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This paper introduces a fuzzy rule-based classification method called FR3, which is short for
Fuzzy Round Robin RIPPER. As the name suggests, FR3 builds upon the RIPPER algorithm, a
state-of-the-art rule learner. More specifically, in the context of polychotomous classification, it
uses a fuzzy extension of RIPPER as a base learner within a round robin scheme and, thus, can
be seen as a fuzzy variant of the R3 learner that has recently been introduced in the literature.
A key feature of FR3, in comparison with its non-fuzzy counterpart, is its ability to represent
different facets of uncertainty involved in a classification decision in a more faithful way. FR3
thus provides the basis for implementing “reliable classifiers” that may abstain from a decision
when not being sure enough, or at least indicate that a classification is not fully supported by
the empirical evidence at hand. Besides, our experimental results show that FR3 outperforms
R3 in terms of classification accuracy and, therefore, suggest that it produces predictions that
are not only more reliable but also more accurate. The superb classification performance of FR3
is furthermore confirmed by comparing it to other state-of-the-art (fuzzy) rule learners.

1 Introduction

A close connection between classification learning, on the one side, and fuzzy preference modeling and decision
making, on the other side, has recently been established by Hüllermeier and Brinker in [33]. The idea of their
approach is to reduce a problem of polychotomous classification, involving m classes L = {λ1 . . . λm}, to a
problem of decision making based on a fuzzy preference structure. Following a round robin scheme, their
approach, called LVPC (Learning Valued Preferences for Classification), first trains an ensemble of binary
models, one for every pair of classes. Then, given a query instance x with unknown class λ(x), three fuzzy
relations (in the form of {1 . . .m}× {1 . . .m} → [0, 1] mappings) can be derived from the predictions of this
ensemble. For every pair of labels (λi, λj), the corresponding entries in these relations express, respectively,
a degree of

• preference: the degree to which the label λi is (strictly) preferred to λj as a classification for x (and
vice versa);

• conflict: the degree to which λi and λj are in conflict with each other (as both of them are supported
simultaneously as potential classifications);

• ignorance: the degree of ignorance reflecting to what extent neither λi nor λj is supported as a
classification.

A final classification, or any other type of decision (e.g., to abstain or to gather additional information),
can then be made on the basis of these relations.

A key feature of this approach is its ability to represent ignorance in a faithful way. In fact, even though
many machine learning methods are able to reflect conflict in one way or the other, for example in terms
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of probability distributions, the same is not true for ignorance. To illustrate the meaning of conflict and
ignorance in the context of classification, consider the simple scenario shown in Figure 1a: Given observations
from two classes, black and white, three new instances marked by a cross need to be classified. Obviously,
given the current observations, the upper left instance can quite safely be classified as white. The case of
the lower left instance, however, involves a high level of conflict, since both classes, black and white, appear
plausible. The third situation is an example of ignorance: The upper right instance is located in a region of
the instance space in which no observations have been made so far. Consequently, there is neither evidence
in favor of class black nor in favor of class white.

It was already mentioned in [33] that rule-based classifiers are, in principle, ideally suited for implementing
the pairwise models needed in LVPC. The main reason for this suitability is that, in contrast to standard
discriminative classification methods (such as linear discriminant functions), rule-based models are able to
represent conflict and, more importantly, ignorance in a natural way: A situation of conflict occurs if an
instance x is simultaneously covered by two (or more) conflicting rules, while a situation of ignorance occurs
if it is not covered by any rule; see Figure 1b.

In this regard, however, conventional rule-based classifiers can be criticized for at least two reasons: First,
many approaches induce proper rules only for one class, typically the minority class, and add a default rule
that predicts the other class in case no other rule applies. Thus, ignorance is eliminated in an artificial and
arguably questionable way. In fact, note that this approach may come along with a high level of extrapolation,
since the default class can be predicted in regions where it has never been observed before.

Second, since conventional (non-fuzzy) rules have “sharp boundaries”, they produce an abrupt transition
between support of a class and ignorance which is not very natural. Intuitively, the farther away an instance
is located from the core of the closest rule, the higher the degree of ignorance should be. Or, stated differently,
the support provided by a rule should decrease from “full” (inside the core) to “zero” in a gradual instead
of an abrupt way.

To address these two issues, we propose to use fuzzy rules instead of conventional rules. More specifically,
we develop a fuzzy extension of RIPPER [12], a state-of-the-art rule induction algorithm that produces
accurate models in an efficient way. By using the fuzzy instead of the original version of RIPPER as a base
learner within the round robin (all-pairs) decomposition scheme, we extend the R3 method proposed by
Fürnkranz in [24]. Experimentally, it will be shown that our approach, called FR3, is not only able to reflect
conflict and ignorance of a classification in a faithful way, but also outperforms R3 in terms of predictive
accuracy. The superb classification performance of FR3 is furthermore confirmed by comparing it to the
C4.5 decision tree learner [52] as well as a grid-based [8, 9] and an evolutionary fuzzy rule learner [27, 28].

(a) Observations from two classes (points) and new
query instances (crosses).

(b) Regions of conflict (gray area) and ignorance
(area not covered by any rule) in case of a rule-based
model (rules indicated as rectangles).

Figure 1: Exemplary classification scenarios.
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2 Outline of RIPPER

RIPPER was introduced in [12] as a successor of the IREP algorithm for rule induction [26]. Even though
the key principles remained the same, RIPPER improves IREP in many details and is also able to cope with
multi-class problems.

Consider a polychotomous classification problem involving m classes L
df
= {λ1 . . . λm}. Suppose instances

to be represented in terms of attributes Ai, i = 1 . . . n, which are either numerical (real-valued) or nominal,
and let Di denote the corresponding domains. Thus, an instance is represented as an n-dimensional attribute
vector

x = (x1 . . . xn) ∈ D
df
= D1 × . . .× Dn.

A single RIPPER rule is of the form r = 〈rA | rC〉, consisting of an antecedent part rA and a consequent
part rC . The antecedent part rA is a conjunction of predicates (selectors) which are of the form (Ai = v)
for nominal and (Ai θ v) for numerical attributes, where θ ∈ {≤, =,≥} and v ∈ Di. The consequent part rC

is a class assignment of the form (class = λ), where λ ∈ L. A rule r = 〈rA | rC〉 is said to cover an instance
x = (x1 . . . xn) if the attribute values xi satisfy all the predicates in rA.

RIPPER learns such rules in a greedy manner, following a separate-and-conquer strategy [23]. Prior to the
learning process, the training data is sorted by class labels in ascending order according to the corresponding
class frequencies. Rules are then learned for the first m − 1 classes, starting with the smallest one. Once
a rule has been created, the instances covered by that rule are removed from the training data, and this is
repeated until no instances from the target class are left. The algorithm then proceeds with the next class.
Finally, when RIPPER finds no more rules to learn, a default rule (with empty antecedent) is added for the
last (and hence most frequent) class.

