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Abstract

The problem of label ranking has recently been introduced as an extension of

conventional classification in the field of machine learning. In this paper, we argue

that label ranking is an amenable task from a CBR point of view and, in particular,

is more amenable to supporting case-based problem solving than standard classi-

fication. Moreover, by developing a case-based approach to label ranking, we will

show that, the other way round, concepts and techniques from CBR are also useful

for label ranking. In addition to an experimental study in which case-based label

ranking is compared to conventional nearest neighbor classification, we present an

application in which label ranking is used for node ordering in heuristic search.

1 Introduction

As a generic problem solving methodology, case-based reasoning (CBR) has already

been applied successfully for various types of problems [21]. An especially simple yet

relevant problem class for CBR is prediction, including classification (predicting one

among a finite set of class labels) and regression (predicting a numerical output) as

special cases. In this context, CBR overlaps with the field of machine learning and is

typically referred to as case-based, instance-based, or memory-based learning [20, 2, 1].

The core of case-based learning algorithms is built upon the nearest neighbor estimation

principle [7].

From a CBR point of view, prediction is arguably one of the least complex problem

types, mainly because the crucial subtask of adaptation is not an intricate issue. In

∗Draft of a paper to appear in: M. Richter and R. Weber (eds.). Proceedings ICCBR–07, 7th

International Conference on Case-Based Reasoning, pages 31–40, Belfast, 2007.
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fact, the adaptation of previous solutions, retrieved from a case library, to the current

problem at hand is still one of the most challenging steps of a CBR process and quite

difficult to automate [9]. For prediction problems, however, adaptation can be done in

a rather straightforward way: In the case of regression, one can hardly do better than

deriving an average of the k nearest neighbors’ outputs (in which the neighbors are

weighted according to their similarity to the query [17, 4]). In the case of classification,

the “solution space” is given by the finite set of class labels, and the classes of the

nearest neighbors are typically combined through majority voting.

Despite the fact that (nearest neighbor) classification methods have been used exten-

sively in the CBR field, e.g., for problems such as diagnosis, one may argue that the

classification framework in its standard form is not fully satisfactory from a problem

solving point of view, simply because problem solving usually goes beyond predicting

a single solution:

• A first crucial problem is that a simple classification does not imply a possible

course of action in the case where it fails: If the classification is wrong, the

problem is not yet solved, so the question is how to continue.

• Besides, in the case of failure, conventional classification does not offer a means to

properly learn from the unsuccessful trial, because a problem in conjunction with

a suboptimal solution is not an “example” in the sense of supervised learning;

and even if an optimal solution is eventually found, the corresponding prob-

lem/solution pair will usually not comprise the complete experience (e.g., differ-

ences in the quality of suboptimal solutions) that has been gathered in the course

of the problem solving episode.

To avoid these problems, we propose a (case-based) approach to label ranking and

elaborate on its application in case-based reasoning. Label ranking is an extended

classification task that has recently been studied in machine learning. The goal in

label ranking is to predict a complete ranking of all class labels instead of only a single

class (top-label). Obviously, a prediction of that kind can be very useful in CBR. For

example, it suggests a simple problem solving strategy, namely a trial and error search

process which successively tests the candidate solutions until the problem has been

solved. Needless to say, to be effective, this strategy presupposes a solution space in

the form of a finite set of small to moderate size (just like classification learning itself).

To illustrate, consider a fault detection problem which consists of identifying the cause

for the malfunctioning of a technical system. Moreover, suppose that a (case-based)

learning system is used to predict the true cause, e.g., on the basis of certain sensor
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measurements serving as input attributes (see, e.g., [3] for an application of that type).

A prediction in the form of a label ranking then dictates the complete order in which

the potential causes (which play the role of labels) should be searched.

