquet integral has been widely applied as an aggregation
operator in multiple criteria decision making [11–13], it has been used much
less in the field of machine learning so far. There are, however, a few notable
exceptions. First, the problem of extracting a Choquet integral (or, more pre-
cisely, the non-additive measure on which it is defined) in a data-driven way has
been addressed in the literature. Essentially, this is a parameter identification
problem, which is commonly formalized as a constraint optimization problem,
for example using the sum of squared errors as an objective function [14,15]. To
this end, [16] proposed an approach based on the use of quadratic forms, while
an alternative heuristic, gradient-based method called HLMS (Heuristic Least
Mean Squares) was introduced in [17]. In [18, 19], the Choquet integral is used
in the context of ordinal classification. Besides, the Choquet integral has been
used as an aggregation operator in the context of ensemble learning, i.e., for
combining the predictions of different classifiers [20].

3 The Discrete Choquet Integral

In this section, we given a brief introduction to the (discrete) Choquet integral,
which, to the best of our knowledge, is not widely known in the field of machine
learning so far. Since the Choquet integral can be seen as a generalization of the
standard (Lebesque) integral to the case of non-additive measures, we start with
a reminder of this type of measure.
1 For example, a workshop on “Learning Monotone Models from Data” was organized
at ECML/PKDD 2009 in Bled, Slovenia.



3.1 Non-Additive Measures

Let C = {c1, . . . , cm} be a finite set and µ : 2C → [0, 1] a measure. For each
A ⊆ C, we interpret µ(A) as the weight or, say, the importance of the set of
elements A. As an illustration, one may think of C as a set of criteria (binary
features) relevant for a job, like “speaking French” and “programming Java”, and
of µ(A) as the evaluation of a candidate satisfying criteria A (and not satisfying
C\A). The term “criterion” is indeed often used in the decision making literature,
where it suggests a monotone “the higher the better” influence.

A standard assumption on a measure µ(·), which is, for example, at the core
of probability theory, is additivity: µ(A ∪ B) = µ(A) + µ(B) for all A,B ⊆ C
such that A∩B = ∅. Unfortunately, additive measures cannot model any kind of
interaction between elements: Extending a set of elements A by a set of elements
B always increases the weight µ(A) by the weight µ(B), regardless of A and B.

Suppose, for example, that the elements of two sets A and B are complemen-
tary in a certain sense. For instance, A = {French, Spanish} and B = {Java}
could be seen as complementary, since both language skills and programming
skills are important for the job. Formally, this can be expressed in terms of a
positive interaction: µ(A ∪ B) > µ(A) + µ(B). In the extreme case, when lan-
guage skills and programming skills are indeed essential, µ(A ∪ B) can be high
although µ(A) = µ(B) = 0 (suggesting that a candidate lacking either language
or programming skills is completely unacceptable). Likewise, elements can inter-
act in a negative way: If two sets A and B are partly redundant or competitive,
then µ(A∪B) < µ(A)+µ(B). For example, A = {C, C#} and B = {Java} might
be seen as redundant, since one programming language does in principle suffice.

The above considerations motivate the use of non-additive measures, also
called capacities or fuzzy measures, which are simply normalized and monotone
[21]:

µ(∅) = 0, µ(C) = 1 and µ(A) ≤ µ(B) for all A ⊆ B ⊆ C . (3)

A useful representation of non-additive measures, that we shall explore later on
for learning Choquet integrals, is in terms of the Möbius transform:

µ(B) =
∑
A⊆B

m(A) (4)

for all B ⊆ C, where the Möbius transform mµ of the measure µ is defined as
follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) . (5)

The value mµ(A) can be interpreted as the weight that is exclusively allocated
to A, instead of being indirectly connected with A through the interaction with
other subsets.

A measure µ is said to be k-order additive, or simply k-additive, if k is the
smallest integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property
is interesting for several reasons. First, as can be seen from (4), it means that a
measure µ can formally be specified by significantly fewer than 2m values, which



are needed in the general case. Second, k-additivity is also interesting from a
semantic point of view: As will become clear in the following, this property
simply means that there are no interaction effects between subsets A,B ⊆ C
whose cardinality exceeds k.

