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Abstract

This paper introduces a novel fuzzy rule-based classification method called FURIA,
which is short for Fuzzy Unordered Rule Induction Algorithm. FURIA extends the
well-known RIPPER algorithm, a state-of-the-art rule learner, while preserving its
advantages, such as simple and comprehensible rule sets. In addition, it includes
a number of modifications and extensions. In particular, FURIA learns fuzzy rules
instead of conventional rules and unordered rule sets instead of rule lists. More-
over, to deal with uncovered examples, it makes use of an efficient rule stretching
method. Experimental results show that FURIA significantly outperforms the orig-
inal RIPPER, as well as other classifiers such as C4.5, in terms of classification
accuracy.

1 Introduction

The learning of rule-based classification models has been an active area of research for
a long time. In fact, the interest in rule induction goes far beyond the field of machine
learning itself and also includes other fields, notably fuzzy systems (Hüllermeier, 2005).
This is hardly surprising, given that rule-based models have always been a cornerstone of
fuzzy systems and a central aspect of research in that field. To a large extent, the popu-
larity of rule-based models can be attributed to their comprehensibility, a distinguishing
feature and key advantage in comparison to many other (black-box) classification models.
Despite the existence of many sound algorithms for rule induction, the field still enjoys
great popularity and, as shown by recent publications (Ishibuchi and Yamamoto, 2005;
Cloete and Van Zyl, 2006; Juang et al., 2007; Fernández et al., 2007), offers scope for
further improvements.
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This paper proposes a novel fuzzy rule-based classification method called Fuzzy Un-
ordered Rule Induction Algorithm, or FURIA for short, which is a modification and ex-
tension of the state-of-the-art rule learner RIPPER (Cohen, 1995). In particular, FURIA
learns fuzzy rules instead of conventional rules and unordered rule sets instead of rule
lists. Moreover, to deal with uncovered examples, it makes use of an efficient rule stretch-
ing method.

Fuzzy rules are more general than conventional rules and have a number of advantages.
For example, conventional (non-fuzzy) rules produce models with “sharp” decision bound-
aries and, correspondingly, abrupt transitions between different classes. This property is
questionable and not very intuitive. Instead, one would expect the support for a class
provided by a rule to decrease from “full” (inside the core of the rule) to “zero” (near
the boundary) in a gradual rather than an abrupt way. Fuzzy rules have “soft” bound-
aries, which is one of their main characteristics. Admittedly, if a definite classification
decision has to be made, soft boundaries have again to be turned into crisp boundaries.
Interestingly, however, these boundaries are potentially more flexible in the fuzzy case.
For example, by using suitable aggregation operators for combining fuzzy rules, they are
not necessarily axis-parallel (Press et al., 1992).

The result of most conventional rule learners is a decision list. To produce such a list,
rules are learned for each class in turn, starting with the smallest (in terms of relative
frequency of occurrence) and ending with the second largest one. Finally, a default rule is
added for the majority class. A new query instance is then classified by the first rule in the
list by which it is covered.1 This approach has advantages but some some disadvantages.
For example, it may come along with an unwanted bias since classes are no longer treated
in a symmetric way. Moreover, sorting rules by priority compromises comprehensibility
(the condition part of each rule implicitly contains the negated conditions of all previous
rules). To avoid these problems, FURIA learns an unordered set of rules, namely a set
of rules for each class in a one-vs-rest scheme. This, however, means that the resulting
model is not necessarily complete, i.e., it may happen that a new query is not covered
by any rule (in this regard, decision lists are obviously less problematic). To deal with
such cases, we propose a novel rule stretching method which is based on (Eineborg and
Boström, 2001). The idea is to generalize the existing rules until they cover the example.
As an advantage over the use of a default rule, note that rule stretching is a local strategy
that exploits information in the vicinity of the query.

In the next section, we recall the basics of the RIPPER algorithm. In Section 3, we intro-
duce FURIA and give a detailed explanation of its novelties. An experimental evaluation
is presented in Section 4. Here, it is shown that FURIA significantly outperforms the orig-
inal RIPPER, as well as other classifiers such as C4.5, in terms of classification accuracy.
Besides, the impact of the different modifications distinguishing FURIA from RIPPER
are investigated. Section 5 is devoted to related work. The paper ends with a summary
and concluding remarks in Section 6.

1An interesting probabilistic interpretation of rules in a rule list was recently proposed by Fawcett
(2008).
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2 Outline of RIPPER

RIPPER was introduced by Cohen (1995) as a successor of the IREP algorithm for rule
induction (Fürnkranz and Widmer, 1994). Even though the key principles remained un-
changed, RIPPER improves IREP in many details and is also able to cope with multi-class
problems.

Consider a polychotomous classification problem with m classes L
df
= {λ1 . . .λm}. Sup-

pose instances to be represented in terms of attributes Ai, i = 1 . . .n, which are either
numerical (real-valued) or nominal, and let Di denote the corresponding domains. Thus,
an instance is represented as an n-dimensional attribute vector

x = (x1 . . .xn) ∈ D
df
= D1× . . .×Dn.

A single RIPPER rule is of the form r = 〈rA |rC〉, consisting of a premise part rA and a
consequent part rC. The premise part rA is a conjunction of predicates (selectors) which
are of the form (Ai = vi) for nominal and (Ai θ vi) for numerical attributes, where θ ∈ {≤
,=,≥} and vi ∈Di. The consequent part rC is a class assignment of the form (class = λ ),
where λ ∈ L. A rule r = 〈rA |rC〉 is said to cover an instance x = (x1 . . .xn) if the attribute
values xi satisfy all the predicates in rA.

RIPPER learns such rules in a greedy manner, following a separate-and-conquer strategy
(Fürnkranz, 1999). Prior to the learning process, the training data is sorted by class la-
bels in ascending order according to the corresponding class frequencies. Rules are then
learned for the first m− 1 classes, starting with the smallest one. Once a rule has been
created, the instances covered by that rule are removed from the training data, and this
is repeated until no instances from the target class are left. The algorithm then proceeds
with the next class. Finally, when RIPPER finds no more rules to learn, a default rule
(with empty antecedent) is added for the last (and hence most frequent) class.

Rules for single classes are learned until either all positive instances are covered or the last
rule r that has been added was “too complicated”. The latter property is implemented in
terms of the total description length (Quinlan, 1995): The stopping condition is fulfilled
if the description length of r is at least d bits longer than the shortest description length
encountered so far; Cohen suggests choosing d = 64.2

2.1 Learning Individual Rules

Each individual rule is learned in two steps. The training data, which has not yet been
covered by any rule, is therefore split into a growing and a pruning set. In the first step,
the rule will be specialized by adding antecedents which were learned using the growing
set. Afterward, the rule will be generalized by removing antecedents using the pruning
set.

2Essentially, the description length of a rule depends on the number selectors in its premise part; see
Quinlan (1993) for more details.
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When RIPPER learns a rule for a given class, the examples of that class are denoted
as positive instances, whereas the examples from the remaining classes are denoted as
negative instances.

