
Adaptive Optimization of the Number of Clusters

in Fuzzy Clustering

Jürgen Beringer

Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Universitätsplatz 2, 39106 Magdeburg, Germany

Eyke Hüllermeier

Philipps-Universität Marburg

Hans-Meerwein-Str., Marburg, Germany

Abstract

In this paper, we present a local, adaptive optimization scheme for adjusting

the number of clusters in fuzzy C-means clustering. This method is especially mo-

tivated by online applications in which a potentially changing clustering structure

must be maintained over time, though it turns out to be useful in the static case as

well. As part of the method, we propose a new validity measure for fuzzy partitions

which is a modification of the commonly used Xie-Beni index and overcomes some

deficiencies thereof.

1 Introduction

Learning in online scenarios has been a focus of research in the data mining field in recent

years. Corresponding algorithms must be able to learn in an incremental way and to

adapt to a changing environment. For example, clustering algorithms should be able

to properly react to changes of the underlying clustering structure and, in particular,

to a changing number of clusters [1, 2]. Obviously, this hampers the application of

standard clustering algorithms such as K-means and fuzzy C-means, as these algorithms

assume the number of clusters to be a fixed (user-specified) parameter which is known

in advance.

1

Several methods for determining an optimal number of clusters have been proposed

in the literature [10, 8]. Assuming a lower bound Kmin and upper bound Kmax to be

given, the simplest approach simply tries all potential numbers K ∈ {Kmin . . .Kmax}: A

clustering structure is derived for every K and evaluated in terms of a quality measure

such as the well-known Xie-Beni index [11]. Finally, the result which appears to be

optimal according to this measure is adopted.

This enumeration strategy as well as more sophisticated variants thereof are computa-

tionally quite complex, as they have to test every K independently. This drawback is

further amplified by the problem of local optima, which is commonly encountered for

clustering algorithms like fuzzy C-means: Running the algorithm twice will typically

produce two different results. Thus, in order to evaluate a fixed cluster number K, it is

not enough to apply the algorithm to the data once. Instead, it must be applied repeat-

edly, say, N times, in order to produce a reasonably good and confident approximation

to the best quality that can be obtained for K. Consequently, the overall number of

runs of the clustering algorithm amounts to N × (Kmax −Kmin + 1).

Needless to say, the above optimization strategy cannot be used in an online context

where an optimal K has to be found repeatedly, and possibly under hard time con-

straints. In this paper, we propose a method for determining an optimal number of

clusters in an adaptive and efficient way, focusing on fuzzy C-means (FCM) as an un-

derlying clustering algorithm.

The remainder of the paper is organized as follows: In the next section, we outline

the problem of clustering data streams as an interesting application and important

motivation of adaptive clustering. Our method for optimizing the cluster number will

be introduced in section 3. An empirical evaluation covering both the static case and

the clustering of data streams is given in section 4.

2 Adaptive Clustering of Data Streams

In recent years, so-called data streams have attracted considerable attention in differ-

ent fields of computer science, such as database systems, distributed systems and, in

particular, data mining [5, 9, 7]. As the notion suggests, a data stream can roughly be

thought of as an ordered sequence of data items, where the input arrives more or less

continuously as time progresses. There are various applications in which streams of this

2

type are produced, such as network monitoring, telecommunication systems, customer

click streams, stock markets, or any type of multi-sensor system. As a data stream sys-

tem may constantly produce huge amounts of data, it is usually not feasible to simply

store the arriving data in order to analyze it offline later on. Instead, stream data must

be processed in an online manner so as to guarantee that results are up-to-date.

In [2], the problem of continuously clustering a fixed number of parallel data streams is

considered, with a focus on time-series data streams (i.e., individual data items are real

numbers). More specifically, the problem is to maintain groups of data streams such

that streams within one class are similar to each other in the sense of evolving similarly

over time; as a suitable distance function, a weighted correlation measure on a sliding

window was used (see Fig. 1). We refer to [2] for technical details.

The basic algorithm for clustering data streams is given in pseudo-code in algorithm 2.1.