3.2 Importance of Criteria and Interaction

An additive (i.e., k-additive with k = 1) measure µ can be written as follows:

µ(A) =
∑
ci∈A

wi ,

with wi = µ({ci}) the weight of ci. Due to (3), these weights are non-negative and
such that

∑m
i=1 wi = 1. In this case, there is obviously no interaction between

the criteria ci, i.e., the influence of a ci on the value of µ is independent of
the presence or absence of any other cj . Besides, the weight wi is a natural
quantification of the importance of ci.

Measuring the importance of a criterion ci becomes obviously more involved
when µ is non-additive. Besides, one may then also be interested in a measure of
interaction between the criteria, either pairwise or even of a higher order. In the
literature, measures of that kind have been proposed, both for the importance
of single as well as the interaction between several criteria.

Given a fuzzy measure µ on C, the Shaply value (or importance index) of ci
is defined as a kind of average increase in importance due to adding ci to another
subset A ⊂ C:

ϕ(ci) =
∑

A⊆C\{ci}

1

m

(
m− 1
|A|

) (µ(A ∪ {ci})− µ(A)
)
. (6)

The Shaply value of µ is the vector ϕ(µ) = (ϕ(c1), . . . , ϕ(cm)). One can show
that 0 ≤ ϕ(ci) ≤ 1 and

∑m
i=1 ϕ(ci) = 1. Thus, ϕ(ci) is a measure of the relative

importance of ci. Obviously, ϕ(ci) = µ({ci}) if µ is additive.
The interaction index between criteria ci and cj , as proposed by Murofushi

and Soneda [22], is defined as follows:

Ii,j =
∑

A⊆C\{ci,cj}

µ(A ∪ {ci, cj})− µ(A ∪ {ci})− µ(A ∪ {cj}) + µ(A)

(m− 1)
(
m− 2
|A|

) .

This index ranges between −1 and 1 and indicates a positive (negative) interac-
tion between criteria ci and cj if Ii,j > 0 (Ii,j < 0). The interaction index can
also be expressed in terms of the Möbius transform:

Ii,j =
∑

K⊆C\{ci,cj},|K|=k

1
k + 1 m

(
{ci, cj} ∪K

)
.



Furthermore, as proposed by Grabisch [23], the definition of interaction can be
extended to more than two criteria, i.e., to subsets T ⊆ C:

IT =
m−|T |∑
k=0

1
k + 1

∑
K⊆C\T,|K|=k

m
(
T ∪K

)
.

3.3 The Choquet Integral

So far, the criteria ci were simply considered as binary features, which are either
present or absent. Mathematically, µ(A) can thus also be seen as an integral
of the indicator function of A, namely the function fA given by fA(c) = 1 if
c ∈ A and = 0 otherwise. Now, suppose that f : C → R+ is any non-negative
function that assigns a value to each criterion ci; for example, f(ci) might be the
degree to which a candidate satisfies criterion ci. An important question, then,
is how to aggregate the evaluations of individual criteria, i.e., the values f(ci),
into an overall evaluation, in which the criteria are properly weighted according
to the measure µ. Mathematically, this overall evaluation can be considered as
an integral Cµ(f) of the function f with respect to the measure µ.

Indeed, if µ is an additive measure, the standard integral just corresponds to
the weighted mean

Cµ(f) =
m∑
i=1

wi · f(ci) =
m∑
i=1

µ({ci}) · f(ci) , (7)

which is a natural aggregation operator in this case. A non-trivial question,
however, is how to generalize (7) in the case where µ is non-additive.

This question, namely how to define the integral of a function with respect
to a non-additive measure (not necessarily restricted to the discrete case), is an-
swered in a satisfactory way by the Choquet integral, which has first been pro-
posed for additive measures by Vitali [24] and later on for non-additive measures
by Choquet [25]. The point of departure of the Choquet integral is an alterna-
tive representation of the “area” under the function f , which, in the additive
case, is a natural interpretation of the integral. Roughly speaking, this repre-
sentation decomposes the area in a “horizontal” instead of a “vertical” manner,
thereby making it amenable to a straightforward extension to the non-additive
case. More specifically, note that the weighted mean can be expressed as follows:

m∑
i=1

f(ci) · µ({ci}) =
m∑
i=1

(
f(c(i))− f(c(i−1)

)
·
(
µ({c(i)}) + . . .+ µ({c(n)})

)
=

m∑
i=1

(
f(c(i))− f(c(i−1)

)
· µ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f(c(1)) ≤ f(c(2)) ≤ . . . ≤
f(c(m)) (and f(c(0)) = 0 by definition), and A(i) = {c(i), . . . , c(m)}; see Fig. 1 as
an illustration.