Rule growing: A new rule is learned on the growing data, using a propositional ver-
sion of the FOIL algorithm (Quinlan, 1990; Quinlan and Cameron-Jones, 1993).3 It starts
with an empty conjunction and adds selectors until the rule covers no more negative in-
stances, i.e., instances not belonging to the target class. The next selector to be added is
chosen so as to maximize FOIL’s information gain criterion (IG), which is a measure of
improvement of the rule in comparison with the default rule for the target class:

IGr
df
= pr×

(

log2

(

pr

pr +nr

)

− log2

(

p
p+n

))

,

where pr and nr denote, respectively, the number of positive and negative instances cov-
ered by the rule; likewise, p and n denote the number of positive and negative instances
covered by the default rule.

Rule pruning: The above procedure typically produces rules that overfit the training
data. To remedy this effect, a rule is simplified so as to maximize its performance on the
pruning data.

For the pruning procedure, the antecedents are considered in the order in which they were
learned, and pruning actually means finding a position at which that list of antecedents is
cut. The criterion to find that position is the rule-value metric:

V (r) df
=

pr−nr

pr +nr

Therewith, all those antecedents will be pruned that were learned after the antecedent
maximizing V (r); shorter rules are preferred in the case of a tie.

2.2 Rule Optimization

The ruleset RS produced by the learning algorithm outlined so far, called IREP*, is taken
as a starting point for a subsequent optimization process. This process re-examines the
rules ri ∈ RS in the order in which they were learned. For each ri, two alternative rules r′i
and r′′i are created. The replacement rule r′i is an empty rule, which is grown and pruned
in a way that minimizes the error of the modified ruleset (RS∪{r′i})\{ri}. The revision
rule r′′i is created in the same way, except that it starts from ri instead of the empty rule. To
decide which version of ri to retain, the MDL (Minimum Description Length (Quinlan,

3Apart from RIPPER, several other rule learners have been built upon FOIL, for example the HYDRA
algorithm by Kamal and Pazzani (1993).
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1993)) criterion is used. Afterward, the remaining positives are covered using the IREP*
algorithm.

The RIPPERk algorithm iterates the optimization of the ruleset and the subsequent cov-
ering of the remaining positive examples with IREP* k times, hence the name RIPPER
(Repeated Incremental Pruning to Produce Error Reduction).

3 FURIA

This section presents the novel FURIA algorithm. Since FURIA builds upon the RIPPER
algorithm, the corresponding modifications and extensions will be especially highlighted.

3.1 Learning Unordered Rule Sets

A first modification of RIPPER concerns the type of rule model that is learned and, re-
lated to this, the use of default rules. As already mentioned in the introduction, learning
a decision list and using one class as a default prediction has some disadvantages. In par-
ticular, it comes along with a systematic bias in favor of the default class. To avoid this
problem, Boström (2004) has proposed an unordered version of RIPPER’s predecessor
IREP (Fürnkranz and Widmer, 1994). Likewise, we propose to learn a rule set for every
single class, using a one-vs-rest decomposition. Consequently, FURIA learns to separate
each class from all other classes, which means that no default rule is used and the order
of the classes is irrelevant.4

When using an unordered rule set without default rule, two problems can occur in con-
nection with the classification of a new query instance: First, a conflict may occur since
the instance is equally well covered by rules from different classes. As will be seen in
Section 3.5, this problem is rather unlikely to occur and, in case it still does, can eas-
ily be resolved. Second, it may happen that the query is not covered by any rule. To
solve this problem, we propose a novel rule stretching method. The idea, to be detailed
in Section 3.6, is to modify the rules in a local way so as to make them applicable to the
query.

3.2 Pruning Modifications

The RIPPER algorithm can be divided into the building and the optimization phase. The
rule building is done via the IREP* algorithm, which essentially consists of a proposi-
tional FOIL algorithm, the pruning strategy (cf. Section 2.1) and the stopping conditions.
Interestingly, we found that the pruning strategies in IREP* have a negative influence on
the performance of FURIA. We therefore omitted the pruning step and instead learned

4It is worth mentioning that, while Release 1 based on (Cohen, 1995) only supported ordered rule lists,
an unordered approach is also included in a more recent RIPPER implementation of Cohen (Release 2.5).
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the initial ruleset on the whole training data directly. To explain this finding, note that,
without pruning, IREP* produces more specific rules that better fit the data. More im-
portantly, small rules provide a better starting point for our fuzzification procedure, to be
detailed in Section 3.4, in which rules can be made more general but not more specific.

In the optimization phase, the pruning was retained, as its deactivation was not beneficial.
This is in agreement with the goal to minimize the MDL. The coverage of the remaining
positive instances, which is again accomplished by IREP*, also benefited from omitting
the pruning, just like IREP* in the building phase.

FURIA still applies pruning when it comes to creating the replacement and the revision
rule. Here, the original pruning strategy is applied, except in case the pruning strategy
tries to remove all antecedents from a rule, thereby generating a default rule. In this case,
the pruning will be aborted, and the unpruned rule will be used for the MDL comparison
in the optimization phase. We found that those pruning strategies are still sufficient to
avoid overfitting. Thus, the removal of the pruning in the IREP* part has no negative
impact on classification accuracy.

3.3 Representation of Fuzzy Rules

A selector constraining a numerical attribute Ai (with domain Di = R) in a RIPPER rule
can obviously be expressed in the form (Ai ∈ I), where I ⊆ R is an interval: I = (−∞,v]
if the rule contains a selector (Ai ≤ v), I = [u,∞) if it contains a selector (Ai ≥ u), and
I = [u,v] if it contains both (in the last case, two selectors are combined).

Essentially, a fuzzy rule is obtained through replacing intervals by fuzzy intervals, namely
fuzzy sets with trapezoidal membership function.

A fuzzy interval of that kind is specified by four parameters and will be written IF =

(φ s,L,φ c,L,φ c,U ,φ s,U):

IF(v) df
=























1 φ c,L ≤ v≤ φ c,U

v−φ s,L

φ c,L−φ s,L φ s,L < v < φ c,L

φ s,U−v
φ s,U−φ c,U φ c,U < v < φ s,U

0 else

φ c,L and φ c,U are, respectively, the lower and upper bound of the core (elements with
membership 1) of the fuzzy set; likewise, φ s,L and φ s,U are, respectively, the lower and
upper bound of the support (elements with membership > 0), see Fig. 1.

Note that, as in the non-fuzzy case, a fuzzy interval can be open to one side (φ s,L =

φ c,L = −∞ or φ c,U = φ s,U = ∞.) In fact, as will be seen later on, the fuzzy antecendents
successively learned by FURIA are fuzzy half-intervals of exactly that kind.

A fuzzy selector (Ai ∈ IF
i ) covers an instance x = (x1 . . .xn) to the degree IF

i (xi). A fuzzy
rule rF involving k selectors (Ai ∈ IF

i ), i = 1 . . .k, covers x to the degree
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φ s,L φ c,L φ c,U φ s,U

0

IF

1

Figure 1: A fuzzy interval IF .