As can be seen, the algorithm performs FCM clustering of the streams on the current

time window until time progresses (in a discrete step) and new data arrives. Then,

the streams are updated by sliding the windows, and the pairwise distances between

streams are re-computed (which can be done incrementally). From a clustering point

of view, the challenge derives from the fact that the objects to be clustered, namely the

data streams, do change in the course of time. Roughly, these objects can be imagined

as “moving points” in a high-dimensional Euclidean space (the dimension corresponds

to the length of the time window). Consequently, an adaptive clustering approach is

needed in order to maintain an up-to-date clustering structure.

Algorithm 2.1: Adaptive clustering of data streams
Input: streams of data points

Initialize K cluster centers at random;1

while streams are still alive do2

repeat3

Assign membership degrees for each stream to the cluster centers;4

Replace each center by the center of its associated fuzzy cluster;5

until new data has arrived ;6

Adjust the cluster number K by ±1;7

Update data streams (by sliding windows), distances between streams, and8

cluster centers;

3

- -

- -

sliding window

sliding window

Figure 1: Data streams are compared within a sliding window of fixed size. In the

example above, the behavior of the two streams is obviously quite different. In the

example below, the two streams are similar to some extent.

3 Local Optimization of the Cluster Number

Recall that fuzzy C-means seeks to minimize the following objective function [3]:

n
∑

ı=1

K
∑

=1

‖xı − c‖
2 (uı)

m, (1)

where uı = u(xı) is the membership of the ı-th object xı in the -th cluster, and cı is

the -th center. In the commonly employed probabilistic version of fuzzy C-means, it is

required that
K

∑

=1

uı =
K

∑

=1

u(xı) = 1 (2)

for all xı [6]. The constant m > 1 in (1) is called the fuzzifier and controls the overlap

(“smoothness”) of the clusters (a common choice is m = 2).

As mentioned before, the simple enumeration strategy for optimizing the cluster number,

as outlined in the introduction, is not practicable in an online setting as it requires the

consideration of too large a number of candidate values and, hence, applications of the

clustering algorithm. To minimize the effort, the idea of this paper is to pursue a local

adaptation process that tries to adapt the cluster number K on the basis of a starting

point K0 in the style of a hill-climbing procedure. This strategy appears particularly

4

appealing in an online setting where the optimal cluster number, K∗, may “smoothly”

change in the course of time. In fact, assuming that K∗ does not make big jumps,

the optimal number at time t, K∗(t), will provide a good initialization for finding the

optimal number at time t+1. In other words, a local search is likely to succeed without

getting trapped in local optima.

Thus, starting with K = K0, each iteration of our method consists of a test that checks

whether the cluster model can be improved by increasing or decreasing K. To this end,

we make use of a suitable quality measure (validity function) Q(·). Let Q(K) denote the

quality of the cluster number K, that is, of the cluster model obtained for this number.

In each iteration, K is then updated as follows:

K ← arg max {Q(K − 1), Q(K), Q(K + 1)}

This is repeated until K remains unchanged, i.e., Q(K) > max {Q(K − 1), Q(K + 1)}.

Essentially, this approach requires two elements: Firstly, a suitable validity function

Q(·), and secondly, a means for going from a clustering structure with K clusters to

structures with K − 1 and K + 1 clusters, respectively. We shall address the first issue

in section 3.1 and the second one in section 3.2.

3.1 Fuzzy Validity Function

Regarding the evaluation of a cluster model (partition of the data) in terms of a measure

Q(·), several proposals can be found in the literature. Unfortunately, most of these

measures have been developed for the non-fuzzy case. Indeed, validity functions of that

kind might still be (and in fact often are) employed, namely by mapping a fuzzy cluster

model to a crisp one first (i.e., assigning each object to the cluster in which it has

the highest degree of membership) and deriving the measure for this latter structure

afterwards. However, this approach can of course be criticized as it comes along with a

considerable loss of information. On the other hand, many of the non-fuzzy measures

can be adapted to the fuzzy case in a natural way.