The remainder of the paper is organized as follows: The problem of label ranking and

its relation to CBR are discussed in Section 2. In Section 3, we present a case-based

approach to label ranking which is an extension of nearest neighbor classification.1

Section 4 is devoted to experimental studies in which our case-based label ranking

method is compared to conventional nearest neighbor classification. Moreover, this

section elaborates on the idea of using case-based label ranking for node ordering in

heuristic search. Finally, Section 5 gives a summary and concludes the paper.

2 Label Ranking and CBR

In label ranking, the problem is to learn a mapping from instances x of an instance

space X to rankings �x (total strict orders) over a finite set of labels

L = {λ1, λ2 . . . λc},

where λi �x λj means that, for the instance x, label λi is placed ahead of λj ; in this

case, we shall also say that λi is preferred to λj (by x). As mentioned earlier, in the

context of CBR, instances correspond to problems and labels correspond to candidate

solutions. This should be kept in mind, since we shall subsequently use both the CBR

and the machine learning terminology.

A ranking over L can be represented by a permutation τ of {1 . . . c}, where τ(i) denotes

the position of the label λi; thus, λi �x λj iff τ(i) < τ(j). The target space of all

permutations over c labels will subsequently be referred to as Sc.

As training data, a label ranking algorithm can refer to a number of example instances

together with different types of information regarding their preference for labels. Since

this point is important for CBR, we will discuss it in this specific context.

2.1 Training Data in Label Ranking

Suppose that, in the course of a problem solving process in CBR, a subset of all candi-

date solutions has been tried to solve a query problem x0. What can be learned from

these trials, and what experiences can be memorized? One type of experience concerns

1Parts of this section can also be found in the companion paper [6].
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the suitability of individual candidate solutions λi: Such candidates may be feasible or

acceptable as a solution or not. Subsequently, we shall refer to this kind of distinction

as an absolute preference.

Another type of experience concerns relative preferences: As soon as two alternatives

λi and λj have been tried as solutions for x0, these two alternatives can be compared

and, correspondingly, either a preference in favor of one of them or an indifference can

be expressed:

λi �x0
λj or λi ≺x0

λi or λi ∼x0
λj .

Again, these preferences can be memorized and utilized for future problem solving. For

example, a preference λi �x0
λj clearly holds if λj turned out to be unacceptable, while

λi was found to be acceptable as a solution. However, even if both alternatives were

acceptable, or both unacceptable, one may state that one of them is still better than

the other one (e.g., because it is less expensive). Indeed, more often than not, there

will be more than one acceptable solution, even though not all of them will be equally

preferred.

To exploit experience of the above type, a CBR system may store a problem along with

absolute and relative preferences in a case library. Thus, a case may look a follows:

〈
x, ([λ2, λ4]

+, [λ1, λ6]
−, λ4 � λ2, λ1 ∼ λ6)

〉
. (1)

The meaning of this example is that λ2 and λ4 are acceptable solutions for the problem

x, λ1 and λ6 are unacceptable, λ4 is preferred to λ2, and indifference holds between

λ1 and λ6. Note that a case such as (1) represents only partial preference information

about labels; for example, nothing is known about λ3, perhaps because it has not been

tried as a solution for x.

As will be explained in more detail later on, cases of the form (1) correspond to the (most

general) type of examples that label ranking algorithms can learn from. With regard

to gathering experiences from a problem solving episode, label ranking is hence more

flexible and expressive than conventional classification. In fact, the standard type of

example in classification learning is a tuple consisting of an instance and an associated

class or, using CBR terminology, a problem with its “correct” solution. Comparing

these two approaches, label ranking clearly exhibits the following advantages:

• Label ranking can also learn from unsuccessful trials; in contrast, the information

that a certain label is not the correct class is not directly utilizable by standard

classification methods (unless, of course, in the case of binary problems with only

two classes).
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• Even if the problem was eventually solved, label ranking can learn more than the

optimal solution, because it additionally makes use of the preferences between

the alternatives that have been tried before.