µrF (x) = ∏
i=1...k

IF
i (xi) . (1)

3.4 Rule Fuzzification

To obtain fuzzy rules, the idea is to fuzzify the final rules from our modified RIPPER
algorithm. More specifically, using the training set DT ⊆ D for evaluating candidates,
the idea is to search for the best fuzzy extension of each rule, where a fuzzy extension is
understood as a rule of the same structure, but with intervals replaced by fuzzy intervals.
Taking the intervals Ii of the original rules as the cores [φ c,L

i ,φ c,U
i ] of the sought fuzzy

intervals IF
i , the problem is to find optimal bounds for the respective supports, i.e., to

determine φ s,L
i and φ s,U

i .

A

possible support bounds φ s,Uφ c,U

0

IF

1

Figure 2: Examination of possible support bounds given a crisp antecedent.

For the fuzzification of a single antecedent (Ai ∈ Ii) it is important to consider only the
relevant training data Di

T, i.e., to ignore those instances that are excluded by any other
antecedent (A j ∈ IF

j ), j 6= i:

Di
T =

{

x = (x1 . . .xk) ∈ DT | IF
j (x j) > 0 for all j 6= i

}

⊆ DT (2)

We partition Di
T into the subset of positive instances, Di

T+ , and negative instances, Di
T− .

7



To measure the quality of a fuzzification, the rule purity will be used:

pur =
pi

pi +ni
, (3)

where

pi
df
= ∑

x∈Di
T+

µAi(x)

ni
df
= ∑

x∈Di
T−

µAi(x)

Rules are fuzzified in a greedy way, as shown by Algorithm 1. In each iteration, a fuzzi-
fication is computed for every antecedent, namely the best fuzzification in terms of (3).
This is done by testing all values

{xi |x = (x1 . . .xk) ∈ Di
T, xi < φ c,L

i }

as candidates for φ s,L
i and, likewise, all values

{xi |x = (x1 . . .xk) ∈ Di
T, xi > φ c,U

i }

as candidates for φ s,U
i (see Fig. 2). Ties are broken in favor of larger fuzzy sets, that is,

larger distances from the core.

The fuzzification is then realized for the antecedent with the largest purity. This is re-
peated until all antecedents have been fuzzified. It is important to mention that there
exists a trivial fuzzification which is always found, namely the one that sets the support
bound to the first instance behind the core bound. Even though this fuzzification does not
change the purity on the training data, it is meaningful when it comes to classifying new
instances.

Note that the fuzzification of a single antecedent may change the relevant training data
(2), which is hence recomputed in each iteration. In fact, each fuzzification may increase
the number of covered instances, which in turn may also influence the rule purity. Fur-
thermore, note that, after the complete premise part of a rule has been fuzzified, the whole
procedure could in principle be repeated until convergence is achieved (convergence is
guaranteed, as purity can only increase in each iteration). We did not implement this
option, however, as we observed that, except for very rare cases, convergence is already
achieved after the first iteration.

To analyze the complexity of the above fuzzification procedure, note that, in each itera-
tion, at most |DT | instances (support bounds) are checked for every candidate attribute.
Since the total number of iterations is bounded by the number of attributes, n, the overall
complexity is O(|DT |n2).

With regard to the readability of rules, we consider our fuzzy extension as uncritical.
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Algorithm 1 The antecedent fuzzification algorithm for a single rule r
1: Let A be the set of numeric antecedents of r
2: while A 6= /0 do
3: amax← null {amax denotes the antecedent with the highest purity}
4: purmax← 0 {purmax is the highest purity value, so far}
5: for i← 1 to size(A) do
6: compute the best fuzzification of A[i] in terms of purity
7: purA[i]← be the purity of this best fuzzification
8: if purA[i] > purmax then
9: purmax← purA[i]

10: amax← A[i]
11: end if
12: end for
13: A← A\amax
14: Update r with amax
15: end while

Essentially, the difference is that sharp boundaries of a rule are replaced by “soft” bound-
aries: A fuzzy rule is uniquely characterized by its core and its support. It is valid inside
the core and invalid outside the support; in-between, the validity drops in a gradual way.
Consider, for example, the rule 〈A≤ 5 |+〉, which indicates that if attribute A is smaller or
equal to 5, then the class is positive. Here, the rule is valid for A≤ 5 and invalid for A > 5.
Similarly, a fuzzy rule 〈A ∈ (−∞,−∞,5,8) |+〉 suggests that the rule is completely valid
for A≤ 5, invalid for A > 8, and partially valid in-between.

3.5 Classifier Output

Suppose that fuzzy rules r( j)
1 . . .r( j)

k have been learned for class λ j. For a new query
instance x, the support of this class is defined by

s j(x)
df
= ∑

i=1...k
µ

r( j)
i

(x) ·CF
(

r( j)
i

)

, (4)

where CF(r( j)
i ) is the certainty factor of the rule r( j)

i . It is defined as follows:

CF
(

r( j)
i

)

=
2 |D

( j)
T |
|DT | +∑x∈D( j)

T
µ

r( j)
i

(x)

2+∑x∈DT µ
r( j)

i
(x)

, (5)

where D( j)
T denotes the subset of training instances with label λ j. Ishibuchi and Nakashima

(2001); Ishibuchi and Yamamoto (2005) argued that weighing rules according to (4) al-
lows for modeling more flexible decision boundaries and thereby improves classification
accuracy. The certainty factor (5) is the m-estimate for m = 2 (Press et al., 1992).
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The class predicted by FURIA is the one with maximal support. In the case where x is not
covered by any rule, which means that s j(x) = 0 for all classes λ j, a classification decision
is derived in a separate way; see Section 3.6 below. In the case of a tie, a decision in favor
of the class with highest frequency is made.

3.6 Rule Stretching

To handle the aforementioned non-covering problem, Eineborg and Boström (2001) re-
place all rules by their minimal generalizations for the given instance. A generalization
or “stretching” of a rule is obtained by deleting one or more of its antecedents, and a gen-
eralization is minimal if it does not delete more antecedents than necessary to cover the
query instance. Thus, the minimal generalization of a rule is simply obtained by deleting
all antecedents that are not satisfied by the query. Having derived all minimal general-
izations, the authors re-evaluate each rule by its Laplace accuracy on the training data,
and then classify the query by the rule with the highest evaluation. Experimentally, it has
been shown that this strategy, that we subsequently refer to as EB-stretching, is better than
using a default rule, i.e., simply predicting the most frequent class.

Unfortunately, EB-stretching has a high computational complexity, as it requires gen-
eralizing and re-evaluating every rule. Doing this on demand, for a fixed query, has a
complexity of O(|RS| · |DT |), with |RS| the number of rules, and |DT | the size of the
training set. Besides, it is worth mentioning that all training instances have to be stored.
Alternatively, it is possible to pre-compute the evaluation of each possible generalization,
but since a rule r with antecedent set A (r) can be generalized in 2|A (r)| different ways,
this comes along with large storage requirements.