Validity functions typically suggest finding a trade-off between intra-cluster and inter-

cluster variability, which is of course a reasonable principle. Besides, our approach gives

rise to a number of additional requirements, notably the following:

(a) Concavity: Since the number K of clusters is only changed locally by ±1, i.e.,

in the style of hill-climbing, our adaptation procedure might get stuck in local

5

2 4 6 8 10 12
number of clusters

2 4 6 8 10 12

Figure 2: Example of the Xie-Beni validity measure (dashed line) and its modified

version (5); the data was generated as described in section 4.1 (2 dimensions, 5 clusters).

optima. Consequently, the convexity (resp. concavity) of the validity function is

highly desirable. That is, Q(K) should be maximal (resp. minimal) for the optimal

number K∗ of clusters and decrease (resp. increase) in a monotone way for smaller

and larger values (at least within a certain range around K∗). Unfortunately, most

existing measures do not have this property and instead show a rather irregular

behavior (see Fig. 2 for a typical example).

(b) FCM-conformity: As already explained above, to adapt the cluster number K,

we provisionally consider two alternative structures that we obtain, respectively,

by removing and adding a cluster. However, as will become clear later on, both

candidate structures might not be fully optimized with regard to the FCM objec-

tive function (1). Instead, in an online setting, this optimization might take place

only after the apparently best structure (cluster number) has been selected. In

order to avoid this optimization to invalidate the previous selection, the validity

measure Q(·) should well harmonize with the objective function (1).

(c) Efficiency: Since the validity function is frequently evaluated in our application,

its computation should be efficient. This disqualifies measures with a quadratic

complexity, such as the maximal distance between two objects within a cluster.

A widely used validity function is the so-called Xie-Beni index or separation [11], which

6

is defined as
1

n

∑n
ı=1

∑K
k=1

um
ık ‖xı − ck‖

2

mink,` ‖ck − c`‖2
. (3)

As most validity measures do, (3) puts the intra-cluster variability (numerator) in re-

lation to the inter-cluster variability (denominator). In this case, the latter is simply

determined by the minimal distance between two cluster centers. Obviously, the smaller

the separation, the better the cluster model.

Since the nominator of (3) just corresponds to the objective function (1), the Xie-Beni

index looks quite appealing with regard to point (b) above. Moreover, it is also efficient

from a computational point of view. Still, point (a) remains problematic, mainly due

to the minimum in the denominator.

To remedy this problem, we suggest replacing the minimum by a summation over all

(pairwise) cluster dissimilarities, with smaller dissimilarities having a higher weight

than larger ones. Simply defining the dissimilarity between two clusters by the distance

between the corresponding centers is critical, however, since it neglects the variability

(size) of these clusters. Therefore, we define the variability of a cluster in terms of the

average (squared) distance from the center,

Vk
df
=

∑

ı uık‖xı − ck‖
2

∑

ı uık

and the dissimilarity between two clusters as

D(Ck, C`)
df
=
‖ck − c`‖

2

Vk × V`

.

These dissimilarities are aggregated by means of
∑

1≤k<`≤K

1

D(Ck, C`)
, (4)

thereby putting higher weight on smaller dissimilarities. Replacing the denominator in

(3) by (4), we thus obtain

1

n

n
∑

ı=1

K
∑

k=1

‖xı − ck‖
2 um

ık ×
∑

1≤k<`≤K

1

D(Ck, C`)
. (5)

It is of course not possible to prove the concavity of (5) in a formal way. Still, our

practical experience so far has shown that it satisfies our requirements in this regard

very well and compares favorably with alternative measures ((see Fig. 2 for a typical

example). Corresponding experimental results will be presented in section 4 below.

7

Algorithm 3.1: Optimization of the cluster number
Input: data, initial cluster number K

Output: optimal cluster number with associated partition

Data: partition P

initialize P by K cluster centers selected at random;1

count(·) ← 0 ;2

best ← P ;3

repeat4

repeat5

for every object, derive the membership degrees in the clusters in P ;6

derive the centers of the new clusters in P ;7

until ∆J < ε ;8

find the best K-1 partition → P−1;9

find the best K+1 partition → P+1;10

P ← best partition among {P, P−1, P+1};11

K ← number of clusters in P ;12

count(K) ← count(K)+1;13

if P better than best then best ← P ;14

until K unchanged or count(K)>K ;15

return best;16

8

3.2 Adapting the Clustering Structure

The second element of our adaptive optimization scheme is a means for replacing the

current clustering structure, consisting of K clusters, by structures with K − 1 and

K + 1 clusters, respectively. Intuitively, decreasing the cluster number by 1 means that

one of the current clusters has disappeared. Thus, we propose to derive a cluster model

with K − 1 clusters as follows: One of the current clusters is tentatively removed, and

M iterations of the fuzzy C-means algorithm are executed in order to re-assign the

elements of this cluster to the remaining cluster centers (and to adjust these centers

correspondingly). The quality of the cluster model thus obtained is then computed.