Rules for single classes are learned until either all positive instances are covered or the last rule r that
has been added was “too complicated”. The latter property is implemented in terms of the total description
length [53]: The stopping condition is fulfilled if the description length of r is at least d bits longer than the
shortest description length encountered so far; Cohen suggests choosing d = 64.1

2.1 Learning Individual Rules

Each individual rule is learned in two steps. The training data, which has not yet been covered by any rule,
is therefore split into a growing and a pruning set. In the first step, the rule will be specialized by adding
antecedents which were learned using the growing set. Afterward, the rule will be generalized by removing
antecedents using the pruning set.

Rule growing A new rule is learned on the growing data, using a propositional version of the FOIL algorithm
[51, 54]. It starts with an empty conjunction and adds selectors until the rule covers no more negative
instances, i.e., instances not belonging to the target class. The next selector to be added is chosen so
as to maximize FOIL’s information gain criterion (IG), which is a measure of improvement of the rule in
comparison with the default rule for the target class:

IGr
df
= pr ×

(

log2

(

pr

pr + nr

)

− log2

(

p

p + n

))

,

where pr and nr denote, respectively, the number of positive and negative instances covered by the rule;
likewise, p and n denote the number of positive and negative instances covered by the default rule.

Rule pruning The above procedure typically produces rules that overfit the training data. To remedy this
effect, a rule is simplified so as to maximize its performance on the pruning data. For the pruning procedure
the antecedents are considered in the order in which they were learned, and pruning actually means finding
a position at which that list of antecedents is cut. The criterion to find that position is the rule-value metric:

V (r)
df
=

pr − nr

pr + nr

Therewith all antecedents that were learned after the antecedent which maximizes V (r), will be pruned.
Shorter rules are preferred in the case of a tie.

1Essentially, the description length of a rule depends on the number selectors in its antecedent part; see [52] for more details.
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2.2 Rule Optimization

The rule set RS produced by the learning algorithm outlined so far, called IREP*, is taken as a starting
point for a subsequent optimization process. This process re-examines the rules ri ∈ RS in the order in
which they were learned. For each ri, two alternative rules r′i and r′′i are created. The replacement rule
r′i is an empty rule, which is grown and pruned in a way that minimizes the error of the modified rule set
(RS∪{r′i})\{ri}. The revision rule r′′i is created in the same way, except that it starts from ri instead of the
empty rule. To decide which version of ri to retain, the MDL (Minimum Description Length [52]) criterion
is used. Afterward, the remaining positives are covered using the IREP* algorithm.

The RIPPERk algorithm iterates the optimization of the rule set and the subsequent covering of the
remaining positive examples with IREP* k times, hence the name RIPPER (Repeated Incremental Pruning
to Produce Error Reduction).

2.3 Round Robin RIPPER

Round robin learning aka all-pairs or all-versus-all learning is a special decomposition technique that trans-
forms a multi-class classification problem involving m > 2 classes L = {λ1 . . . λm} into a number of binary
problems. To this end, a separate model (base learner) Mi,j is trained for each pair of labels (λi, λj),
1 ≤ i < j ≤ m. Mi,j is intended to separate the objects with label λi from those having label λj . If
(x, λa) ∈ D×L is an original training example (revealing that instance x has label λa), then x is considered
as a positive example for all learnersMa,j , j > a, and as a negative example for the learnersMi,a, i < a.

At classification time, a query x is submitted to all m(m− 1)/2 learners, and each prediction Mi,j(x) is
typically interpreted as a vote for a label. Assuming models in the form of [0, 1]-valued (scoring) classifiers,
an output close to 1 indicates support of λi, whereas an output close to 0 is counted as evidence in favor of
λj . The simplest classification strategy, then, is to predict the class label with the highest score in terms of
the sum of (weighted) votes:

si
df
=

∑

1≤j 6=i≤m

si,j , (1)

where si,j =Mi,j(x) for i < j and si,j = 1−Mj,i(x) for j < i.
Even though the main purpose of decomposition techniques is to enable the application of methods that

are inherently limited to binary classification, such as support vector machines, to polychotomous problems,
round robin learning can be interesting even in the case where the modelsM can, in principle, handle multi-
class problems in a direct way. The main reason is that the binary problems are often much simpler than
the original m-class problem, so that models induced from data become more accurate and more stable. In
particular, for the case of RIPPER, Fürnkranz [24, 25] showed that a Round Robin RIPPER (R3), i.e., an
all-pairs classifier with RIPPER as a (binary) base learner, outperforms the original multi-class RIPPER.

Apart from that, the all-pairs decomposition technique is essential for the LVPC approach proposed in
[33], namely for producing the (binary) relations that constitute a fuzzy preference structure (cf. Section 3.5).

3 Fuzzy Round Robin RIPPER

In this section, we introduce the Fuzzy Round Robin RIPPER (FR3) approach. This is done in two steps:
First, we propose a fuzzy version of the basic RIPPER, called FRIPPER. In a second step, FRIPPER

is then integrated as a base learner in a round robin learning scheme. FRIPPER modifies the original
RIPPER algorithm in several ways, as will be detailed in the following subsections; here, we focus on the
two-class case. The multi-class case, in connection with round robin learning, will then be addressed in the
final subsection.

3.1 Learning Rules for Both Classes

A first modification of RIPPER concerns its use of default rules. As mentioned previously, using one class
as a default prediction is disadvantageous with regard to reliable classification and, in particular, hinders a
faithful representation of ignorance. Besides, this strategy comes along with a systematic bias in favor of
those classes chosen as a default, namely the large ones, which also causes problems in round robin learning.
This is why Fürnkranz, in his R3 algorithm, modifies RIPPER as follows: Each pairwise model actually
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consists of two classifiers which take, respectively, the first and the second class as a default; the model
output, then, is the average of the two predictions.

To represent ignorance, a classifier must be able to abstain, that is, to refrain from supporting any class.
To achieve this, we also train two classifiers for every pairwise model. However, instead of averaging the two
classifiers, we combine them by merging the respective proper rules, i.e., the non-default rules. To realize
the difference, consider an instance not covered by any (proper) rule. While the support for both classes
is 0 in our approach, it is, respectively, 1/2 when averaging the models (as the instance is covered by both
default rules).2

The RIPPER algorithm can be divided into the building and the optimization phase. The rule building
is done via the IREP* algorithm, which essentially consists of a propositional FOIL algorithm, the pruning
strategy (cf. Section 2.1) and the stopping conditions. Interestingly, we found that the pruning strategies in
IREP* have a negative influence on the performance of FR3. We therefore omitted the pruning step and
instead learned the initial rule set on the whole training data directly. To explain this finding, note that,
without pruning, IREP* produces more specific rules that better fit our general strategy to extrapolate in a
“cautious” way. Moreover, small rules provide a better starting point for our fuzzification procedure, to be
detailed in Section 3.3, in which rules can be made more general but not more specific.