Fig. 1. Vertical (left) versus horizontal (right) integration. In the first case, the height
of a single bar, f(ci), is multiplied with its “width” (the weight µ({ci})), and these
products are added. In the second case, the height of each horizontal section, f(c(i))−
f(c(i−1)), is multiplied with the corresponding “width” µ(A(i)).

Now, the key difference between the left and right-hand side of the above
expression is that, whereas the measure µ is only evaluated on single elements ci
on the left, it is evaluated on subsets of elements on the right. Thus, the right-
hand side suggests an immediate extension to the case of non-additive measures,
namely the Choquet integral, which, in the discrete case, is formally defined as
follows:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

In terms of the Möbius transform of µ, the Choquet integral can also be expressed
as follows:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

=
m∑
i=1

f(c(i)) · (µ(A(i))− µ(A(i+1)))

=
m∑
i=1

f(c(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆C

m(T )×min
i∈T

f(ci) (8)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.

4 Choquistic Regression

Consider the standard setting of binary classification, where the goal is to predict
the value of an output (response) variable y ∈ Y = {0, 1} for a given instance

x = (x1, . . . , xm) ∈ X = X1 ×X2 × . . .×Xm



represented in terms of a feature vector. More specifically, the goal is to learn a
classifier L : X → Y from a given set of (i.i.d.) training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n

so as to minimize the risk

R(L) =
∫
X×Y

`(L(x), y) dPXY (x, y) ,

where `(·) is a loss function (e.g., the simple 0/1 loss given by `(ŷ, y) = 0 if ŷ = y
and = 1 if ŷ 6= y).

Logistic regression is a well-established statistical method for (probabilistic)
classification [26]. Its popularity is due to a number of appealing properties,
including monotonicity and comprehensibility: Since the model is essentially lin-
ear in the input attributes, the strength of influence of each predictor is directly
reflected by the corresponding regression coefficient. Moreover, the influence of
each attribute is monotone in the sense that an increase of the value of the
attribute can only increase (decrease) the probability of the positive class.

Formally, the probability of the positive class (and hence of the negative
class) is modeled as a generalized linear function of the input attributes, namely
in terms of the logarithm of the probability ratio:

log
(

P(y = 1 |x)
P(y = 0 |x)

)
= w0 + w>x , (9)

where w = (w1, w2, . . . , wm) ∈ Rm is a vector of regression coefficients and
w0 ∈ R a constant bias (the intercept). A positive regression coefficient wi > 0
means that an increase of the predictor variable xi will increase the probability
of a positive response, while a negative coefficient implies a decrease of this prob-
ability. Besides, the larger the absolute value |wi| of the regression coefficient,
the stronger the influence of xi.

Since P(y = 0 |x) = 1−P(y = 1 |x), a simple calculation yields the posterior
probability

πl
df= P(y = 1 |x) =

(
1 + exp(−w0 −w>x)

)−1
. (10)

The logistic function z 7→ (1 + exp(−z))−1, which has a sigmoidal shape, is a
specific type of link function.

Needless to say, the linearity of the above model is a strong restriction from
a learning point of view, and the possibility of interactions between predictor
variables has of course also been noticed in the statistical literature [27]. A
standard way to handle such interaction effects is to add interaction terms to the
linear function of predictor variables, like in (2). As explained earlier, however,
the aforementioned advantages of logistic regression will then be lost.

In the following, we therefore propose an extension of logistic regression that
allows for modeling nonlinear relationships between input and output variables
while preserving the advantages of comprehensibility and monotonicity.