Even though conventional classification has already been extended in one way or the

other, the aforementioned limitations essentially persist. For example, in multi-label

classification, an instance may belong to more than one class or, stated differently, a

problem may have more than one solution. So, an example is a tuple consisting of

an instance x together with an associated subset Lx ⊆ L of class labels. In principle,

it is hence possible to distinguish between acceptable and unacceptable solutions, as

we have done above. Note, however, that Lx must indeed be known exactly, i.e., the

representation of partial knowledge is still a problem. Besides, of course, a more refined

discrimination between solutions in terms of relative preferences is not possible.

2.2 Prediction and Loss Functions on Label Rankings

Apart from increased flexibility with respect to the representation of experiences, label

ranking has also advantages regarding the prediction of solutions for new problems.

Conventional classification learning essentially allows a classifier to make a one shot

decision in order to identify the correct label. A prediction is either correct or not and,

correspondingly, is rewarded in the former and punished in the latter case. The arguably

best-known loss function reflecting this problem conception is the misclassification or

error rate of a classifier. However, in many practical applications, the problem is not

to give a single estimation, but to make repeated suggestions until the correct target

label has been identified. Obviously, this task is ideally supported by a label ranking.

To measure the quality of a predicted label ranking, a suitable loss function `(·) is

needed. To this end, several meaningful metrics can be used, such as the sum of

squared rank distances

`2(τ, τ
′)

df
=

c∑

i=1

(τ(i) − τ ′(i))2. (2)

The linear transformation of the latter loss function into a [−1, 1]-valued similarity

measure is well-known as the Spearman rank correlation coefficient [19].

Remark: Regarding the relation between classification and label ranking, ordering the

class labels according to their probability of being the top-label (i.e., the “true” label

in classification) as suggested, e.g., by a probabilistic classifier, does not usually yield a

good prediction in the sense of a ranking error such as (2). To illustrate, suppose that

P(1 � 2 � 3) = 0.5, P(3 � 2 � 1) = 0.3, P(2 � 1 � 3) = 0.2, while the probability
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of all other rankings is 0. The probability of being the top-label is, respectively, 0.5,

0.2, 0.3 for the three labels 1, 2, and 3, so sorting them according to these probabilities

gives 1 � 3 � 2. However, in terms of the sum of squared rank distances (2), this

ranking is suboptimal as it has a higher expected loss than the ranking 2 � 1 � 3.

This result is not astonishing in light of the fact that, by only looking at the top-labels,

one completely ignores the information about the rest of the rankings. In the above

example, for instance, one ignores that label 2 is never on the lowest position.

In some applications, the quality of a ranking may not depend on the positions assigned

to all the labels. For example, consider again a fault detection problem which consists

of identifying the cause for the malfunctioning of a technical system. As mentioned

earlier, a ranking suggests a simple (trial and error) search process which successively

tests the candidates, one by one, until the correct cause is found. In this scenario, where

labels correspond to causes, the existence of a single target label λ∗ (the true cause)

instead of a target ranking can be assumed. Hence, an obvious measure of the quality

of a predicted ranking is the number of futile trials made before that label is found. To

distinguish it from real ranking errors such as (2), a deviation of the predicted target

label’s position from the top-rank has been called a position error [3, 16]. Needless to

say, various generalizations of a position error thus defined are conceivable, depending

on the type of search or problem solving process used to find the target label λ∗. For

instance, imagine a process which tries exactly k solutions and then takes the best

among these candidates, λ(k). In this case, a reasonable loss function is given by the

quality of λ∗ minus the quality of λ(k).

3 Case-Based Label Ranking

For the time being, let us make the idealized assumption that the training data sub-

mitted to the learning algorithm consists of a set of examples

D = {(x1, τ1), (x2, τ2) . . . (xm, τm)} ,

where each example contains a complete label ranking. As discussed in Section 2.1,

the preference information being available in practice will usually be much weaker.

However, by reducing the technical complexity, this assumption will allow us to focus

on the main conceptual elements of case-based label ranking. In Section 3.2, we will

discuss how to handle more general scenarios that relax the above assumption and allow

for dealing with examples such as (1).