In the optimization phase, the pruning was retained, as its deactivation was not beneficial. This is in
agreement with the goal to minimize the MDL. The coverage of the remaining positive instances, which is
again accomplished with IREP*, also benefited from omitting the pruning, just like IREP* in the building
phase.

The new algorithm still applies pruning when it comes to creating the replacement and the revision
rule. Here, the original pruning strategy is applied, except in case the pruning strategy tries to remove all
antecedents from a rule, thereby generating a default rule. In this case, the pruning will be aborted, and the
unpruned rule will be used for the MDL comparison in the optimization phase.

3.2 Representation of Fuzzy Rules

A selector constraining a numerical attribute Ai (with domain Di = R) in a RIPPER rule can obviously
be expressed in the form (Ai ∈ I), where I ⊆ R is an interval: I = (−∞, v] if the rule contains a selector
(Ai ≤ v), I = [u,∞) if it contains a selector (Ai ≥ u), and I = [u, v] if it contains both (in the last case, two
selectors are combined).

Essentially, a fuzzy rule is obtained through replacing intervals by fuzzy intervals, namely fuzzy sets with
trapezoidal membership function. A fuzzy interval of that kind is specified by four parameters and will be
written IF = (φs,L, φc,L, φc,U , φs,U ):

IF (v)
df
=



















1 φc,L ≤ v ≤ φc,U

v−φs,L

φc,L−φs,L φs,L < v < φc,L

φs,U−v
φs,U−φc,U φc,U < v < φs,U

0 else

φc,L and φc,U are, respectively, the lower and upper bound of the core of the fuzzy set; likewise, φs,L and
φs,U are, respectively, the lower and upper bound of the support. Note that, as in the non-fuzzy case, a
fuzzy interval can be open to one side (φs,L = φc,L = −∞ or φc,U = φs,U =∞.) In fact, as will be seen later
on, the fuzzy antecendents successively learned by FRIPPER are fuzzy half-intervals of exactly that kind.

A fuzzy selector (Ai ∈ IF
i ) covers an instance x = (x1 . . . xn) to the degree IF

i (xi). A fuzzy rule rF

involving k selectors (Ai ∈ IF
i ), i = 1 . . . k, covers x to the degree µrF (x) = mini=1...k IF

i (xi).

3.3 Rule Fuzzification

To obtain fuzzy rules, the idea is to fuzzify the final rules from our modified RIPPER algorithm. More
specifically, using the training set DT ⊆ D for evaluating candidates, the idea is to search for the best fuzzy
extension of each rule, where a fuzzy extension is understood as a rule of the same structure, but with
intervals replaced by fuzzy intervals. Taking the intervals Ii of the original rules as the cores [φc,L

i , φc,U
i ]

2Actually, our implementation works with only one classifier per model that contains learned rules for both classes. The
important point here is that both R3 and our approach learn two rule sets for each pair of classes.
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of the sought fuzzy intervals IF
i , the problem is to find optimal bounds for the respective supports, i.e., to

determine φs,L
i and φs,U

i .

A

m( )A

1

0

core bound

...
possible support bounds

Figure 2: Examination of possible support bounds given a crisp antecedent.

For the fuzzification of a single antecedent (Ai ∈ Ii) it is important to consider only the relevant training

data D
(i)
T , i.e., to ignore those instances that are excluded by any other antecedent (Aj ∈ IF

j ), j 6= i:

D
(i)
T =

{

x ∈ DT | I
F
j (xj) > 0 for all j 6= i

}

⊆ DT (2)

We partition D
(i)
T into the subset of positive instances, D

(i)

T+ , and negative instances, D
(i)

T−
. To measure the

quality of a fuzzification, the rule purity will be used:

pur =
pi

pi + ni

, (3)

pi
df
=

∑

x∈D
(i)

T+

µAi
(x)

ni
df
=

∑

x∈D
(i)

T−

µAi
(x)

Rules are fuzzified in a greedy way, as shown by Algorithm 1. In each iteration, a fuzzification is computed
for every antecedent, namely the best fuzzification in terms of (3). This is done by testing all values

{xi |x = (x1 . . . xk) ∈ D
(i)
T , xi < φc,L

i }

as candidates for φs,L
i and, likewise, all values

{xi |x = (x1 . . . xk) ∈ D
(i)
T , xi > φc,U

i }

as candidates for φs,U
i (see Figure 2). Ties are broken in favor of larger fuzzy sets, that is, larger distances

from the core.
The fuzzification is then realized for the antecedent with the largest purity. This is repeated until all

antecedent have been fuzzified. It is important to mention that there exists a trivial fuzzification which is
always found, namely the one that sets the support bound to the first instance behind the core bound. Even
though this fuzzification does not change the purity on the training data, it is meaningful when it comes to
classifying new instances.

Note that the fuzzification of a single antecedent may change the relevant training data (2), which is
hence recomputed in each iteration. In fact, each fuzzification may increase the number of covered instances,
which in turn may also influence the rule purity. Furthermore, note that, after the complete antecedent
part of a rule has been fuzzified, the whole procedure could in principle be repeated until convergence is
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Algorithm 1 The antecedent fuzzification algorithm for a rule r

1: Let A be the set of numeric antecedents of r
2: while A 6= ∅ do

3: amax ← null {amax denotes the antecedent with the highest purity}
4: purmax ← 0 {purmax is the highest purity value, so far}
5: for i← 1 to size(A) do

6: compute the best fuzzification of A[i] in terms of purity
7: purA[i] ← be the purity of this best fuzzification
8: if purA[i] > purmax then

9: purmax ← purA[i]

10: amax ← A[i]
11: end if

12: end for

13: A← A \ amax

14: Update r with amax

15: end while

achieved (convergence is guaranteed, as purity can only increase in each iteration). We did not implement
this option, however, as we observed that, except for very rare cases, convergence is already achieved after
the first iteration.

To analyze the complexity of the above fuzzification procedure, note that, in each iteration, at most |DT |
instances (support bounds) are checked for every candidate attribute. Since the total number of iterations
is bounded by the number of attributes, n, the overall complexity is O(|D|n2).

3.3.1 Bounding Fuzzy Rules

Some fuzzy intervals may still be open to one side, which means that the corresponding rule has unbounded
support. As this is not in agreement with our “cautious” extrapolation strategy, we finally close such
intervals: If φc,L

j = −∞, this core bound is set to

φc,L
j = min{xj | x = (x1 . . . xk) ∈ DT+ , µIF

j
(x) > 0},

where DT+
is the subset of positive instances in DT. Moreover, the support bound φs,L

j is set to the minimal

value in Dj , the domain of attribute Aj .
3 This way, the core of the rule is restricted to the region in which

positive examples have indeed been observed, while the support decreases as a linear function of the distance
from this region. Analogous modifications are made in the case where φc,U

j =∞.