This is repeated K times, i.e., each of the current clusters is removed by way of trial.

The best cluster model is then chosen, i.e., Q(K − 1) is defined by the quality of the

best model (see Algorithm 3.2).

Algorithm 3.2: Optimal reduction of cluster size
Input: T is partition with K clusters

Output: N is partition with K − 1 clusters

foreach Cluster c do1

Sc=T without cluster c;2

for i = 1 to M do3

for every object, derive the membership degrees in the K − 1 clusters in4

Sc;

derive the centers of the new clusters in Sc;5

compute the validity measure for Sc;6

set N = best partition according to validity measure Sc;7

Going from K to K + 1 assumes that an additional cluster has emerged. To create

this cluster we complement the existing K centers by one center that is defined by a

randomly chosen element. The probability of an element to be selected is reasonably

defined as an increasing function of the elements’s distance from its associated cluster

center. More specifically, we define the probability of an element xi in proportion to
∑K

k=1
||xi − ck||(uik)

m. In order to compute Q(K + 1), we try out a fixed number of

randomly chosen elements and select the one that gives the best cluster model.

9

4 Empirical Evaluation

Our evaluation consists of four experimental studies. First, we investigated the suit-

ability of our approach for determining the optimal cluster number in the case of static

data. The second study is concerned with discovering a sudden change in the number

of clusters. The last two experiments evaluate our adaptive clustering scheme in the

streaming environment.

4.1 Experiment 1

In the static case we compared our local optimization approach with the simple strategy

which tries every cluster number in the range {2 . . . 19}. In the latter case, we called

the fuzzy C-means algorithm 10 times for each K in order to avoid local minima and

then took the best result [4].

As test data, we used randomly generated synthetic data with rather simple cluster-

ing structures, each consisting of 1,000 data points located in the d-dimensional space

[0, 200]d. To generate a data set, we first determine the cluster number K at random,

using a uniform distribution over {2 . . . 19}. The cluster centers are generated analo-

gously (a distribution of the centers in [0, 200]d is accepted only if the distance between

every pair of centers is at least 6 times as large as the standard deviation of the clusters).

For every cluster, 1000/K data points are generated using a normal distribution with

standard deviation 5.

50 data sets have been generated for each dimension d ∈ {2, 5, 10, 25} and each cluster

number K. Our local approach is initialized with K0 = 10 while the global strategy

searches the complete range {2 . . . 19}. To obtain a reference measure, we initialized

the standard fuzzy C-means algorithm with the correct cluster centers and derived the

validity index for the clustering structure thus obtained. For both approaches (local

and global) we then checked whether the respective solution is at least as good as the

reference result and derived a corresponding hit rate. Additionally, we measured the

runtimes of both approaches.

Regarding the hit rate, it was to be expected that the global strategy outperforms

the local one, as it tries all potential cluster numbers. However, as can be seen in

Fig. 3, our local strategy is quite competitive and in some cases even superior. As a

potential explanation, we suspect that our strategy of adding and removing clusters

10

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

2 dimensions

local
global

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

5 dimensions

local
global

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

10 dimensions

local
global

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

25 dimensions

local
global

Figure 3: Comparison of the hit rates

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

550

number of Clusters

tim
e

(in
 s

)

2 dimensions

local
global

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

550

number of Clusters

tim
e

(in
 s

)

5 dimensions

local
global

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

550

number of Clusters

tim
e

(in
 s

)

10 dimensions

local
global

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

550

number of Clusters

tim
e

(in
 s

)

25 dimensions

local
global

Figure 4: Comparison of the runtimes

11

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

2 dimensions

modified XB
Xie−Beni Index

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

5 dimensions

modified XB
Xie−Beni Index

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

10 dimensions

modified XB
Xie−Beni Index

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

number of Clusters

hi
t r

at
e

(in
 %

)

25 dimensions

modified XB
Xie−Beni Index

Figure 5: Comparison of the validity measure

in a systematic way is more effective in escaping local minima of the fuzzy C-means

objective function than restarting the algorithm at random. On the other hand, the

local approach obviously runs into trouble if the true cluster number is much higher

than the initialization, especially in the case of high-dimensional data.