To avoid these disadvantages, we propose an alternative approach that exploits the order in
which the antecedents had been learned, treating them as a list 〈α1,α2 . . .αm〉 instead of a
set {α1,α2 . . .αm}. The idea is that the ordering reflects the importance of the antecedents,
an assumption that is clearly justified in light of the underlying rule learning algorithm.
As generalizations, we then only allow lists of the form 〈α1,α2 . . .αk〉 with k ≤ m. For
the minimal generalization, k is simply given by j− 1, where α j is the first antecedent
which is not satisfied by the query instance. To re-evaluate generalized rules, we use the
measure

p+1
p+n+2

× k +1
m+2

,

where p is the number of positive and n the number of negative examples covered by
the rule. The second factor accounts for the degree of generalization: Heavily pruned
rules are discounted, as pruning is likely to decrease the rule’s relevance for the query.
Furthermore, by Laplace-correcting the relative number of remaining antecedents, k/m,
preference is given to longer and, hence, more specific rules.5

5For ease of presentation, we combined two selectors (half-intervals) referring to the same attribute into
a single fuzzy interval in Section 3.3. It is important to mention that, in the context of rule stretching, the
two selectors are still treated as different antecedents.
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Computationally, the above rule stretching strategy is much more efficient than EB-stretching.
The complexity for re-evaluating a rule r is O(|A (r)|). Moreover, since the evaluations
of all generalizations of a rule can be calculated and stored directly in the course of the
rule learning process, in which antecedents are learned in a successive way, there is no
need for storing the training data.

4 Experimental Results

To analyze the performance of our FURIA approach, we conducted several experimental
studies under the WEKA 3.5.5 framework (Witten and Frank, 2005). As a starting point,
we used the RIPPER implementation of WEKA (“JRip”) for re-implementing FURIA.

4.1 Classification Accuracy

In a first study, we compared FURIA to other classifiers with respect to classification
accuracy. The minimum number of covered instances per premise was set to 2, and for
the number of folds and the number of optimizations in FURIA and RIPPER we used,
respectively, values 3 and 2 (which is the default setting in WEKA and leads to RIPPER2).

Additionally, we also included the C4.5 decision tree learner (Quinlan, 1993) as a well-
known benchmark classifier and, moreover, added two fuzzy rule-based classifiers from
the KEEL suite (Alcalá-Fernandez et al., 2008): The CHI algorithm is based on Chi et al.
(1995, 1996) and uses rule weighing as proposed by Ishibuchi and Yamamoto (2005).6

The SLAVE algorithm makes use of genetic algorithms to learn a fuzzy classifier (Gon-
zalez and Perez, 1999, 2001).7 Both algorithms are frequently used for experimental
purposes (e.g., (Fernández et al., 2007; Ishibuchi and Yamamoto, 2003; Cordon et al.,
2004; Zolghadri and Mansoori, 2007)).

We collected 40 data sets from the UCI (Asuncion and Newman, 2007) and the STATLIB
(Meyer and Vlachos, 2007) repositories and from (Bulloch, 2007; Barker, 2007; Harvey,
2007); see Table 1 for an overview. Additionally, we created five data sets with data from
a German meteorological institute (DWD).8 In these data sets, the task is to predict the
origin (one of the federal states in Germany) of a set of measurements (e.g., sunshine
duration, temperature, ...). As our fuzzy extension is not applicable to nominal attributes,
we only selected data sets having at least as many numeric as nominal attributes.

The experiments were conducted by randomly splitting each data set into 2/3 for training
and 1/3 for testing, and deriving the classification accuracy on the testing data for each
learner. This procedure was repeated 100 times to stabilize the results. Table 2 summa-

6We used the following parameter setting: 3 fuzzy sets, product t-norm, maximum inference, and
weighting scheme number 2 from (Ishibuchi and Yamamoto, 2005).

7We used the following parameter setting: 5 fuzzy sets, 500 iterations without change, mutation proba-
bility 0.01, use weights, population size 100.

8Available at: http://www.uni-marburg.de/fb12/kebi/research/repository
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rizes the classification accuracies.9 The overall picture conveyed by the results is clearly
in favor of FURIA, which outperforms the other methods on most data sets. To analyze
the differences between the classifiers more closely, we followed the two-step procedure
recommended by Demšar (2006): First, a Friedman Test is conducted to test the null hy-
pothesis of equal classifier performance (Friedman, 1937, 1940). In case this hypothesis is
rejected, which means that the classifiers’ performance differs in a statistically significant
way, a posthoc test is conducted to analyze these differences in more detail.

The Friedman test is a non-parametric test which is based on the relative performance
of classifiers in terms of their ranks: For each data set, the methods to be compared are
sorted according to their performance, i.e., each method is assigned a rank (in case of ties,
average ranks are assigned); see Table 3. Let k be the number of classifiers and N the
number of data sets. Let r j

i be the rank of classifier j on data set i, and R j = 1
N ∑N

i=1 r j
i the

average rank of classifier j. Under the null-hypothesis, the Friedman statistic

χ2
F =

12N
k(k +1)

[

k

∑
j=1

(R j)
2− k · (k +1)2

4

]

is asymptotically χ2 distributed with k− 1 degrees of freedom. If N and k are not large
enough, it is recommended to use the following correction which is F-distributed with
(k−1) and (k−1)(N−1) degrees of freedom (Iman and Davenport, 1980):

(N−1) ·χ2
F

N · (k−1)−χ2
F

(6)

In our case, the value of (6) is 39.77, while the critical value for the significance level
α = 0.01 is only 3.43. Thus, the null-hypothesis can quite safely be rejected, which
means that there are significant differences in the classifiers’ performance.

Given the result of the Friedman Test, we conducted the Nemenyi Test (Nemenyi, 1963)
as a posthoc test to compare classifiers in a pairwise manner. According to this test,
the performance of two classifiers is significantly different if the distance of the average
ranks exceeds the critical distance CDα = qα,k,∞ · 1√

2
, where the q-value is taken from

the Studentized Range Statistic (Newman, 1939). The results of this test are summarized
in Fig. 3: FURIA is significantly better than all other classifiers at the significance level
α = 0.01.

4.2 The Effect of Fuzzification

The previous results have shown that FURIA is a significant improvement in comparison
to RIPPER. Since FURIA differs from RIPPER in several ways, it is interesting to in-
vestigate the influence of the different modifications. One may wonder, for example, to
what extent the improvements can be attributed to the use of fuzzy instead of conventional

9The classifier FURIA-c, which also appears in the table, will be analyzed in Section 4.2.
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Figure 3: Average classifier ranks depicted on a number line. Connections between clas-
sifiers indicate non-significant differences at significance level α = 0.01.

rules. To answer this question, we conducted some additional experiments with a “crisp”
variant of FURIA, included in Table 2 under the name FURIA-c. To optimize an interval
as originally produced by RIPPER, this variant conducts a search process quite similar
to the search for an optimal fuzzy interval (cf. Section 3.4). Instead of a trapezoid, how-
ever, it is again only allowed to use intervals, i.e., it simply tries to optimize the original
decision boundary in terms of the rule’s purity.

Even though FURIA-c still compares favorably to RIPPER (42 wins and 3 losses) and
C4.5 (34 wins and 11 losses), the gains are less clear than those of FURIA. More impor-
tantly, in a direct comparison, FURIA achieves 38 wins. Besides, six of the seven data
sets won by FURIA-c are two-class data sets, and the remaining one is a three-class data
set, suggesting that fuzzy rules are especially useful for problems with many classes. A
possible explanation for this finding is that fuzzy rules are able to generate more flexible
decision boundaries which are smooth and not necessarily axis-parallel (see Fig. 4 for an
illustration), which is especially advantageous for difficult problems.