3.4 Classifier Output

Suppose that fuzzy rules r0
1 . . . r0

k and r1
1 . . . r1

ℓ have been learned, respectively, for classes λ0 and λ1. For a
new query instance x, the supports of these classes are then given, respectively, by

s0
df
= maxi=1...k (µr0

i
(x) ·CF(r0

i ))

s1
df
= maxj=1...ℓ (µr1

j
(x) · CF(r1

j )) ,
(4)

where

CF(r) =

∑

x∈D
+
T

: λ(x)=rC
µ(x)

∑

x∈DT
µ(x)

(5)

3More specifically, to avoid 0-memberships, we go beyond this point, as a rule of thumb by 50% of the width of Dj .
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is a measure of the confidence or validity of a rule.4 From these two support degrees, the following values
are derived, which constitute the output of the FRIPPER algorithm (in the two-class case):

P (λ0, λ1) = s0 −min{s0, s1}
P (λ1, λ0) = s1 −min{s0, s1}
C(λ0, λ1) = min{s0, s1}
I(λ0, λ1) = 1−max{s0, s1}

(6)

C(λ0, λ1) is the degree of conflict, namely the degree to which both classes are supported. Likewise, I(λ0, λ1)
is the degree of ignorance, namely the degree to which none of the classes is supported. Finally, P (λ0, λ1)
and P (λ1, λ0) denote, respectively, the strict preference for λ0 and λ1. Note that at least one of these two
degrees is zero, and that P (λ0, λ1)+P (λ1, λ0)+C(λ0, λ1)+I(λ0, λ1) ≡ 1. In passing, we also remark that (6)
is actually a standard decomposition scheme, which is used in fuzzy preference modeling [20] to decompose
a weak preference relation (here given by the support degrees s0, s1) into three parts: strict preference,
indifference (which here corresponds to conflict), and indistinguishablity (here ignorance).

3.5 Round Robin Learning

Given a set of classes L = {λ1 . . . λm}, the FRIPPER algorithm as outlined above can be applied to each
pair of labels (λk, λℓ), thereby producing an ensemble of models Mkℓ, 1 ≤ k < ℓ ≤ m. A query instance
x ∈ D is then submitted to each model. As explained in Section 3.4, the output of modelMkℓ is a quadruple
Mkℓ(x) = (pkℓ, pℓk, ckℓ, ikℓ), where pkℓ is the preference for λk in comparison with λℓ, pℓk the preference for
λℓ, ckℓ the corresponding degree of conflict, and ikℓ the degree of ignorance.

Thus, three relations (P, C, I) are obtained, a strict preference relation P = (pkℓ), a conflict relation
C = (ckℓ), and an ignorance relation I = (ikℓ); note that C and I are symmetric, so the entries in the relations
are well-defined for all 1 ≤ k 6= ℓ ≤ m. These relations provide the basis for sophisticated classification and
decision policies. For example, in the standard scenario where a single prediction is sought, the following
classification rule could be used:

λ∗ = arg max
λk∈L

∑

1≤ℓ 6=k≤m

pkℓ +
1

2
· ckℓ +

Nk

Nk + Nℓ

· ikℓ, (7)

where Nk is the number of examples from class λk in the training data (and hence an unbiased estimate
of the class probability). This decision rule, that turned out to perform well in practice (cf. Section 4),
evaluates each candidate label in terms of the sum of strict preferences over all other labels, distributes the
corresponding degrees of conflict in a uniform way and the degrees of ignorance in proportion to the size of
the classes (in other words, prior probabilities are used in the case of no further information).

Going beyond the conventional classification setting, a preference structure (P, C, I) can be especially
useful in generalized settings in which, for example, more than one class can be predicted in cases of conflict,
or a classification decision can be refused in cases of ignorance (cf. Section 4.4).

4 Experimental Results

To analyze the performance of our FR3 approach, we conducted several experimental studies under the
WEKA 3.5.5 framework [61]. As a starting point, we used the RIPPER implementation of WEKA (“JRip”),
both for re-implementing Fürnkranz’s R3 and our FR3.

4.1 Classification Accuracy

In a first study, we compared RIPPER, R3, and FR3 with respect to classification accuracy. The minimum
number of covered instances per antecedent was set to 2, and for the number of folds and the number of
optimizations in RIPPER we used, respectively, values 3 and 2 (which is the default setting in WEKA and
leads to RIPPER2). R3 was used with the weighted voting variant, i.e., the vote of a pairwise classifiers
is weighted in terms of rule purity; in [25], this method was found to outperform binary (0/1) voting and
Laplace weighted voting.

4See [35, 37] for an interesting discussion of the effect of rule weighing and advantages thereof.
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Additionally, we also included the C4.5 decision tree learner [52] as a well-known benchmark classifier and,
moreover, added two fuzzy rule-based classifiers from the KEEL suite [1]: The CHI algorithm is based on
[8, 9] and uses rule weighing as proposed in [37].5 The SLAVE algorithm makes use of genetic algorithms
to learn a fuzzy classifier [27, 28].6 Both algorithms are frequently used for experimental purposes (e.g.,
[19, 36, 13, 62]).

We collected 25 datasets from the UCI [3] and the STATLIB [45] repositories and from [5, 4, 30]; see
Table 1 for an overview. Additionally, we created five data sets with data from a German meteorological
institute (DWD).7 In these data sets, the task is to predict the origin (one of the federal states in Germany)
of a set of measurements (e.g., sunshine duration, temperature, ...). As our fuzzy extension is ineffective for
nominal attributes, we only selected datasets having at least as many numeric as nominal attributes.

# Attributes
Dataset # Inst.. # Classes c n m
analcatdata-authorship 841 4 70 0 0
analcatdata-halloffame 1340 3 15 2 1
analcatdata-votesurvey 48 4 3 1 0
cars 406 3 6 1 2
collins 500 15 20 3 0
ecoli 336 8 7 0 0
eucalyptus 736 5 14 5 9
glass 214 6 9 0 0
iris 150 3 4 0 0
metStatCoordinates 4748 16 3 0 0
metStatRainfall 4748 16 12 0 0
metStatRST 336 12 3 0 0
metStatSunshine 422 14 12 0 0
metStatTemp 673 15 12 0 0
mfeat-factors 2000 10 216 0 0
mfeat-fourier 2000 10 76 0 0
mfeat-karhunen 2000 10 64 0 0
mfeat-morphological 2000 10 6 0 0
mfeat-zernike 2000 10 47 0 0
optdigits 5620 10 64 0 0
page-blocks 5473 5 10 0 0
pasture 36 3 21 1 0
pendigits 10992 10 16 0 0
segment 2310 7 19 0 0
squash-unstored 52 3 20 3 8
synthetic control 600 6 60 1 0
vehicle 846 4 18 0 0
vowel 990 11 10 2 0
waveform-5000 5000 3 40 0 0
wine 178 3 13 0 0

Table 1: Properties of the datasets used in the experiments: number of instances and classes, continuous (c)
and nominal (n) attributes, and attributes with missing instances (m).