4.1 The Choquistic Model

In order to model nonlinear dependencies between predictor variables and re-
sponse, and to take interactions between predictors into account, we propose
to extend the logistic regression model by replacing the linear function x 7→
w0 + w>x in (9) by the Choquet integral. More specifically, we propose the
following model

πc
df= P(y = 1 |x) =

(
1 + exp(−γ (Cµ(fx)− β))

)−1
, (11)

where Cµ(fx) is the Choquet integral (with respect to the measure µ) of the
function fx : {c1, . . . , cm} → [0, 1] that maps each attribute ci to a normalized
value xi = fx(ci) ∈ [0, 1]; β, γ ∈ R are constants.

The normalization is meant to turn each predictor variable into a criterion,
i.e., a “the higher the better” attribute, and to assure commensurability between
the criteria [28]. A simple transformation, that we shall also employ in our ex-
perimental studies, is given by the mapping zi = (xi −mi)/(Mi −mi), where
mi and Mi are lower and upper bounds for xi (perhaps estimated from the
data); if the influence of xi is actually negative (i.e., wi < 0), then the mapping
zi = (Mi − xi)/(Mi −mi) is used instead.

In order to verify that our model (11) is a proper generalization of standard
logistic regression, recall that the Choquet integral reduces to a weighted mean
(7) in the special case of an additive measure µ. Moreover, consider any linear
function x 7→ g(x) = w0 + w>x with w = (w1, . . . , wm). This function can also
be written in the form

g(x) = w0 +
m∑
i=1

(wipi + |wi|(Mi −mi)zi)

= w0 +
m∑
i=1

wipi +
m∑
i=1
|wi|(Mi −mi)zi

= w′0 +
(

m∑
i=1

ui

)−1 m∑
i=1

u′izi

= γ

(
m∑
i=1

u′izi − β

)
,

where pi = mi if wi ≥ 0 and pi = Mi if wi < 0, ui = |wi|(Mi − mi), γ =
(
∑m
i=1 ui)

−1, u′i = ui/γ, w′0 = w0 +
∑m
i=1 wipi, β = −w′0/γ. By definition, the

u′i are non-negative and sum up to 1, which means that
∑m
i=1 u

′
izi is a weighted

mean of the zi that can be represented by a Choquet integral.
Recalling the idea of “evaluating” an instance x in terms of a set of criteria,

the model (11) can be seen as a two-step procedure: The first step consists of an
assessment of x in terms of a (latent) utility degree

u = U(x) = Cµ(fx) ∈ [0, 1].
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Fig. 2. Probability of a positive decision, P(y = 1 |x), as a function of the estimated
degree of utility, u = U(x), for a threshold β = 0.7 and different values of γ.

Then, in a second step, a discrete choice (yes/no decision) is made on the basis of
this utility. Roughly speaking, this is done through a “probabilistic thresholding”
at the utility threshold β. If U(x) > β, then the decision tends to be positive,
whereas if U(x) < β, it tends to be negative. The precision of this decision is
determined by the parameter γ (see Fig. 2): For large γ, the decision function
converges toward the step function u 7→ I(u > β), jumping from 0 to 1 at β. For
small γ, this function is smooth, and there is a certain probability to violate the
threshold rule u 7→ I(u > β). This might be due to the fact that, despite being
important for decision making, some properties of the instances to be classified
are not captured by the utility function. In that case, the utility U(x), estimated
on the basis of the given attributes, is not a perfect predictor for the decision
eventually made. Thus, the parameter γ can also be seen as an indicator of the
quality of the classification model.

4.2 Parameter Estimation

The model (11) has several degrees of freedom: The fuzzy measure µ (Möbius
transform m = mµ) determines the (latent) utility function, while the utility
threshold β and the scaling parameter γ determine the discrete choice model.
The goal of learning is to identify these degrees of freedom on the basis of the
training data D. Like in the case of standard logistic regression, it is possible
to harness the maximum likelihood (ML) principle for this purpose. The log-
likelihood of the parameters can be written as

l(m, γ, β) = log P(D |m, β, γ)

= log
(

n∏
i=1

P(y(i) |x(i); m, β, γ)
)

(12)

=
n∑
i=1

y(i) log π(i)
c +

(
1− y(i)) log

(
1− π(i)

c

)
.