In the following, we will introduce a general case-based framework for learning la-

bel rankings. The k-nearest neighbor algorithm (k-NN) is arguably the most basic
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case-based learning method [7]. In its simplest version, it assumes all instances to be

represented by feature vectors x = (x1 . . . xN )> in the N -dimensional space X = R
N

endowed with a distance measure d(·) such as the Euclidean metric. Given a query

input x0, the k-NN algorithm retrieves the k training instances closest to this point in

terms of d(·). In the case of classification learning, k-NN estimates the query’s class

label by the most frequent label among these k neighbors. As mentioned in the intro-

duction, it can be adapted to the regression learning scenario by replacing the majority

voting step with computing the (weighted) mean of the target values.

A unified view of both classification and label ranking as discrete-valued learning prob-

lems suggests a straightforward generalization of the k-NN algorithm which predicts

the most common label ranking as a target object. However, on second thought, several

obvious problems make this approach seem inappropriate in general:

• The cardinality of the target space in label ranking is |Sc| = c!, a number exceed-

ing the typical cardinality in classification learning abundantly clear. Therefore,

if the local distribution of label rankings does not have sharp peaks, equal votes

statistics are much more likely (except for k = 1). Random tie-breaking, a stan-

dard technique in k-NN learning, will hence be used rather frequently, resulting

in randomly selecting a label ranking among the k nearest neighbors.

• In contrast to classification learning, where only the discrete metric (0/1 loss)

is given on the target space, meaningful non-trivial metrics can be defined on

label rankings (cf. Section 2.2), a property shared with regression learning. The

conventional k-NN algorithm does not exploit this property in the aggregation

step, which is typically realized as a simple majority vote among the neighbors

instead of any sort of averaging.

To avoid these problems, a more sophisticated algorithm should incorporate the struc-

tured nature of the space of label rankings. Our approach, recently put forward in

[6], considers aggregation techniques for label ranking which are conceptually related

to averaging in k-NN regression learning. To this end, we incorporate a common rank

aggregation model to combine the k nearest neighbors into a single ranking. Even

though this model has already been used in a variety of applications, such as in com-

bining meta-search results [8], it is a novel component in a label ranking algorithm.

The consensus label ranking is computed such that it minimizes the sum of pairwise

disagreement measures with respect to all k rankings, as will be detailed below.
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3.1 Aggregating Label Rankings

Let τ1 . . . τk denote rankings of the c alternatives (labels) λ1 . . . λc. A common method

to measure the quality of a ranking

τ = AGGR(τ1 . . . τk)

as an aggregation of the set of rankings τ1 . . . τk is to compute the sum of pairwise loss

values with respect to a loss (distance) function ` : Sc × Sc → R≥0 defined on pairs of

rankings:

L(τ)
df
=

k∑

i=1

`(τ, τi)

Having specified a loss function `(·), this leads to the optimization problem of computing

a ranking τ̂ ∈ Sc (not necessarily unique) such that

τ̂ ∈ arg min
τ∈Sc

k∑

i=1

`(τ, τi). (3)

For the sum of squared rank distances as a loss function, a provably optimal solution of

(3) is obtained by ordering alternatives according to the so-called Borda count [15], a

voting technique well-known in social choice theory. The Borda count of an alternative

is the number of (weighted) votes for that alternative in pairwise comparisons with

all remaining options. This voting rule requires computational time on the order of

O(kc + c log c) and thus can be evaluated very efficiently.2

In the experimental section, we will use the Borda-count ordering technique as it is

computationally efficient and has a sound theoretical basis. However, as the aggre-

gation component is an isolated module within our case-based framework, alternative

aggregation techniques which may be suitable for the particular application at hand

may be integrated easily (such as aggregation techniques which minimize loss functions

focusing on correct top ranks rather than distributing equal weights to all positions).