4.3 Model Complexity

Since FURIA disables the pruning step in IREP*, it learns more specialized rules. There-
fore, it is likely to produce models that are more complex, in terms of the number of rules
and their lengths, than those produced by RIPPER. Indeed, while FURIA learns 25.4 rules
on average, RIPPER generates only 15.5 rules.10 Moreover, while a FURIA rule has 2.5
conditions on average, a RIPPER rule has only 1.7; see Table 4 for detailed statistics.
Consequently, the performance gain of FURIA in comparison with RIPPER comes at the
cost of slightly more complex models.

Still, however, FURIA compares favorably with the other algorithms. Its average model
size is quite comparable to the one of SLAVE, which creates 19.8 rules per model. Be-
sides, the rules of FURIA are much shorter than the rules of SLAVE, which consist of
4.4 conditions on average. Since the CHI classifier uses a grid-based approach, every rule

10Including RIPPER’s default rule.
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Figure 4: The left figure shows three classes in the upper left, lower left, and lower right
corner of the data space. Classification rules for every class are shown by the solid lines
bounding the rule core and the dashed lines bounding the rule support. The membership
functions are given on the bars on the bottom and on the left. The right picture shows
the decision boundaries using the product-sum combination. As can be seen, there is a
non-axis-parallel decision boundary between the three classes. The square in the upper
right belongs to equal parts to the upper left and lower right classes.

contains all attributes. In general, this leads to very large rule sets with long condition
parts.

4.4 The Effect of the Rule Stretching Algorithm

To investigate the effectiveness of our novel rule stretching method, we compared it to
the original EB-stretching of Eineborg and Boström (2001). More specifically, we com-
pared the performance of FURIA with the performance of a variant of FURIA that uses
EB-stretching instead of our rule stretching method. The results, 19 wins for the variant,
26 losses, and one tie, suggest that both methods are comparable in terms of classification
accuracy. Furthermore, we can confirm that rule stretching works better than default clas-
sification (predicting the most frequent class): Both, FURIA and EB-stretching, achieve
42 wins against this strategy.

The rule stretching procedure applies only in cases in which the given instance is not
covered by any rule. Since the number of uncovered instances depends on the data set
(see Table 5), a theoretical comparison between the complexity of the two methods is
difficult: Our approach conducts a fixed number of weight calculations, whereas EB-
stretching recalculates the weights only on demand. Therefore, we compared the number
of times a rule weight has to be calculated in EB-stretching with the total number of
all antecedents, which corresponds to the number of calculations conducted by our rule
stretching procedure. To avoid a repeated calculation of the same weights, we cached
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the weights in EB-stretching. Table 5 shows the results of this comparison, and Fig. 5
plots the number of calculations as a function of the number of antecedents. As can be
seen from the corresponding regression curves, this dependency is super-linear for EB-
stretching while being linear for our approach. This is in perfect agreement with the
theoretical considerations in Section 3.6. Thus, from a complexity point of view, our
approach is especially advantageous for complex models.

As another advantage, recall that our approach does not have to store the training data. In
this regard, it is interesting to note that, if the complete training data is kept in memory
during classification, as done by Eineborg and Boström’s approach, uncovered examples
could also be handled by a simple nearest neighbor (NN) classifier (Aha et al., 1991).
We tested this idea and, interestingly enough, found that FURIA in combination with a
simple 1-NN classifier outperforms FURIA with EB-stretching for 35 out of 45 data sets.

0 200 400 600
0

500

1000

1500

2000

2500

3000

Figure 5: The number of weight calculations (y-axis) as a function of the number of an-
tecedents (x-axis) for our rule stretching method (diamonds) and EB-stretching (circles).
Trends are shown in terms of corresponding regression curves.

4.5 Runtime

It is clear that FURIA, as an extension of RIPPER encompassing more complex strategies
such as fuzzification and rule stretching, will pay its improved accuracy with an increase
in runtime. To elaborate on this aspect, we compared the following algorithms:

• RIPPER

• RIPPER without IREP (RIP*)

• RIPPER learning an unordered rule set again without IREP (RIP**)

• FURIA without post generalization or fuzzification of rules (FUR*)

• FURIA
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Table 6 shows the runtime results in seconds (all measurements were performed on a In-
tel Core2Duo 2.4Ghz). As expected, RIPPER is the most efficient variant. Disabling the
IREP procedure (RIP*) does indeed slow down the algorithm (keep in mind that, since the
pruning set is now empty, growing data is larger at the beginning). A further increase in
runtime is caused by changing from an ordered rule list to the unordered rule set (RIP**).
This is also expected since the unordered version learns rules in a one-vs-all fashion,
while for the ordered variant, the training data becomes successively smaller (training in-
stances from already covered classes are dropped). There is not much difference between
the unordered RIPPER without IREP (RIP**) to FURIA without fuzzification or crisp
generalization after rule learning (FUR*). The difference between RIP** and FUR* can
be explained by the rule stretching procedure that needs additional time to determine the
weights during classification.

The quintessence of this study is that, compared to RIPPER, the extensions and modifi-
cations of FURIA (disabling of the IREP procedure, the change from an ordered rule list
to an unordered list, the calculation of the rule stretching weights, and the fuzzification
procedure) cause an increase of runtime by a factor between 1.5 and 7.7 (average 3.4).

5 Related Work

Since the literature on (fuzzy) rule learning abounds, a comprehensive survey of this field
is clearly beyond the scope of this paper. Nevertheless, this section is meant to convey a
rough picture of the field and to briefly mention some related work.

The field of fuzzy rule learning can be roughly separated into several subfields. Firstly,
there are fuzzy extensions of conventional rule learning techniques, not only for the propo-
sitional case but also for the case of first-order logic (Drobics et al., 2003; Prade et al.,
2003; Serrurier and Prade, 2007). Quite popular in the fuzzy field are grid-based ap-
proaches as popularized by Wang and Mendel (1992), which proceed from fixed fuzzy
partitions of the individual dimensions. They are not very flexible and suffer from the
“curse of dimensionality” in the case of many input variables but may have advantages
with respect to interpretability (Guillaume, 2001). A well-known representative of this
kind of approach is the CHI algorithm that we also used in our experiments (Chi et al.,
1995, 1996). It proceeds from a fuzzy partition for each attribute and learns a rule for
every grid cell. This is done by searching the training instance with maximal degree of
membership in this cell (matching degree of the rule premise) and adopting the corre-
sponding class attribute as the rule consequent. Another approach of this subfield, which
prevails the literature on conventional rule learning but has received less attention in the
fuzzy field so far, is rule covering algorithms (Cloete and Van Zyl, 2006). In this category,
the FR3 rule learner that has recently been proposed by Hühn and Hüllermeier (2009) de-
serves special mentioning. Just like FURIA, FR3 draws on the RIPPER algorithm and
modifies it in a quite similar way. However, FR3 has a completely different focus and
embeds the modified RIPPER algorithm in a round robin learning scheme, i.e., it learns
an ensemble of binary classification models, one for each pair of classes. As opposed to
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this, FURIA learns a single multi-class model.