One easily verifies that (12) is convex with respect to m, γ, and β. In principle,
maximization of the log-likelihood can be accomplished by means of standard
gradient-based optimization methods. However, since we have to assure that
µ is a proper fuzzy measure and, hence, that m guarantees the corresponding
monotonicity and boundary conditions, we actually need to solve a constrained
optimization problem:

max
m,γ,β

{
−γ

n∑
i=1

(1− y(i))(Cm(x(i))− β)−
n∑
i=1

log
(

1 + exp(−γ (Cm(x(i))− β))
)}

s.t. γ > 0, 0 ≤ β ≤ 1,
∑
T⊆C

m(T ) = 1, and

∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ∀ci ∈ C.

A solution to this problem can be produced by standard solvers. Concretely,
we used the fmincon function implemented in the optimization toolbox of Mat-
lab. This method is based on a sequential quadratic programming approach.

Recall that, once the model has been identified, the importance of each at-
tribute and the degree of interaction between groups of attributes can be derived
from the Möbius transform m; these are given, respectively, by the Shapley value
and the interaction indexes as introduced in Section 3.2.

5 Experiments

5.1 Data Sets

Although the topic is receiving increasing interest in the machine learning com-
munity, benchmark data for monotone classification is by far not as abundant as
for conventional classification. In total, we managed to collect 9 data sets from
different sources, notably the UCI repository2 and the WEKA machine learning
framework [29], for which monotonicity in the input variables is a reasonable
assumption; see Table 1 for a summary. All the data sets can be downloaded at
our website.3 Many of them have also been used in previous studies on monotone
learning. Some of them have a numerical or ordered categorical output, however.
These outputs were binarized by thresholding at the median. Moreover, all input
attributes were normalized.

5.2 Methods

Since choquistic regression (CR) can be seen as an extension of standard lo-
gistic regression (LR), it is natural to compare these two methods. Essentially,
2 http://archive.ics.uci.edu/ml/
3 http://www.uni-marburg.de/fb12/kebi/research/



Table 1. Data sets and their properties.

data set #instances #attributes source
Den Bosch (DBS) 120 8 [30]
CPU 209 6 UCI
Breast Cancer (BCC) 286 9 UCI
Auto MPG 392 7 UCI
Employee Selection (ESL) 488 4 WEKA
Mammographic (MMG) 961 6 UCI
Employee Rejection/Acceptance (ERA) 1000 4 WEKA
Lecturers Evaluation (LEV) 1000 4 WEKA
Car Evaluation (CEV) 1728 6 UCI

this comparison should give an idea of the usefulness of an increased flexibility.
On the other side, one may also ask for the usefulness of assuring monotonic-
ity. Therefore, we additionally included two other extensions of LR, which are
flexible but not necessarily monotone, namely kernel logistic regression (KLR)
with polynomial and Gaussian kernels. The degree of the polynomial kernel was
set to 2, so that it models low-level interactions of the features. The Gaussian
kernel, on the other hand, is able to capture interactions of higher order. For
each data set, the width parameter of the Gaussian kernel was selected from
{10−4, 10−3, 10−2, 10−1, 100} in the most favorable way. Finally, we included a
method which is both monotone and flexible, namely the MORE algorithm for
learning rule ensembles under monotonicity constraints [6].

5.3 Results

Classification accuracy was measured in terms of 0/1 loss and determined by
randomly splitting the data into two parts, one part for training and one part
for testing. This was repeated 100 times, and the accuracy degrees were averaged.

A possible improvement of CR over its competitors, in terms of predictive
accuracy, may be due to two reasons: First, in comparison to standard LR, it
is more flexible and has the ability to capture nonlinear dependencies between
input attributes. Second, in comparison to non-monotone learners, it takes back-
ground knowledge about the dependency between input and output variables
into consideration.