The experiments were conducted by randomly splitting each dataset into 2/3 for training and 1/3 for
testing, and deriving the classification accuracy on the testing data for each learner. This procedure was
repeated 100 times. Table 2 summarizes the results in terms of mean classification accuracies.8

5We used the following parameter setting: 3 fuzzy sets, product t-norm, maximum inference, and weighting scheme number
2 from [37].

6We used the following parameter setting: 5 fuzzy sets, 500 iterations without change, mutation probability 0.01, use weights,
population size 100.

7Available at: http://www.uni-marburg.de/fb12/kebi/research/repository
8The classifier FR3-c, which also appears in the table, will be analyzed in Section 4.2.
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The overall picture conveyed by the results is clearly in favor of FR3, which outperforms the other methods
on most data sets. In particular, FR3 is better than C4.5 on 25 out of 30 datasets, better than CHI on all
but two datasets, and better than SLAVE on all but one dataset. To analyze the differences between FR3,
R3 and RIPPER more closely, we followed the two-step procedure recommended by Demšar [15]: First, a
Friedman Test [21, 22] is conducted to test the null hypothesis of equal classifier performance. In case this
hypothesis is rejected, which means that the classifiers’ performance differs in a statistically significant way,
a posthoc test is conducted to analyze these differences in more detail.

data set FR3 R3 RIPPER C4.5 CHI SLAVE FR3-c
analcatdata-authorship 95.17 94.37 93.05 93.50 71.60 91.87 94.66
analcatdata-halloffame 93.13 93.22 92.87 92.87 92.18 92.68 93.06
analcatdata-votesurvey 36.06 35.58 34.40 38.75 40.19 29.51 36.63
cars 81.48 79.52 75.93 82.15 68.96 70.68 80.93
collins 94.53 92.87 92.67 96.10 42.63 50.87 93.12
ecoli 82.91 82.46 80.57 81.35 77.43 81.03 82.04
eucalyptus 64.25 63.72 58.69 59.98 54.09 58.16 63.88
glass 72.98 69.61 63.18 66.69 61.39 61.83 71.13
iris 94.78 94.25 93.45 94.25 92.27 94.92 94.08
metStatCoordinates 93.30 92.85 92.04 92.87 46.79 58.77 92.97
metStatRainfall 69.68 68.13 60.66 59.47 24.51 29.35 68.86
metStatRST 43.22 44.13 36.08 38.60 25.24 42.02 43.30
metStatSunshine 52.94 51.17 44.48 46.78 37.93 28.83 52.25
metStatTemp 57.38 56.10 47.45 53.18 30.63 22.10 57.23
mfeat-factors 93.35 92.64 87.05 87.96 89.19 86.83 93.06
mfeat-fourier 80.48 79.26 71.37 74.42 69.27 73.49 80.16
mfeat-karhunen 91.51 89.70 79.13 80.20 82.55 78.37 91.13
mfeat-morphological 72.31 72.25 70.74 71.60 57.93 67.08 72.09
mfeat-zernike 77.18 76.13 67.58 69.11 72.37 68.26 77.05
optdigits 96.22 95.55 89.68 89.51 45.90 93.45 96.01
page-blocks 97.04 97.13 96.79 96.89 91.96 93.58 96.92
pasture-production 71.28 67.91 68.46 73.67 44.23 53.63 67.47
pendigits 98.07 97.48 95.54 95.92 97.45 87.26 97.67
segment 96.97 96.14 94.53 95.95 83.65 88.87 96.52
squash-unstored 75.52 74.92 71.74 76.08 70.56 65.56 75.02
synthetic control 92.24 90.78 82.85 90.00 68.33 89.23 90.89
vehicle 72.78 71.66 67.80 71.38 61.99 64.08 72.63
vowel 84.03 77.85 64.71 75.60 59.49 63.84 81.58
waveform 79.79 80.58 78.72 75.05 72.38 75.34 78.56
wine 92.70 92.63 90.02 91.22 92.77 92.46 91.84

Table 2: Estimation of classification accuracies in terms of averages on the testing data (best per dataset in
bold).

The Friedman test is a non-parametric test which is based on the relative performance of classifiers in terms
of their ranks: For each dataset, the methods to be compared are sorted according to their performance,
i.e., each method is assigned a rank (in case of ties, average ranks are assigned); see Table 3. Let k be the
number of classifiers and N the number of datasets. Let rj

i be the rank of classifier j on dataset i, and

Rj = 1
N

∑N
i=1 rj

i the average rank of classifier j. Under the null-hypothesis, the Friedman statistic

χ2
F =

12N

k(k + 1)





k
∑

j=1

(Rj)
2 −

k · (k + 1)2

4





is asymptotically χ2 distributed with k − 1 degrees of freedom. If N and k are not large enough, it is
recommended to use the following correction which is F-distributed with (k− 1) and (k− 1)(N − 1) degrees
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of freedom [34]:
(N − 1) · χ2

F

N · (k − 1)− χ2
F

(8)

In our case, the value of (8) is 149.82, while the critical value for the significance level α = 0.01 is only 4.99.
Thus, the null-hypothesis can quite safely be rejected, which means that there are significant differences in
the classifiers’ performance.

Dataset FR3 R3 RIPPER
analcatdata-authorship 1 2 3
analcatdata-halloffame 2 1 3
analcatdata-votesurvey 1 2 3
cars 1 2 3
collins 1 2 3
ecoli 1 2 3
eucalyptus 1 2 3
glass 1 2 3
iris 1 2 3
metStatCoordinates 1 2 3
metStatRainfall 1 2 3
metStatRST 2 1 3
metStatSunshine 1 2 3
metStatTemp 1 2 3
mfeat-factors 1 2 3
mfeat-fourier 1 2 3
mfeat-karhunen 1 2 3
mfeat-morphological 1 2 3
mfeat-zernike 1 2 3
optdigits 1 2 3
page-blocks 2 1 3
pasture-production 1 3 2
pendigits 1 2 3
segment 1 2 3
squash-unstored 1 2 3
synthetic control 1 2 3
vehicle 1 2 3
vowel 1 2 3
waveform 2 1 3
wine 1 2 3
average (R) 1.13 1.90 2.97

Table 3: Ranks of the classifiers.

Given the result of the Friedman Test, we conducted the Nemenyi Test [48] as a posthoc test to compare
classifiers in a pairwise manner. According to this test, the performance of two classifiers is significantly
different if the distance of the average ranks exceeds the critical distance CDα = qα,k,∞ ·

1√
2
, where the q-

value is taken from the Studentized Range Statistic [49]. The results of this test are summarized in Table 4:
R3 is significantly better than RIPPER at the significance level α = 0.01, which confirms the findings from
[24]. More importantly, however, FR3 is even better than R3 at the same level.