3.2 Extensions of Label Ranking

Practical applications of (case-based) label ranking suggest several generalizations of

the framework that we introduced above. Essentially, these generalizations concern the

target space, that is, the set Sc of all rankings over L. As an appealing property of the

2More technical details can be found in [6], where the aggregation problem is also considered for

other loss functions.
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case-based framework, replacing Sc by any more general space, say, Sex
c can be done

quite easily without changing the framework itself, provided that Sex
c can be endowed

with a suitable distance measure. In the following, we give a brief overview of some

important extensions, though without going into much technical detail.

3.2.1 Rankings with Ties.

So far, we assumed rankings in the form of strict total orders, which means that, for

any pair of alternatives λi, λj , either λi � λj or λj � λi. More generally, as mentioned

in Section 2.1, it might be reasonable to allow for the case of indifference (λi ∼ λj),

that is, to consider rankings with ties. A ranking of that kind is also referred to as a

bucket order [8]. More precisely, a bucket order is a transitive binary relation � for

which there exist sets B1 . . . Bm that form a partition of the set of alternatives L such

that λi � λj if and only if there exist 1 ≤ k < l ≤ m such that (λi ∈ Bk)∧ (λj ∈ Bl). A

bucket order induces binary preferences among labels and, moreover, forms a natural

representation for generalizing various metrics on strict rankings to rankings with ties.

To this end, we define a generalized rank σ(i) for each label λi ∈ L as the average

overall position σ(i) =
∑

l<j |Bl|+
1
2(|Bj |+ 1) within the bucket Bj which contains λi.

Fagin et al. [8] proposed several generalizations of well-known metrics such as Kendall’s

tau and the Spearman footrule distance.

3.2.2 Calibrated Rankings.

A particularly interesting generalization of label ranking is calibrated label ranking as

introduced in [5]. Roughly speaking, a calibrated ranking is a ranking with an additional

neutral label which splits a ranking into two parts, say, a positive and a negative one.

This way, it becomes possible to combine absolute and relative preference information

as introduced in Section 2.1. For example, in a CBR context, the positive part may

consist of those alternatives (solutions) λi which are feasible, while the alternatives in

the negative part are not acceptable as solutions for the current problem. The ranking

further refines this crude distinction, e.g., one alternative can be better than another

one, even though both are feasible.

An elegant extension of distance measures for rankings to measures for calibrated rank-

ings was proposed in [6]. The basic idea is to define the distance between two calibrated

rankings by the distance between the associated extended rankings which include the

neutral label. Moreover, the neutral label can be duplicated to broaden the gap between

the positive and the negative part. This way, a deviation of a label’s estimated position
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from its true position is punished more strongly if it furthermore leads to putting the

label on the wrong side.

3.2.3 Partial Preference Information.

The assumption that a complete ranking is given for every training example will gen-

erally not be satisfied in practice. Instead, only partial preference information will be

available, e.g., a ranking of only a subset of the labels L. The problem of extending

distance measures to partial preference relations was studied by Ha and Haddawy [11].

Here, the basic idea is to consider the set of all consistent extensions of such rankings

(to complete rankings), and to measure a distance between these extensions. Again,

this is a quite elegant approach, even though it may become computationally complex.

4 Experiments

As already mentioned earlier, label ranking essentially assumes a finite label set L

of small to moderate size, a property it shares with conventional classification. If

this property is fulfilled for a solution space in CBR, label ranking can be applied

immediately. A related experimental study, which deals with predicting a rational,

decision-theoretic agent’s ranking of actions in an uncertain environment, is presented

in Section 4.1.

Moreover, in Section 4.2, we consider an interesting alternative, showing how label

ranking can be usefully applied as a sub-component in the context of a search-based

problem solving strategy operating on a complex solution space. More specifically, by

determining the order of successor states in heuristic search, label ranking will be used

for guiding a heuristic search process.3 Roughly speaking, the idea is to assume that,

if a certain ordering of successor nodes in a search state A turned out to be useful, the

same or a similar ordering will also be useful in a similar state B.