Both aspects have to be put in perspective, however. First, regarding flexi-
bility, it is clear that an improvement is unlikely unless additional flexibility is
indeed needed. On the contrary, if the true underlying dependency is indeed a
linear one, at least approximately, then standard logistic regression will be the
model of choice, whereas CR may tend to overfit the training data and hence
generalize worse. Regarding monotonicity, previous studies have indeed shown
that improvements are possible, albeit of a small margin. In fact, upon closer
examination, the benefit of enforcing monotonicity is not entirely obvious [31].
Moreover, the more extensive the training data, the smaller the improvement



Table 2. Classification performance in terms of the mean and standard deviation of
0/1 loss. From top to bottom: 20%, 50%, and 80% training data.

dataset CR LR KLR-ply KLR-rbf MORE
DBS .2226±.0380 (4) .1803±.0336 (1) .2067±.0447 (3) .1922±.0501 (2) .2541±.0142 (5)
CPU .0457±.0338 (2) .0430±.0318 (1) .0586±.0203 (3) .0674±.0276 (4) .1033±.0681 (5)
BCC .2939±.0100 (4) .2761±.0265 (1) .3102±.0386 (5) .2859±.0329 (3) .2781±.0219 (2)
MPG .0688±.0098 (2) .0664±.0162 (1) .0729±.0116 (4) .0705±.0122 (3) .0800±.0198 (5)
ESL .0764±.0291 (3) .0747±.0243 (1) .0752±.0117 (2) .0794±.0134 (4) .1035±.0332 (5)

MMG .1816±.0140 (3) .1752±.0106 (2) .1970±.0095 (4) .2011±.0123 (5) .1670±.0120 (1)
ERA .2997±.0123 (2) .2922±.0096 (1) .3011±.0132 (3) .3259±.0172 (5) .3040±.0192 (4)
LEV .1527±.0138 (1) .1644±.0106 (4) .1570±.0116 (2) .1577±.0124 (3) .1878±.0242 (5)
CEV .0441±.0128 (1) .1689±.0066 (5) .0571±.0078 (3) .0522±.0085 (2) .0690±.0408 (4)

avg. rank 2.4 1.9 3.3 3.4 4
DBS .1560±.0405 (3) .1443±.0371 (2) .1845±.0347 (5) .1628±.0269 (4) .1358±.0432 (1)
CPU .0156±.0135 (1) .0400±.0106 (3) .0377±.0153 (2) .0442±.0223 (5) .0417±.0198 (4)
BCC .2871±.0358 (4) .2647±.0267 (2) .2706±.0295 (3) .2879±.0269 (5) .2616±.0320 (1)
MPG .0641±.0175 (1) .0684±.0206 (2) .1462±.0218 (5) .1361±.0197 (4) .0700±.0162 (3)
ESL .0660±.0135 (1) .0697±.0144 (3) .0704±.0128 (5) .0699±.0148 (4) .0690±.0171 (2)

MMG .1736±.0157 (3) .1710±.0161 (2) .1859±.0141 (4) .1900±.0169 (5) .1604±.0139 (1)
ERA .3008±.0135 (3) .3054±.0140 (4) .2907±.0136 (1) .3084±.0152 (5) .2928±.0168 (2)
LEV .1357±.0122 (1) .1641±.0131 (4) .1500±.0098 (3) .1482±.0112 (2) .1658±.0202 (5)
CEV .0346±.0076 (1) .1667±.0093 (5) .0357±.0113 (2) .0393±.0090 (3) .0443±.0080 (4)

avg. rank 2 3 3.3 4.1 2.6
DBS .1363±.0380 (2) .1409±.0336 (4) .1422±.0498 (5) .1386±.0521 (3) .0974±.0560 (1)
CPU .0089±.0126 (1) .0366±.0068 (4) .0329±.0295 (2) .0384±.0326 (5) .0342±.0232 (3)
BCC .2631±.0424 (2) .2669±.0483 (3) .2784±.0277 (4) .2937±.0297 (5) .2526±.0472 (1)
MPG .0526±.0263 (1) .0538±.0282 (2) .0669±.0251 (4) .0814±.0309 (5) .0656±.0248 (3)
ESL .0517±.0235 (1) .0602±.0264 (2) .0654±.0228 (3) .0718±.0188 (5) .0657±.0251 (4)

MMG .1584±.0255 (2) .1683±.0231 (3) .1798±.0293 (4) .1853±.0232 (5) .1521±.0249 (1)
ERA .2855±.0257 (1) .2932±.0261 (4) .2885±.0302 (2) .2951±.0286 (5) .2894±.0278 (3)
LEV .1312±.0186 (1) .1662±.0171 (5) .1518±.0104 (3) .1390±.0129 (2) .1562±.0252 (4)
CEV .0221±.0091 (1) .1643±.0184 (5) .0376±.0091 (3) .0262±.0067 (2) .0408±.0090 (4)

avg. rank 1.3 3.6 3.3 4.1 2.7

tends to be. This is understandable, since background knowledge will lose im-
portance with an increasing number of observations.