With regard to the runtimes, our local approach clearly outperforms the global one (see

Fig. 4). In fact, even though the runtimes slightly increase with the number of clusters,

they remain on a comparably low level for the local approach, independently of the

dimension. In contrast, the runtimes of the global method are much higher.

Fig. 5 shows a comparison with the Xie-Beni index. As expected, the results strongly

depend on the initialization: the closer the true cluster number to the initialization

K0 = 10, the higher the hit rate becomes. More importantly, however, the figure

clearly shows the positive influence of our modified version of the Xie-Beni index. In

fact, using this measure significantly improves the hit rate.

4.2 Experiment 2

In this experiment, we tested our method’s ability to discover the emergence of a new

or disappearance of an existing cluster. To this end, we generated coupled data sets

as follows: First, a single data set with K ∈ {2 . . . 18} is generated as described above.

12

Table 1: Detection rate
dimension K → K − 1 K → K + 1 rate

2 100% 98.7% 99.3%

5 99.9% 98.9% 99.4%

10 100% 99.9% 100%

25 100% 99.9% 100%

Then, two variants of this data set are produced, one by generating additional data

for the last cluster, and the other one by generating data for an additional (random)

cluster center. Thus, the second variant contains K +1 clusters, one more than the first

variant.

To test the ability of detecting the increase of the cluster number, the first variant

is clustered by initializing fuzzy C-means with the correct cluster centers. Then, we

replaced the data set by the second variant and checked whether or not the additional

cluster was discovered by the adaptation step outlined in section 3.2. To test the ability

of detecting the decrease of the cluster number, the two variants of the data set are

simply exchanged.

Table 1 shows average detection rates for 5,000 tests. As can be seen, the rates are close

to 100%. As expected, the removal of a cluster is even somewhat easier to detect than

the emergence of an additional cluster. In fact, in the latter case we only tried 10 data

points as additional cluster centers, which makes it is quite likely that no improvement

can be achieved. As in the first experimental study, the results seem to be even better

for higher dimensions. This can be explained by the fact that local minima of the FCM

objective function occur more frequently in the low-dimensional case.

4.3 Experiment 3

In the third experiment, we investigated the ability of our algorithm to adapt to a

changing number of clusters in the data stream environment outlined in section 2. To

this end, synthetic data streams were generated in the follow way: First, a prototype

p(·) is predefined in terms of a specific (deterministic) function of time. The elements

that (should) belong to the cluster are then generated by “distorting” the prototype,

both horizontally (by stretching the time axis) and vertically (by adding noise). More

13

precisely, a data stream x(·) is defined by

x(t) = p
(

t + h(t)
)

+ g(t),

where h(·) and g(·) are stochastic processes that are generated by means of a second-

order difference equation:

h(t + ∆t) = h(t) + h′(t + ∆t) (6)

h′(t + ∆t) = h′(t) + u(t),

t = 0, ∆t, 2∆t . . . The u(t) are independent random variables, uniformly distributed in

an interval [−a, a]; obviously, the smaller the constant a is, the smoother the stochastic

process will be.

In the experiment, we varied the number of artificial clusters in the data generating

process: Starting with two clusters, the number of clusters was repeatedly doubled

to four (in a “smooth” way) and later again reduced to two. Technically, this was

accomplished as follows: The overall number of 100 data streams is divided into four

groups. The first and second group are represented by the prototype p1(t) = sin(t)

and p2(t) = 1− sin(t), respectively. The third group is characterized by the prototype

p3(t) = (1 − λ)p1(t) + λ sin(t + π/2), where λ ∈ [0, 1] is a parameter. Likewise, the

fourth group is characterized by the prototype p4(t) = (1−λ)p2(t)+λ(1−sin(t+π/2)).

As explained above, all streams were generated as distortions of their corresponding

prototypes.