4.1 Case-Based Decision Making

In our first experiment, we replicate a setting that has been used in the context of

label ranking in [10]. The problem is to learn the ranking function of an expected

utility maximizing agent. More specifically, we proceed from a standard setting of

3The idea of using CBR to support heuristic search has already been put forward by several authors;

see e.g. [18] for a very recent and closely related approach.
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expected utility theory: A = {a1 . . . ac} is a set of actions the agent can choose from

and Ω = {ω1 . . . ωm} is a set of world states. The agent faces a problem of decision

under risk where decision consequences are lotteries: Choosing action ai in state ωj

yields a utility of uij ∈ R, where the probability of state ωj is pj . Thus, the expected

utility of action ai is given by

E(ai) =
m∑

j=1

pj · uij . (4)

Expected utility theory justifies (4) as a criterion for ranking actions and, hence, gives

rise to the following preference relation:

ai � aj ⇔ E(ai) > E(aj). (5)

Now, suppose the probability vector p = (p1 . . . pm) to be a parameter of the decision

problem (while A, Ω and the utility matrix matrix U = (uij) are fixed). A vector p

can be considered as a description of the “problem” that the agent has to solve, namely

as a characterization of the uncertain environment in which the agent must take an

action.

The above decision-theoretic setting can be used for generating synthetic data for label

ranking. The set of instances (problems) corresponds to the set of probability vectors p,

which are generated at random according to a uniform distribution over {p ∈ R
m |p ≥

0, p1+. . .+pm = 1}. The ranking associated with an instance is defined by the pairwise

preferences (5). Thus, an experiment is characterized by the following parameters: The

number of actions/labels (c), the number of world states (m), the number of examples

(n), and the utility matrix which is generated at random through independent and

uniformly distributed entries uij ∈ [0, 1].

In this study, we applied our case-based approach to label ranking (CBLR), using the

aggregation technique described in Section 3.1. For comparison, we used the standard k-

NN classification method, which simply orders the class labels according to the number

of votes they receive from the neighbors (ties are broken at random). The main goal

of this study is to show the benefit of the additional information contained in the

comparison of suboptimal solutions, which is exploited by CBLR but not by the simple

k-NN classifier.

In the experiments, we chose the problem dimensions to be m ∈ {5, 10, 15, 20}, c ∈

{5, 15, 20}, and fixed the number of training and test examples to 1, 000 each. For

each value of the input dimension, we generated 10 different label ranking problems

originating from independently sampled utility matrices. As evaluation measures, we
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Table 1: Results of the first experimental study. In each horizontal block, the first line

shows the accuracy values for CBLR, the second line for the simple k-NN classifier.

m pos. err. rank. err. pos. err. rank. err. pos. err. rank. err.

5 .967 ± .020 .969 ± .011 .932 ± .026 .929 ± .019 .878 ± .0628 .880 ± .046

.967 ± .020 .625 ± .080 .923 ± .025 .697 ± .071 .866 ± .0670 .706 ± .084

10 .980 ± .008 .979 ± .005 .959 ± .017 .951 ± .007 .924 ± .0333 .909 ± .023

.977 ± .008 .437 ± .067 .950 ± .016 .484 ± .102 .907 ± .0373 .536 ± .114

15 .987 ± .005 .985 ± .002 .966 ± .011 .964 ± .007 .954 ± .0196 .926 ± .006

.982 ± .006 .302 ± .065 .957 ± .015 .414 ± .094 .940 ± .0213 .425 ± .109

20 .988 ± .003 .988 ± .002 .972 ± .007 .968 ± .006 .948 ± .0204 .936 ± .019

.984 ± .002 .266 ± .043 .958 ± .008 .337 ± .055 .926 ± .0232 .419 ± .099

c = 5 c = 10 c = 20

considered the position error (i.e., the position assigned to the true top-label) and the

Spearman rank correlation. In order to simplify the comparison, the position error

was re-scaled into a similarity measure on [−1, +1] in a straightforward way. For each

learning problem and algorithm, the neighborhood parameter k ∈ {1, 3 . . . 19, 21} was

determined based upon the performance (with respect to the particular evaluation

measure at hand) on a random 70/30 split of the training data. The performance

results on the test sets were averaged over all 10 runs.