The results of the experiments are summarized in Table 2 and 3. As can be
seen, CR compares quite favorably with the other approaches, especially with
the non-monotone KLR methods. It also outperforms LR, at least for sufficiently
extensive training data; if the amount of training data is small, however, LR is
even better, probably because CR will then tend to overfit the data. Finally,
CR also compares favorably with MORE, although the difference in terms of
the average ranks is not statistically significant (the critical distance for the
Nemenyi test at significance level 0.05 is 2.03).

In Fig. 3, a visualization of the (pairwise) interaction between attributes is
shown for the car evaluation data, for which CR performs significantly better
than LR. In this data set, the evaluation of a car (output attribute) depends on
a number of criteria, namely (a) buying price, (b) price of the maintenance, (c)
number of doors, (d) capacity in terms of persons to carry, (e) size of luggage
boot, (f) safety of the car. These criteria form a natural hierarchy: (a) and (b)
form a subgroup PRICE, whereas the other properties are of a TECHNICAL
nature and can be further decomposed into COMFORT (c–e) and safety (f).
Interestingly, the interaction in our model nicely agrees with this hierarchy: In-



Table 3. Win statistics (number of data sets on which the first method was better
than the second one) for 20%, 50%, and 80% training data.

CR LR KLR-ply KLR-rbf MORE
CR – 2 | 6 | 9 7 | 7 | 9 7 | 9 | 9 7 | 5 | 6
LR 7 | 3 | 0 – 7 | 5 | 5 7 | 7 | 6 7 | 3 | 2
KLR-ply 2 | 2 | 0 2 | 4 | 4 – 5 | 5 | 6 7 | 4 | 5
KLR-rbf 2 | 0 | 0 2 | 2 | 3 4 | 4 | 3 – 6 | 2 | 2
MORE 2 | 4 | 3 2 | 6 | 7 2 | 5 | 4 3 | 7 | 7 –

teraction within each subgroup tends to be smaller (as can be seen from the
darker colors) than interaction between criteria from different subgroups, sug-
gesting a kind of redundancy in the former and complementarity in the latter
case.
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Fig. 3. Visualization of the interaction index for the car evaluation data (numerical
values are shown in terms of level of gray, values on the diagonal are set to 0). Groups
of related criteria are indicated by the black lines.

6 Concluding Remarks

In this paper, we have advocated the use of the discrete Choquet integral as an
aggregation operator in machine learning, especially in the context of learning
monotone models. Apart from combining monotonicity and flexibility in a math-
ematically sound and elegant manner, the Choquet integral offers measures for
quantifying the importance of individual predictor variables and the interaction
between groups of variables, thereby providing important information about the
relationship between independent and dependent variables.

As a concrete application, we have proposed a generalization of logistic re-
gression, in which the Choquet integral is used for modeling the log odds of the



positive class. First experimental studies have shown that this method, called
choquistic regression, compares quite favorably with other methods. We like to
mention again, however, that an improvement in prediction accuracy should not
necessarily be seen as the main goal of monotone learning. Instead, the adherence
to monotonicity constraints is often an important prerequisite for the acceptance
of a model by domain experts.

An interesting question to be addressed in future work concerns a possible
restriction of the choquistic model to k-additive measures, for a suitable value
of k. This may have two important advantages: First, it may prevent from over-
fitting the data in cases where the full flexibility of the Choquet integral is
actually not needed. Second, since less parameters need to be identified, the
computational complexity will be reduced, too. Of course, the key problem to
be addressed in this regard concerns the question of how to choose k in the most
favorable way.

Beyond that, the Choquet integral can of course be combined with other
machine learning methods, and its use is not restricted to (binary) classification.
We are quite convinced of its high potential in machine learning in general, and
we are looking forward to exploring this potential in greater detail.
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