Secondly, several fuzzy variants of decision tree learning, following a divide-and-conquer
strategy and producing rule sets of a special (hierarchical) structure, have been proposed
(Wang et al., 2007). As this direction is only indirectly related to our work, we do not go
into further details.

Thirdly, hybrid methods that combine fuzzy set theory with other (soft computing) method-
ologies, notably evolutionary algorithms and neural networks, are especially important in
the field of fuzzy rule learning. For example, evolutionary algorithms are often used to
optimize (“tune”) a fuzzy rule base or for searching the space of potential rule bases in
a (more or less) systematic way (Cordon et al., 2004). One of these classifiers, which
was also included in our experimental comparison, is the SLAVE classifier (Gonzalez
and Perez, 1999, 2001). It uses a genetic learning approach to create a fuzzy rule-based
system by following a covering scheme. SLAVE represents each rule as a single chromo-
some. It uses an iterative approach, which means that the result of the genetic algorithm is
not meant to cover all positive examples. Instead, the genetic algorithm is repeated until
the iteratively generated set of rules is sufficient to represent the training set. Another
interesting approach in this area is the one proposed by del Jesus et al. (2004), which
applies the idea of boosting (Kearns, 1988) to the evolutionary learning of rule-based
classifiers. Neuro-fuzzy methods (Mitra and Hayashi, 2000; Nauck et al., 1997) encode a
fuzzy system as a neural network and apply corresponding learning methods (like back-
propagation). Fuzzy rules are then extracted from a trained network.

Finally, with regard to the idea of rule stretching that we proposed in this paper, it is
worth mentioning that some other approaches have been proposed in the literature that are
closely related, in particular the idea to combine instance-based and rule learning. This
idea has been realized in the RISE system (Domingos, 1995), in which single instances
are considered as maximally specific rules. The learning procedure essentially tries to
aggregate specific rules into more general ones. At classification time, an instance is
classified by the nearest rule. Another combination of instance-based and rule learning is
proposed by Hendrickx and van den Bosch (2005), who make use of the rule set to create
new features, indicating whether or not a rule is activated for an instance. A classification
is made by searching the query’s nearest neighbor in the novel feature space and assigning
its class.

6 Concluding Remarks

In this paper, we introduced a fuzzy rule-based classifier called FURIA, which is an ad-
vancement of the famous RIPPER algorithm. FURIA differs from RIPPER in several
respects, notably in the use of fuzzy instead of conventional rules. This way, it becomes
possible to model decision boundaries in a more flexible way. Besides, FURIA makes
use of a novel rule stretching technique which is computationally less complex than a
hitherto existing alternative and improves performance in comparison to the use of a de-
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fault rule. Combined with the sophisticated rule induction techniques employed by the
original RIPPER algorithm, these improvements have produced a rule learner with a su-
perb classification performance, which comes at the price of an acceptable increase in
runtime. In fact, extensive experiments on a large number of benchmark data sets have
shown that FURIA significantly outperforms the original RIPPER, as well as other fuzzy
rule learning methods included for comparison purpose.

A Java implementation of FURIA, running under the open-source machine learning toolkit
WEKA, can be downloaded at http://www.uni-marburg.de/fb12/kebi/research/.
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Table 1: Properties of the data sets used in the experiments: number of instances and
classes, continuous (c) and nominal (n) attributes, and attributes with missing instances
(m).

# Attributes
Data set # Inst. # Classes c n m
analcatdata-authorship 841 4 70 0 0
analcatdata-bankruptcy 50 2 5 1 0
analcatdata-cyyoung8092 97 2 7 3 0
analcatdata-cyyoung9302 92 2 6 4 0
analcatdata-esr 32 2 2 0 0
analcatdata-halloffame 1340 3 15 2 1
analcatdata-lawsuit 264 2 3 1 0
analcatdata-votesurvey 48 4 3 1 0
biomed 209 2 7 1 2
cars 406 3 6 1 2
collins 500 15 20 3 0
ecoli 336 8 7 0 0
eucalyptus 736 5 14 5 9
glass 214 6 9 0 0
haberman 306 2 2 1 0
heart-statlog 270 2 13 0 0
ionosphere 351 2 34 0 0
iris 150 3 4 0 0
liver-disorders 345 2 6 0 0
metStatCoordinates 4748 16 3 0 0
metStatRainfall 4748 16 12 0 0
metStatRST 336 12 3 0 0
metStatSunshine 422 14 12 0 0
metStatTemp 673 15 12 0 0
mfeat-factors 2000 10 216 0 0
mfeat-fourier 2000 10 76 0 0
mfeat-karhunen 2000 10 64 0 0
mfeat-morphological 2000 10 6 0 0
mfeat-zernike 2000 10 47 0 0
optdigits 5620 10 64 0 0
page-blocks 5473 5 10 0 0
pasture-production 36 3 21 1 0
pendigits 10992 10 16 0 0
pima diabetes 768 2 8 0 0
prnn-synth 250 2 2 0 0
schizo- 340 2 12 2 11
segment 2310 7 19 0 0
sonar 208 2 60 0 0
squash-unstored 52 3 20 3 8
synthetic control 600 6 60 1 0
vehicle 846 4 18 0 0
vowel 990 11 10 2 0
waveform-5000 5000 3 40 0 0
wine 178 3 13 0 0
wisconsin-breast-cancer 699 2 9 0 1
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Table 2: Estimation of classification accuracies in terms of averages on the testing data
(best per data set in bold) and standard deviations.
data set FURIA RIPPER C4.5 CHI SLAVE FURIA-