As can be seen, for λ = 0, the third (fourth) and the first (second) group form a single

cluster, whereas the former moves away from the latter for larger values of λ, and finally

constitutes a completely distinct cluster for λ = 1. The parameter λ is changed from 0

to 1 and back from 1 to 0 in a smooth way within a range of 8 time steps (during one

time step 512 new data points are generated).

Fig. 6 shows the value of λ and the number of clusters generated by the algorithm as a

function of time, that is, for each block number. As can be seen, our approach correctly

adapts the number of clusters, but of course with a small delay. We obtained quali-

tatively very similar results with other numbers of clusters and other data generating

processes.

14

0 20 40 60 80 100
0

0.5

1

w
ei

gh
t

λ

blocks
0 20 40 60 80 100

2

3

4

nu
m

be
r o

f c
lu

st
er

s

Figure 6: Weight of the parameter λ (solid line) and number of clusters (dashed line)

in the third experiment.

4.4 Experiment 4

This experiment is quite similar to the recent one. This time, we simulated a scenario

in which some data streams move between two clusters. Again, these two clusters

are represented, respectively, by the prototypes p1(t) = sin(t) and p2(t) = 1 − sin(t).

Additionally, there are two streams that are generated as distortions of the convex

combination (1− λ)p1 + λp2, where λ ∈ [0, 1].

Fig. 7 shows the value of λ and the (average) membership degrees of the two streams

in the second cluster and the intermediate cluster. As can be seen, the membership

degrees are again correctly adapted with a small delay of time. The algorithm creates

an additional cluster in-between. This cluster suddenly emerges when the streams are

relatively far away from the first cluster and disappears when they come close enough

to the second cluster. The degree of membership in the intermediate cluster, again

averaged over the moving elements, is shown by the additional solid line in the figure.

5 Conclusions

This paper has introduced a local, adaptive optimization scheme for adjusting the num-

ber of clusters in fuzzy C-means clustering. Even though this method is especially

motivated by online scenarios in which a potentially changing clustering structure must

15

0 20 40 60
0

0.2

0.4

0.6

0.8

1

m
em

be
rs

hi
p

blocks

Figure 7: Weight of the parameter λ and degree of membership of the moving streams

in the second cluster (dashed line) and the intermediate cluster (solid line).

be maintained over time, our experiments have shown that it is likewise useful for

analyzing static data sets.

References

[1] Jürgen Beringer and Eyke Hüllermeier. Online clustering of parallel data streams.

Data Knowl. Eng., 58(2):180–204, 2006.

[2] Jürgen Beringer and Eyke Hüllermeier. Fuzzy clustering of parallel data streams. In

Jose Valente de Oliveira and Witold Pedrycz, editors, Advances in Fuzzy Clustering

and Its Applications. John Wiley and Sons, 2007.

[3] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[4] Paul S. Bradley and Usama M. Fayyad. Refining initial points for k-means cluster-

ing. In ICML ’98: Proceedings of the Fifteenth International Conference on Ma-

chine Learning, pages 91–99, San Francisco, CA, USA, 1998. Morgan Kaufmann

Publishers Inc.

[5] P. Domingos and G. Hulten. A general framework for mining massive data streams.

Journal of Computational and Graphical Statistics, 12(4):945–949, 2003.

16

[6] R. Kruse F. Höppner, F. Klawonn and T. Runkler. Fuzzy Cluster Analysis. Wiley,

1999.

[7] L. Golab and M.T. Özsu. Issues in data stream management. SIGMOD Rec.,

32(2):5–14, 2003.

[8] Greg Hamerly and Charles Elkan. Learning the k in k-means. In NIPS, 2003.

[9] J. Gehrke M. Garofalakis and R. Rastogi. Querying and mining data streams:

you only get one look a tutorial. In SIGMOD ’02: Proceedings of the 2002 ACM

SIGMOD international conference on Management of data, pages 635–635, New

York, NY, USA, 2002. ACM Press.

[10] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a

dataset via the gap statistic. JRSSB, 2000.

[11] Xuanli Lisa Xie and Gerardo Beni. A validity measure for fuzzy clustering. IEEE

Trans. Pattern Anal. Mach. Intell., 13(8):841–847, 1991.

17