The results in Table 1 show that CBLR clearly outperforms the simple k-NN classifier.

As it was to be expected, the differences in performance are indeed dramatic for the

rank correlation which takes the complete ranking into account. However, CBLR is also

superior for the position error, which is essentially a type of classification error. This

result shows that exploiting information about suboptimal solutions can also improve

the standard classification performance.

4.2 Label Ranking for Controlling Heuristic Search

Resource-based configuration (RBC) is a special approach to knowledge-based config-

uration [13]. It proceeds from the idea that a (technical) system is assembled from

a set of primitive components. A resource-based description of components is a spe-

cial property-based description in which each component (e.g. a lamp) is characterized

by some set of resources or functionalities it provides (e.g. light) and some other set

of resources it demands (e.g. electric current). The relation between components is
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modeled in an abstract way as an exchange of resources. A configuration problem

consists of minimizing the price of a configuration while satisfying an external demand

of functionalities. In its simplest form it corresponds to an integer linear program

A × z ≥ x, c>z → min, where the matrix A = (aij) specifies the quantities of

functionalities offered and demanded by the components (aij = quantity of the i-th

functionality offered by the j-th component, demands are negative offers), the vector x

quantifies the external demand, and the vector c contains the prices of the components.

A configuration is identified by the vector z, where the j-th entry is the number of oc-

currences of the j-th component. In practice, it is reasonable to assume that different

problems share the same knowledge base 〈A, c〉 while the external demand x changes.

Thus, the instance (problem) space X can be identified by all possible demand vectors.

Since an RBC problem, in its basic form, is equivalent to an integer linear program, one

could think of using standard methods from operations research for solving it. However,

this equivalence is already lost under slight but practically relevant generalizations of

the basic model (such as non-additive dependencies between components). Realizing

a heuristic search in the configuration space, i.e., the set Z of possible configurations

(identified by integer-valued vectors z), seems to be a reasonable alternative which is

more amenable toward extensions of the model. Besides, this approach is better suited

for incorporating (case-based) experience from previously solved problems [14].

In fact, there are different ways of realizing the idea of learning from a set of (optimally)

solved problems in connection with heuristic search. Here, we consider the possibility

of employing (case-based) label ranking to guide the search process, i.e., to control

the choice of search operators: By starting with the empty configuration (root of the

search tree) and adding basic components one by one, every node η of the search

tree can be associated with an (intermediate) configuration z(η) and a corresponding

demand x(η) = x − A × z(η) which still remains of the original demand x; the search

process stops as soon as x(η) ≤ 0. The key idea of our approach is to use label ranking

to predict a promising order τ in which to explore the successors of a search state, that

is, the order in which adding the basic components is tried (see Figure 1); the latter

hence correspond to the class labels, while the demand x(η) serves as an instance. As

mentioned above, label ranking thus implements the heuristic (CBR) assumption that,

to find a good solution for a problem x(η), the next component to be added to the

current configuration should be one that turned out to be a good choice for a similar

problem x′ as well.

In our experiments, we generated synthetic configuration problems as follows: The

components of a 5×5-matrix A were generated at random by sampling from a uniform

distribution over {−1, 0, 1, 2, 3} (the sampling process was repeated until a feasible
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Figure 1: Configuration as heuristic search: Every node η of the search tree is associated

with an intermediate configuration z(η). Each successor of η is obtained by adding

one of the c available components, and the order in which components are tried is

determined by the ranking (permutation) τ . The search stops if x ≤ 0.

solution with a cost ≤ 25 existed). Likewise, the components of the cost vector c

and the demand vector x were sampled, respectively, from a uniform distribution over

{1, 2, 3} and {1, 2, 3, 4, 5}.