c
analcatdata-authorship 95.67 93.05 93.50 71.60 91.87 95.26
analcatdata-bankruptcy 82.57 81.97 81.29 74.40 77.80 83.83
analcatdata-cyyoung8092 80.02 80.04 79.86 70.72 79.32 80.17
analcatdata-cyyoung9302 82.64 82.01 80.82 80.27 83.90 82.96
analcatdata-esr 80.90 82.38 80.36 79.55 77.72 81.73
analcatdata-halloffame 92.92 92.87 92.87 92.18 92.68 92.89
analcatdata-lawsuit 98.00 97.54 97.94 94.93 94.81 97.96
analcatdata-votesurvey 36.92 34.40 38.75 40.19 29.51 36.35
biomed 88.31 87.40 87.80 80.64 84.74 88.12
cars 79.08 75.93 82.15 68.97 70.68 78.51
collins 96.35 92.89 96.10 42.63 50.87 95.29
ecoli 83.12 80.57 81.35 77.43 81.03 82.44
eucalyptus 60.62 58.69 59.98 54.09 58.16 60.29
glass 68.22 63.18 66.69 61.39 61.83 67.01
haberman 72.72 72.16 71.75 73.08 73.31 72.80
heart-statlog 79.75 78.44 77.08 68.66 78.44 79.56
ionosphere 89.59 88.64 88.72 66.40 89.83 89.40
iris 94.76 93.45 94.25 92.27 94.92 94.10
liver-disorders 67.15 65.93 63.40 58.75 59.77 66.76
metStatCoordinates 93.02 92.04 92.87 46.79 58.77 92.83
metStatRainfall 64.51 60.66 59.47 24.51 29.35 63.79
metStatRST 33.56 36.08 38.60 25.24 42.02 33.31
metStatSunshine 49.05 44.48 46.78 37.93 28.83 48.50
metStatTemp 50.71 47.45 53.18 30.63 22.10 50.39
mfeat-factors 92.09 87.05 87.96 89.19 86.83 91.76
mfeat-fourier 76.69 71.37 74.42 69.27 73.49 76.07
mfeat-karhunen 86.47 79.13 80.20 82.55 78.37 85.57
mfeat-morphological 72.09 70.74 71.60 57.93 67.08 72.08
mfeat-zernike 73.67 67.58 69.11 72.37 68.26 72.80
optdigits 94.78 89.68 89.51 45.90 93.45 94.42
page-blocks 97.02 96.79 96.89 91.96 93.58 96.91
pasture-production 74.67 68.46 73.67 44.23 53.63 73.23
pendigits 97.77 95.54 95.92 97.45 87.26 97.32
pima diabetes 74.71 74.56 73.43 72.55 73.65 74.76
prnn-synth 83.57 82.50 83.18 84.14 81.51 83.46
schizo- 80.52 75.33 74.93 56.08 56.29 79.97
segment 96.50 94.53 95.95 83.65 88.87 96.04
sonar 77.01 72.41 72.09 74.61 68.50 76.34
squash-unstored 76.44 71.74 76.08 70.56 65.56 77.10
synthetic control 89.75 82.85 90.00 68.33 89.23 88.60
vehicle 70.10 67.80 71.38 61.99 64.08 69.75
vowel 75.43 64.71 75.60 59.49 63.84 71.87
waveform 82.24 78.72 75.05 72.38 75.34 82.23
wine 93.25 90.02 91.22 92.77 92.46 92.21
wisconsin-breast-cancer 95.68 95.58 94.51 90.20 95.49 95.53
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Table 3: Ranks of the classifiers.
data set FURIA RIPPER C4.5 CHI SLAVE
analcatdata-authorship 1 3 2 5 4
analcatdata-bankruptcy 1 2 3 5 4
analcatdata-cyyoung8092 2 1 3 5 4
analcatdata-cyyoung9302 2 3 4 5 1
analcatdata-esr 2 1 3 4 5
analcatdata-halloffame 1 3 2 5 4
analcatdata-lawsuit 1 3 2 4 5
analcatdata-votesurvey 3 4 2 1 5
biomed 1 3 2 5 4
cars 2 3 1 5 4
collins 1 3 2 5 4
ecoli 1 4 2 5 3
eucalyptus 1 3 2 5 4
glass 1 3 2 5 4
haberman 3 4 5 2 1
heart-statlog 1 2 4 5 3
ionosphere 2 4 3 5 1
iris 2 4 3 5 1
liver-disorders 1 2 3 5 4
metStatCoordinates 1 3 2 5 4
metStatRainfall 1 2 3 5 4
metStatRST 4 3 2 5 1
metStatSunshine 1 3 2 4 5
metStatTemp 2 3 1 4 5
mfeat-factors 1 4 3 2 5
mfeat-fourier 1 4 2 5 3
mfeat-karhunen 1 4 3 2 5
mfeat-morphological 1 3 2 5 4
mfeat-zernike 1 5 3 2 4
optdigits 1 3 4 5 2
page-blocks 1 3 2 5 4
pasture-production 1 3 2 5 4
pendigits 1 4 3 2 5
pima diabetes 1 2 4 5 3
prnn-synth 2 4 3 1 5
schizo- 1 2 3 5 4
segment 1 3 2 5 4
sonar 1 3 4 2 5
squash-unstored 1 3 2 4 5
synthetic control 2 4 1 5 3
vehicle 2 3 1 5 4
vowel 2 3 1 5 4
waveform 1 2 4 5 3
wine 1 5 4 2 3
wisconsin-breast-cancer 1 2 4 5 3
average 1.40 3.07 2.60 4.24 3.6924



Data set FURIA RIPPER CHI SLAVE
rules cond. rules cond. rules cond. rules cond.

analcatdata-authorship 15.9 2.7 9.6 1.7 555.1 3 12.1 5.9
analcatdata-bankruptcy 3.8 1.8 2.5 0.7 23.9 3 2.5 1.6
analcatdata-cyyoung8092 3.7 1.5 2.6 0.7 55 3 3.4 2.0
analcatdata-cyyoung9302 3.5 1.3 2.8 0.8 49.5 3 3.1 2.0
analcatdata-esr 2.1 1.1 2 0.5 6.8 3 2.6 1.1
analcatdata-halloffame 14.3 2.8 6.5 1.8 458.9 3 7.2 3.4
analcatdata-lawsuit 3.7 1.5 2 1 24.7 3 2.6 1.7
analcatdata-votesurvey 1.7 1.4 2.3 0.8 13.6 3 7.3 2.1
biomed 8.6 2 4.4 1 55.1 3 4.3 2.7
cars 12.9 2.4 7.1 1.8 54.4 3 12.5 3.3
collins 15.9 1.1 15.2 1 321.7 3 45.8 6.6
ecoli 13.8 2.5 8.3 1.6 47.2 3 11.3 3.0
eucalyptus 14.7 2.6 10.2 1.8 375 3 38.3 5.7
glass 11.3 2.2 6.7 1.7 42.7 3 12.3 3.3
haberman 4.4 1.5 2 0.8 15.8 3 4 1.7
heart-statlog 8.4 2.5 4.3 1.5 164.9 3 7 3.6
ionosphere 8.3 2 4.7 1.1 168.9 3 8 3.8
iris 4.4 1.5 3.3 0.8 14.9 3 3.1 1.2
liver-disorders 8.2 2.2 4.3 1.8 42.1 3 5.9 3.4
metStatCoordinates 69.7 2.3 38.8 2.1 15.6 3 12.8 2.4
metStatRainfall 123.9 4.5 82.7 3.6 215.6 3 30.3 4.4
metStatRST 9.9 2.2 10 1.7 15 3 9.5 2.3
metStatSunshine 25 2.7 17 1.9 91 3 39.3 4.3
metStatTemp 31.5 2.8 22.4 2.2 36.4 3 15.6 3.5
mfeat-factors 45 3 28.5 2.2 1317.2 3 44.3 12.2
mfeat-fourier 52.4 3.8 29.2 2.6 1317.2 3 73.2 10.6
mfeat-karhunen 59.1 3.2 38.4 2.6 1314.4 3 64.7 9.7
mfeat-morphological 25.1 2.6 19 2.1 31.4 3 15.7 3.1
mfeat-zernike 44.9 3.7 30.6 2.8 1257.6 3 77.7 10.0
optdigits 97.8 4.9 59.6 3.9 3708.5 3 68.6 8.0
page-blocks 25.6 3.2 14.7 2.2 47.6 3 10.1 3.5
pasture-production 3.4 1.4 3.2 0.7 24 3 3.6 3.3
pendigits 110.9 4.8 67.6 3.4 2745.2 3 37 7.6
pima diabetes 8.5 2.6 3.9 1.8 98.6 3 9.3 3.7
prnn-synth 4.4 1.4 3.5 1 8 3 2.4 1.6
schizo- 15.1 1.7 6.5 1.2 136.7 3 7.9 5.3
segment 26.9 3.1 17 2.2 275.1 3 15.8 4.5
sonar 8.1 2.3 4.3 1.4 137.1 3 6.9 4.7
squash-unstored 4 1.5 3.2 0.8 33.8 3 4.1 2.6
syntheticcontrol 17.3 2.6 10.6 1.8 394.3 3 9.1 6.3
vehicle 20.7 3.3 13.8 2.2 314.4 3 26.4 6.5
vowel 53.8 3.3 34.2 2.5 251.5 3 51.1 5.6
waveform 79.9 5.9 27.9 3.8 2874.7 3 50.7 9.3
wine 6.2 1.9 3.5 1.1 101.2 3 3.8 2.9
wisconsin-breast-cancer 12.2 2.9 4.8 1.5 172.4 3 5.8 3.7
average 25.4 2.5 15.5 1.7 431.7 3 19.8 4.4