4.2 The Effect of Fuzzification

The previous results have shown that FR3 is a significant improvement in comparison to RIPPER and R3.
To explain this improvement, we conjecture that the scores produced by fuzzy rules are superior to those
produced by conventional rules, which in turn is beneficial for the voting scheme that is used by the round
robin learner to determine a prediction.
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FR3 R3 RIPPER

FR3 + +
R3 − +
RIPPER − −

Table 4: Pairwise comparison between classifiers: + (−) indicates a better (worse) performance at a signifi-
cance level of α = 0.01.

To examine whether the fuzzification of rules is indeed the main factor, or whether the improvements
should perhaps be attributed to other modifications, we conducted some additional experiments with a
“crisp” variant of FR3, included in Table 2 under the name FR3-c. To optimize an interval as originally
produced by RIPPER, this variant conducts a search process quite similar to the search for an optimal fuzzy
interval (cf. Section 3.3). Instead of a trapezoid, however, it is again only allowed to use intervals, i.e., it
simply tries to optimize the original decision boundary in terms of the rule’s purity. When comparing FR3-c
to R3, it loses 9 and wins 21 cases, which is less than the 26 wins achieved by FR3. The importance of the
fuzzy rules become even more obvious when comparing FR3-c to FR3 itself. Here, the latter has a higher
classification rate for all except two datasets.

From this analysis we conclude that the use of fuzzy rules is indeed essential for the superb performance
of FR3.

4.3 Model Complexity

Since FR3 disables the pruning step in IREP*, it learns more specialized rules. Therefore, it is likely to
produce models that are more complex, in terms of the number of rules and their lengths, than those
produced by R3.

Indeed, FR3 produces more specific rules than R3 for all but one dataset, and also the average rule length
(number of attributes in the antecedent part) of FR3 (1.78) is slightly larger than the average length for R3
(1.53); see Table 5 for detailed statistics. Likewise, FR3 uses more rules for all but one dataset, and again,
the average number of rules is slightly higher for FR3 (3.00) than for R3 (2.31).

As can be seen, the improvement in performance comes at the cost of slightly more complex models, even
though the average differences (less than one additional rule and about 0.3 additional attributes per rule)
are admissible.

4.4 Representation of Uncertainty

The ability to represent uncertainty involved in a classification decision, in terms of measures of conflict
and ignorance, is arguably one of the main advantages of FR3. To test whether FR3 does indeed provide
a basis for implementing classifier that are more “reliable”, we conducted another series of experiments in
a setting of classification with reject option. Roughly speaking, the idea is that, if γ is a reliable index of
classification uncertainty, then the value of γ should correlate with the probability to make a correct decision.
Or, stated differently, when abstaining from the classification of all instances the γ-value of which exceeds a
threshold t, the classification accuracy should improve on the remaining instances. The dependency between
the threshold t and the classification accuracy is typically depicted in the form of so-called accuracy-rejection
curves.

In our experiments, we tested two very simple uncertainty indexes (needless to say, various other indexes
are conceivable) directly related to the two types of uncertainty reflected by FR3: γc is the degree of conflict
between the top-class as suggested by FR3 (in terms of the score (7)) and the second-best class. Likewise, γi

is the degree of ignorance between these two classes. Again, each dataset was randomly split, in proportion
2:1, for training and testing. This was repeated 100 times, and each instance (occurring in potentially many
of the 100 test sets) was associated with its average γ-index.

The monotonicity expected of the dependence between rejection threshold t and classification accuracy is
confirmed by the experimental results summarized in Table 6. Using γc, an improvement is obtained for all
datasets, and γi leads to an improvement in all but one case. Typical accuracy-rejection curves are shown in
Figure 3 (the plateaus in these curves are caused by the absence of instances with corresponding γ-values).
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rules per rule set attributes per rule
Dataset FR3 R3 FR3 R3
analcatdata-authorship 2.51 2.20 1.76 1.54
analcatdata-halloffame 4.07 2.53 2.31 1.62
analcatdata-votesurvey 1.47 1.16 1.30 1.12
cars 4.28 3.14 1.86 1.64
collins 1.00 1.02 1.00 1.00
ecoli 1.45 1.20 1.34 1.12
eucalyptus 4.03 2.90 2.10 1.67
glass 1.64 1.37 1.46 1.23
iris 1.23 1.17 1.22 1.12
metStatCoordinates 1.51 1.40 1.36 1.29
metStatRainfall 4.35 3.37 2.37 2.01
metStatRST 1.68 1.40 1.35 1.22
metStatSunshine 1.59 1.35 1.42 1.23
metStatTemp 1.85 1.60 1.51 1.37
mfeat-factors 1.99 1.75 1.57 1.31
mfeat-fourier 2.69 2.14 1.93 1.54
mfeat-karhunen 2.91 2.56 1.87 1.63
mfeat-morphological 1.79 1.55 1.50 1.36
mfeat-zernike 3.30 2.63 2.09 1.70
optdigits 3.87 3.42 2.29 2.00
page-blocks 2.76 2.38 1.99 1.73
pasture-production 1.11 1.07 1.07 1.04
pendigits 3.77 3.41 2.31 2.07
segment 1.97 1.74 1.72 1.51
squash-unstored 1.33 1.20 1.19 1.10
synthetic control 1.45 1.52 1.36 1.15
vehicle 4.45 3.49 2.38 2.06
vowel 2.54 2.29 1.77 1.61
waveform 19.92 10.73 4.61 3.59
wine 1.58 1.47 1.39 1.18
average 3.00 2.31 1.78 1.53

Table 5: The number of rules per rule set and the number of attributes per rule.
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In summary, these experiments clearly show that both measures of uncertainty derived by FR3, conflict and
ignorance, are reliable indicators of the uncertainty involved in a classification decision.
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Figure 3: Accuracy-rejection curves for the dataset waveform.

5 Related Work

This section gives a brief overview of work in three related research fields, namely fuzzy rule learning,
decomposition techniques for reducing multi-class to binary classification problems, and approaches to deal
with issues of uncertainty and reliable classification.

There is a wealth of work on fuzzy rule learning, a comprehensive survey of which is clearly beyond the
scope of this paper. The field can be roughly separated into several subfields: Firstly, there are fuzzy ex-
tensions of conventional rule induction techniques, such as covering algorithms [11]. Grid-based approaches,
which proceed from fixed fuzzy partitions of the individual dimensions, are also quite popular [59]; they
are less flexible but may have advantages with respect to interpretability. A well-known representative of
this kind of approach is the CHI algorithm that we also used in our experiments [8, 9]. It proceeds from
a fuzzy partition for each attribute and learns a rule for every grid cell. This is done by searching the
training instance with maximal degree of membership in this cell (matching degree of the rule antecedent)
and adopting the corresponding class attribute as the rule consequent. It is worth mentioning that fuzzy
extensions of rule learning algorithms have not only been developed for the propositional case, but also for
the case of first-order logic [18, 50, 56].

Secondly, several fuzzy variants of decision tree learning, following a separate-and-conquer strategy and
producing rule sets of a special (hierarchical) structure, have been proposed [60].