We constructed a case library as follows: Given a matrix A, a cost vector c and a

demand vector x, we used iterative deepening search to determine a solution with

minimum cost. Then, the search was repeated with a cost bound of twice the optimum

value. In this “exploration phase”, each node in the search graph corresponds to an

intermediate configuration and a remaining demand vector. Moreover, each successor

configuration can be associated with the minimum cost of all solutions within that

subtree (which is set to infinity if no solution with bounded costs of twice the optimum

value exists). Hence, from a label ranking point of view, we can see the remaining

demand vector as an instance, the associated ranking of which is obtained by ordering

the 5 possible successor configurations according to the subtree solution quality. We

also used a calibration label (cf. Section 3.2) which corresponds to the maximum finite

cost value, i.e., this label separates subtrees with finite-cost solutions from subtrees

with no feasible solution.

An initial case library containing all remaining demand vectors and the associated

rankings (with ties) we created for the search graph up to the maximum limit of twice

the optimal cost. To reduce the number of ties and hence to increase the number

of meaningful examples, we considered only those vectors for which the labels were

associated with at least 2 different cost values. Fixing the matrix A, the process was

repeated 10 times for randomly sampled initial demand vectors x (see above). Finally, a

subsample of constant size S was randomly selected from the the complete case library

14



100 200 300 400 500 600
1

1.1

1.2

1.3

1.4

Figure 2: Performance curve for case-based heuristic search: Average ratio between the

cost of the solution found and the true optimum (minimal cost), as a function of the

size of the case library (number S of stored cases).

to equalize the knowledge base size for different matrices A.

We gave this final case library to our CBLR approach (with k = 3) and used it as the

main building block for a heuristic search strategy: Each search node corresponds to a

remaining demand vector and the predicted ranking among the successor configuration

can be interpreted as a qualitative ordering of the utility for searching a particular

subtree. Hence, we traverse the search graph in the order dictated by the predicted

ranking, where the calibration label is associated with a back-tracking step. To evaluate

this strategy, we sample a new initial demand vector, conduct 100 search steps, and

store the solution with minimum cost found in the course of this process. Additionally,

we determined an optimal solution using the iterative deepening strategy.

The overall process of sampling A and c, building the case library, and testing on a new

demand vector was repeated 100 times. Figure 2 shows the average ratio between the

cost of the solution found by our CBLR search heuristic and the optimal cost obtained

by iterative deepening, depending on the size S of the case library. As can be seen,

for a large enough case library, the solution quality comes close to the optimum. For

example, for S = 600, the quality of the heuristic approach (which is faster by at

least one order of magnitude) deviates by not more than 10% on average, showing the

effectiveness of the approach.
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5 Summary and Conclusions

The aim of this paper is to establish a connection between CBR and the label ranking

problem that was recently introduced in the field of machine learning. In fact, our

claim is that this connection can be beneficial for both sides: Firstly, as we showed in

[6], a case-based approach to the label ranking problem offers an interesting alternative

to hitherto existing model-based methods [12, 10]. Secondly, we have argued here that,

for various reasons, label ranking can be useful in the context of case-based problem

solving, especially when being compared to conventional classification learning. In

particular, label ranking can better exploit the pieces of experience that accumulate in

the course of a problem solving episode, and provides predictions that are potentially

more helpful in finding a solution to a new problem.

To substantiate our claims, we presented experimental studies which, in absence of

existing benchmark problems, are based on artificial scenarios and synthetic data. De-

spite the usefulness of these settings (e.g., for conducting controlled experiments), an

obvious next step is to put the ideas outlined in this paper into practice, that is, to use

label ranking in conjunction with CBR methods for solving real problems.

References

[1] D.W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-based

learning algorithms. International Journal of Man-Machine Studies, 36:267–287,

1992.

[2] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Ma-

chine Learning, 6(1):37–66, 1991.
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