Table 4: The number of rules per rule set and the average number of antecedents per rule.
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data set uncovered novel (Eineborg
and

Boström,
2001)

diff.

analcatdata-authorship 0.05 42.70 49.40 6.70
analcatdata-bankruptcy 0.02 6.80 0.80 -6.00
analcatdata-cyyoung8092 0.08 5.50 1.80 -3.70
analcatdata-cyyoung9302 0.07 4.70 1.10 -3.60
analcatdata-esr 0.04 2.30 0.20 -2.10
analcatdata-halloffame 0.03 39.80 48.50 8.70
analcatdata-lawsuit 0.00 5.50 0.70 -4.80
analcatdata-votesurvey 0.77 2.40 1.70 -0.70
biomed 0.05 17.60 9.80 -7.80
cars 0.11 31.20 34.50 3.30
collins 0.01 18.00 7.20 -10.80
ecoli 0.05 34.70 26.30 -8.40
eucalyptus 0.30 38.50 61.70 23.20
glass 0.15 24.60 22.40 -2.20
haberman 0.07 6.40 2.40 -4.00
heart-statlog 0.08 21.20 21.40 0.20
ionosphere 0.04 17.00 9.90 -7.10
iris 0.01 6.60 0.90 -5.70
liver-disorders 0.17 18.20 19.90 1.70
metStatCoordinates 0.02 163.20 120.30 -42.90
metStatRainfall 0.23 556.60 1737.60 1181.00
metStatRST 0.49 22.10 24.10 2.00
metStatSunshine 0.26 67.60 91.10 23.50
metStatTemp 0.33 89.00 121.40 32.40
mfeat-factors 0.06 134.40 227.60 93.20
mfeat-fourier 0.13 200.60 622.00 421.40
mfeat-karhunen 0.10 189.30 426.00 236.70
mfeat-morphological 0.08 65.70 72.60 6.90
mfeat-zernike 0.18 167.60 489.20 321.60
optdigits 0.04 482.10 1949.60 1467.50
page-blocks 0.01 82.00 87.90 5.90
pasture-production 0.23 4.60 1.40 -3.20
pendigits 0.01 528.00 1429.30 901.30
pima diabetes 0.13 22.00 30.60 8.60
prnn-synth 0.08 6.10 2.00 -4.10
schizo- 0.13 25.20 25.90 0.70
segment 0.02 83.70 91.10 7.40
sonar 0.13 18.80 20.00 1.20
squash-unstored 0.06 6.10 1.40 -4.70
synthetic control 0.08 45.50 49.70 4.20
vehicle 0.22 68.60 118.60 50.00
vowel 0.11 175.00 291.00 116.00
waveform 0.10 474.70 2645.80 2171.10
wine 0.04 11.50 4.30 -7.20
wisconsin-breast-cancer 0.02 34.90 26.11 -8.79

Table 5: The number of times the rule weight has to be calculated for the rule stretching
procedure. The first column shows the relative number of testing instances that were
not covered by any rule. The second column shows the number of calculations for our
approach and the third column for the one of Eineborg and Boström (2001). The last
column shows the difference of these two.
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data set RIPPER RIP* RIP** FUR* FURIA
analcatdata-authorship 0.348 0.588 0.828 0.840 0.873
analcatdata-bankruptcy 0.001 0.002 0.003 0.003 0.003
analcatdata-cyyoung8092 0.004 0.005 0.012 0.010 0.010
analcatdata-cyyoung9302 0.003 0.004 0.008 0.008 0.008
analcatdata-esr 0.000 0.000 0.001 0.001 0.001
analcatdata-halloffame 0.461 0.706 0.996 1.008 1.046
analcatdata-lawsuit 0.003 0.003 0.006 0.005 0.007
analcatdata-votesurvey 0.002 0.004 0.003 0.004 0.004
biomed 0.012 0.013 0.027 0.030 0.031
cars 0.045 0.094 0.125 0.138 0.146
collins 0.210 0.300 0.329 0.321 0.327
ecoli 0.032 0.066 0.084 0.089 0.095
eucalyptus 0.280 0.659 0.890 0.953 0.976
glass 0.034 0.054 0.079 0.084 0.090
haberman 0.010 0.016 0.034 0.045 0.046
heart-statlog 0.023 0.033 0.068 0.077 0.080
ionosphere 0.082 0.115 0.221 0.228 0.233
iris 0.002 0.004 0.007 0.006 0.006
liver-disorders 0.024 0.049 0.100 0.121 0.124
metStatCoordinates 1.327 4.199 4.834 7.481 10.266
metStatRainfall 11.287 24.868 29.186 35.720 42.819
metStatRST 0.065 0.134 0.164 0.170 0.181
metStatSunshine 0.321 0.566 0.669 0.658 0.684
metStatTemp 0.423 0.887 1.033 1.108 1.156
mfeat-factors 10.623 23.466 25.879 25.537 25.762
mfeat-fourier 9.733 30.836 33.859 32.685 33.236
mfeat-karhunen 7.973 19.593 21.658 20.720 21.164
mfeat-morphological 0.571 1.808 2.059 2.263 2.826
mfeat-zernike 6.563 17.002 18.605 17.943 18.383
optdigits 14.817 39.101 44.720 50.118 58.243
page-blocks 1.574 2.599 3.426 3.954 5.667 9
pasture-production 0.002 0.005 0.006 0.006 0.007 1
pendigits 10.716 30.488 35.114 47.218 77.755
pima diabetes 0.073 0.132 0.278 0.335 0.358
prnn-synth 0.007 0.010 0.024 0.027 0.030
schizo- 0.050 0.081 0.173 0.196 0.203
segment 0.940 2.178 2.666 2.818 3.074
sonar 0.082 0.103 0.224 0.230 0.233
squash-unstored 0.005 0.006 0.009 0.009 0.009
synthetic control 0.650 1.301 1.563 1.476 1.495
vehicle 0.282 0.787 0.900 0.949 0.988
vowel 0.715 1.755 1.949 2.013 2.164
waveform 7.778 29.359 42.688 50.521 57.809
wine 0.010 0.015 0.025 0.025 0.026
wisconsin-breast-cancer 0.025 0.053 0.085 0.102 0.117

Table 6: Average model building times in seconds. FUR* = FURIA w/o fuzzification
process, R* = RIPPER unordered w/o IREP, R** = RIPPER w/o IREP27