Thirdly, hybrid methods that combine fuzzy set theory with other (soft computing) methodologies, notably
evolutionary algorithms and neural networks, are especially important in the field of fuzzy rule learning. For
example, evolutionary algorithms are often used to optimize (“tune”) a fuzzy rule base or for searching the
space of potential rule bases in a (more or less) systematic way [13]. One of these classifiers, which was
also included in our experimental comparison, is the SLAVE classifier [27, 28]. It uses a genetic learning
approach to create a fuzzy rule-based system by following a covering scheme. SLAVE represents each rule
as a single chromosome. It uses an iterative approach, which means that the result of the genetic algorithm
is not meant to cover all positive examples. Instead, the genetic algorithm is repeated until the iteratively
generated set of rules is sufficient to represent the training set. Another interesting approach in this area is
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rejection threshold
1 0.6 0.2 0.1 0

dataset acc cov acc cov acc cov acc cov acc cov

analcatdata-authorship (conflict) 95.2 100.0 95.2 100.0 96.2 94.9 98.1 85.9 99.4 54.9

analcatdata-authorship (ignorance) 95.2 100.0 95.2 100.0 96.4 96.0 97.8 89.4 99.3 60.6

analcatdata-halloffame (conflict) 93.1 100.0 93.1 100.0 94.1 97.8 96.0 92.5 98.4 76.3

analcatdata-halloffame (ignorance) 93.1 100.0 93.1 99.9 95.2 93.6 98.1 84.3

analcatdata-votesurvey (conflict) 36.8 100.0 36.8 100.0 36.8 100.0 38.4 83.3

analcatdata-votesurvey (ignorance) 36.8 100.0 35.5 87.5

cars (conflict) 81.5 100.0 81.5 100.0 85.5 88.2 90.6 72.2 98.9 43.1

cars (ignorance) 81.5 100.0 81.5 100.0 88.0 75.4 95.9 55.7

collins (conflict) 94.5 100.0 94.5 100.0 97.2 94.6 97.7 91.8 99.3 75.0

collins (ignorance) 94.5 100.0 94.5 100.0 97.2 94.6 97.7 91.8 99.7 70.6

ecoli (conflict) 83.1 100.0 83.1 100.0 84.8 93.8 87.1 85.4 94.2 55.4

ecoli (ignorance) 83.1 100.0 83.1 100.0 87.1 86.0 92.1 72.0

eucalyptus (conflict) 64.5 100.0 64.5 100.0 66.2 91.6 70.8 65.9 89.5 21.7

eucalyptus (ignorance) 64.5 100.0 64.7 98.6 81.0 40.4 92.9 23.6 99.8 10.1

glass (conflict) 72.8 100.0 72.8 100.0 74.2 90.1 80.1 65.3 97.7 14.6

glass (ignorance) 72.8 100.0 72.8 99.5 78.6 73.2 89.2 40.8

iris (conflict) 94.4 100.0 94.4 100.0 94.6 98.6 96.3 95.9 99.7 80.3

iris (ignorance) 94.4 100.0 94.4 100.0 95.2 97.3 96.9 93.9 99.8 28.6

metStatCoordinates (conflict) 93.3 100.0 93.3 99.9 95.4 94.7 97.2 88.6 99.6 70.9

metStatCoordinates (ignorance) 93.3 100.0 93.3 100.0 94.3 97.2 96.3 91.3 97.7 5.6

metStatRainfall (conflict) 69.7 100.0 69.7 100.0 75.9 77.2 86.6 46.7 96.3 13.3

metStatRainfall (ignorance) 69.7 100.0 69.7 100.0 78.6 68.8 89.0 39.8

metStatRST (conflict) 43.4 100.0 43.4 100.0 43.9 96.7 49.5 71.4 57.1 8.9

metStatRST (ignorance) 43.4 100.0 43.5 99.7 53.5 27.7 58.1 6.0

metStatSunshine (conflict) 52.6 100.0 52.6 100.0 55.0 86.5 64.6 42.7 86.6 3.8

metStatSunshine (ignorance) 52.6 100.0 52.6 100.0 61.0 55.5 72.4 19.4

metStatTemp (conflict) 57.3 100.0 57.3 100.0 59.2 94.2 67.2 66.3 84.5 21.8

metStatTemp (ignorance) 57.3 100.0 57.4 99.9 70.1 57.5 82.4 29.4

mfeat-factors (conflict) 93.3 100.0 93.3 99.9 95.1 94.5 97.5 85.5 99.6 58.3

mfeat-factors (ignorance) 93.3 100.0 93.3 100.0 94.8 95.9 96.9 87.6 99.7 23.0

mfeat-fourier (conflict) 80.4 100.0 80.4 99.9 84.8 87.1 92.7 62.0 99.6 32.2

mfeat-fourier (ignorance) 80.4 100.0 80.5 99.8 89.5 73.8 94.6 58.1 99.6 12.5

mfeat-karhunen (conflict) 91.5 100.0 91.5 99.9 94.8 87.2 97.8 71.6 99.9 32.9

mfeat-karhunen (ignorance) 91.5 100.0 91.5 100.0 94.0 92.5 96.4 77.5 99.4 8.4

mfeat-morphological (conflict) 72.2 100.0 72.2 99.9 73.4 95.5 76.1 85.3 91.6 46.2

mfeat-morphological (ignorance) 72.2 100.0 73.8 93.9 86.0 61.9 95.5 39.0 100.0 10.6

mfeat-zernike (conflict) 77.1 100.0 77.1 99.9 80.1 85.9 83.1 68.0 97.9 22.8

mfeat-zernike (ignorance) 77.1 100.0 80.2 91.7 90.1 71.9 95.2 58.5 99.2 6.0

optdigits (conflict) 96.2 100.0 96.3 99.9 98.1 93.8 99.1 86.3 99.9 62.7

optdigits (ignorance) 96.2 100.0 96.2 100.0 97.3 96.4 98.5 90.1 99.8 51.7

page-blocks (conflict) 97.1 100.0 97.1 100.0 97.7 98.5 98.5 96.2 99.4 88.3

page-blocks (ignorance) 97.1 100.0 97.1 100.0 97.7 98.4 98.7 95.4

pasture-production (conflict) 71.6 100.0 71.6 100.0 72.3 91.7 72.8 72.2

pasture-production (ignorance) 71.6 100.0 71.6 100.0 75.3 77.8 79.6 52.8

pendigits (conflict) 98.1 100.0 98.1 99.9 99.0 96.5 99.4 92.2 99.9 73.3

pendigits (ignorance) 98.1 100.0 98.1 100.0 98.5 98.3 99.1 95.0 99.8 49.2

segment (conflict) 96.9 100.0 96.9 100.0 98.1 96.5 98.9 92.3 99.8 76.7

segment (ignorance) 96.9 100.0 96.9 100.0 98.0 97.0 98.8 93.1 99.9 40.7

squash-unstored (conflict) 74.8 100.0 74.8 100.0 74.6 96.2 78.7 80.8 76.7 25.0

squash-unstored (ignorance) 74.8 100.0 76.0 94.2

synthetic control (conflict) 92.2 100.0 92.2 100.0 94.4 89.2 96.0 77.3 98.2 43.0

synthetic control (ignorance) 92.2 100.0 92.2 100.0 94.1 90.8 96.2 78.0 98.9 24.8

vehicle (conflict) 72.6 100.0 72.6 100.0 74.2 91.8 77.6 75.1 95.1 24.9

vehicle (ignorance) 72.6 100.0 74.0 94.0 95.1 45.7 98.5 37.7 100.0 2.6

vowel (conflict) 84.0 100.0 84.0 100.0 88.7 83.7 93.8 59.0 98.9 13.7

vowel (ignorance) 84.0 100.0 84.0 100.0 87.8 84.4 92.0 63.9 98.5 7.4

waveform (conflict) 79.8 100.0 79.8 100.0 85.4 77.9 93.4 50.1 99.3 14.6

waveform (ignorance) 79.8 100.0 79.8 100.0 87.1 75.9 93.7 55.8 99.1 24.4

wine (conflict) 92.8 100.0 92.8 100.0 95.1 92.1 97.3 83.7 99.7 52.2

wine (ignorance) 92.8 100.0 92.8 100.0 93.2 97.2 95.5 89.9 99.5 20.8

Table 6: Classification rates (acc) on the test set for different rejection thresholds and the coverage (cov) in
terms of the percentage of non-rejected instances, both for conflict (using γc) and ignorance (using γi) as
rejection criteria. For statistical reasons, results for less than 10 instances are not reported.
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the one proposed in [14], which applies the idea of boosting [40] to the evolutionary learning of rule-based
classifiers. Neuro-fuzzy methods [46, 47] encode a fuzzy system as a neural network and apply corresponding
learning methods (like backpropagation). Fuzzy rules are then extracted from a trained network. A recent
approach in this field is the SOTFN-SV algorithm which creates a Takagi-Sugeno (TS) rule base [38], using
a TS-type fuzzy network combined with SVM learning techniques [57]. It contains five layers that consist of
an input layer, an antecedent layer, a rule layer, a consequent layer, and finally an output layer. In contrast
to previous SVM approaches [7, 10, 42, 43], SOTFN-SV learns the antecedents with a simplified version of
the fuzzy clustering algorithm proposed in [39] and the consequences with a linear-kernel SVM.

Decomposition techniques for reducing multi-class to binary classification problems have been investigated
quite extensively in recent years. Many standard decomposition schemes, including the all-pairs (round
robin) and the one-against-rest scheme, are special cases of the more general approach of Error Correcting
Output Codes (ECOC) [17] or, more precisely, their generalization that has been introduced in [2]. Even
though ECOC allows for a more flexible decomposition of the original problem into simpler ones, the all-pairs
approach has the advantage that it provides a fixed, domain-independent and non-stochastic decomposition
with a good overall performance. In several experimental studies, including [2], it performed en par or
better with competing decoding matrices. What is more important for us, however, is that the pairwise case
produces binary relations as output, which is essential for the idea of LVPC, namely to connect classification
learning with fuzzy preference modeling and decision making [33].

As mentioned repeatedly, our approach is most closely related to the R3 method by Fürnkranz [24] and,
in fact, can be seen as direct (fuzzy) extension thereof. Fürnkranz also studied alternative decomposition
schemes and found the pairwise approach (round robin) to be superior in terms of classification accuracy.

Issues of uncertainty and reliable classification have been addressed under various perspectives in the
machine learning literature (e.g. [41, 58]) and remain to be an active area of research. Even though the focus
is definitely on probabilistic methods, alternative frameworks for modeling and representing uncertainty
have also been investigated [16, 32]. A distinction between different types uncertainty has been made, for
example, in connection with reject options for nearest neighbor classification [31], where a distance reject
(non-existence of neighbors close enough to the query) is distinguished from an ambiguity reject (existence
of close neighbors from different classes). We are not aware, however, of a general and systematic treatment
of the topic which goes beyond such special applications.

6 Concluding Remarks

In this paper, we have introduced a fuzzy rule-based classifier called Fuzzy Round Robin RIPPER (FR3).
As opposed to conventional methods, FR3 carefully distinguishes between two sources of uncertainty in
classification, namely conflict and ignorance, and, correspondingly, offers predictions of a more differentiated
type: Against the background of the data seen so far, in conjunction with the underlying model assumptions,
FR3 compares the potential decisions (class labels) in a pairwise manner and, for each pair, suggests to what
extent one label is preferable to the other one, to what extent there is a conflict between these labels, and to
what extent none of the two are supported. A prediction, or any other type of decision, can then be made
on the basis of the fuzzy preference structure thus obtained.

Focusing on the core part of the method, namely the induction of the fuzzy preference structure, we have
used relatively simple decision policies in this paper, both for standard classification (predicting a single class)
and for classification with reject option. Nevertheless, developing suitable decision policies for different types
of (generalized) classification problems is an important issue that we plan to address in future work. An
interesting idea, for example, is to employ techniques from belief function theory, which not only offers
suitable means for representing ignorance, but also operators for combining different sources of information
[55].

Another interesting aspect concerns interpretability issues [6, 44]. Being able to understand a model
produced by an inductive learner is desirable in general and become essential if the model is used, for
example, for decision support [29]. Even though ensemble classifiers are usually judged critical from an
interpretability point of view, we are actually not convinced that an FR3 prediction is necessarily less
understandable than a prediction from a conventional (multi-class) fuzzy rule-based model. It is true that
many pairwise models, as a whole, might be more difficult to capture than a single model. On the other
hand, pairwise comparisons are known to play an important role in human decision making. Moreover, an
FR3 prediction reduces complexity by providing information on two levels of abstraction: On the “relational
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Figure 4: Graphical illustration of a preference structure predicted by FR3 for a query instance on the iris
data. The size of a box is proportional to the degree of non-ignorance (1 minus ignorance). The size of the
white (black) area is proportional to the degree of preference in favor of the row-class (column-class). The
gray area shows the corresponding degree of conflict. The rightmost column shows the final score (7) for
every class.
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level”, the preference structure gives a rough picture of the situation, including uncertainties and potential
conflicts. Information on this level become especially comprehensible when being presented in a graphical
form, as shown in Figure 4. If the need arises, each entry in the corresponding relations can then be
“explained” by an underlying pairwise model. As an advantage, note that each pairwise model itself will
typically be much simpler than a single polychotomous model, as it refers to only two instead of all classes
simultaneously.

A Java implementation of FR3, running under the open-source machine learning toolkit WEKA, can be
downloaded at: http://www.uni-marburg.de/fb12/kebi/research/software.
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[32] E. Hüllermeier. Possibilistic instance-based learning. Artificial Intelligence, 148(1–2):335–383, 2003.
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