
International Journal of Uncertainty, Fuzziness and Knowledge-Based SystemsVol. 0, No. 0 (1993) 000|000fc World Scienti�c Publishing CompanyAn Approach to Modelling and Simulationof Uncertain Dynamical SystemsEYKE H�ULLERMEIERHeinz Nixdorf Institut, University of Paderborneyke@hni.uni-paderborn.deReceived (received date)Revised (revised date)Coping with uncertainty in dynamical systems has recently received some attention inarti�cial intelligence (AI), particularly in the �elds of qualitative and model-based rea-soning. In this paper, we propose an approach to modelling and simulation of uncertaindynamics which is based on the following ideas: We consider (linguistic) descriptions ofuncertain functional relationships characterizing the behavior of some dynamical system.Based on a certain interpretation of such rule-based models, we derive a fuzzy functioneF . It will be shown that all (reasonable) fuzzy functions can be approximated to any de-gree of accuracy in this way. The function eF is then used as the \fuzzy" right hand sideof a set of di�erential equations, which leads us to consider fuzzy initial value problems.We are going to propose an interpretation of such problems. Moreover, several aspectsof simulation methods for characterizing the set of all system behaviors compatible withthis interpretation will be discussed.Keywords: linguistic modelling, fuzzy functions, approximation, dynamical systems,fuzzy di�erential equations, reachable sets.1. IntroductionKnowledge about dynamical systems modelled by (ordinary) di�erential equa-tions (ODEs) is often incomplete or vague. For example, parameter values, func-tional relationships, or initial conditions may not be known precisely. In this sit-uation, well-known methods for solving initial value problems analytically or nu-merically can only be used for �nding selected system behaviors, e.g., by �xingunknown parameters to some plausible values. But it is generally not possible tocharacterize the whole set of system behaviors compatible with our partial knowl-edge this way. However, it is just this kind of information which is often importantin applications of knowledge-based systems, such as, e.g., model-based monitoringand diagnosis 16.A special kind of uncertainty is vagueness in natural language. Models basedon natural language can be seen as a vague formalization of mental models, whichis in many cases more adequate than precise mathematical models: \When tradi-tional simulation models of social phenomena are formulated, causal relations arerepresented as precise mathematical functions. Such is the case even when the1



2 Modelling and Simulation of Uncertain Dynamicsmodeler has only a vague idea about their nature, a condition which is most oftentrue ... . To avoid the arti�cial step of translating vague ideas with an inappro-priate exactitude, the modeler should instead be allowed to formulate his modelin natural language." 46 Linguistic models have been applied successfully in, e.g.,fuzzy control. Moreover, natural language simulation has also received attention inAI 5. Of course, natural language models cannot be used directly for simulatingthe behavior of dynamical systems: \Humans speak and write in natural language;however, there must be a translation process [mapping qualitative to quantitativemodels] if this knowledge is to be useful to simulation." 18 This leads us to considerthe problem of mapping natural language descriptions of functional relationships,which we suppose to be given as if-then rules, to a mathematical representation inform of a fuzzy function eF . In Section 3, such rule-based models will be shownto be capable of approximating all \reasonable" fuzzy functions to any degree ofaccuracy.In this paper, we are going to propose an approach to modelling and simulationof uncertain dynamical systems. The general idea is to characterize the set of allsystem behaviors compatible with (the mathematical interpretation of) a naturallanguage description of the system. We pass from (ordinary) initial value problemsto fuzzy initial value problems by replacing the right hand side f : [0; T ]�Rn! Rnof an ODE system by some fuzzy function eF : [0; T ]� Rn! F(Rn), where F(Rn)is the set of all fuzzy subsets of Rn. Likewise, initial system states x0 2 Rn arereplaced by initial fuzzy sets eX0 2 F(Rn). Of course, mathematical models in formof fuzzy initial value problems no longer describe a unique system behavior (suchas ODE systems satisfying a uniqueness condition.) The following questions haveto be answered in connection with this kind of mathematical models: What is theinterpretation of the model from a semantical point of view? What is meant bya solution to a fuzzy initial value problem? How can the set of possible systembehaviors be characterized?The paper is organized as follows: Methods and results related to modellingof uncertain functional relationships are presented in Section 2 and Section 3. InSection 4, we are going to discuss the questions just mentioned in connection withfuzzy initial value problems. Some aspects of numerical methods for fuzzy initialvalue problems as well as an example of it are presented in Section 5. Section 6gives a brief overview of some related methods proposed in the literature.2. Linguistic ModellingFuzzy systems are widely used for linguistic modelling of functional relationships.A well-known example is fuzzy control: The incomplete and vague knowledge abouta control function is formulated as a set of linguistic rules by a human expert. Fuzzyinference is used to transform the set of fuzzy rules into a mathematical functiong(�) which serves as an approximation of the true but unknown function f(�). Fuzzysystems such as those used in fuzzy control generate real-valued functions g : X ! Yfrom an input space X � Rm to an output space Y � Rp by performing the three



Modelling and Simulation of Uncertain Dynamics 3steps (1) fuzzi�cation of input values, (2) fuzzy inference, (3) defuzzi�cation of outputvalues. The defuzzi�cation procedure assigns a real vector a 2 Rp to the fuzzyoutput eA of the inference mechanism. This can be interpreted as follows: First,the fuzzy system generates a fuzzy function eG : X ! F(Y ) from the input spaceX to the space F(Y ) of all fuzzy subsets of the set Y . Then, the defuzzi�cationprocedure realizes a selection g : X ! Y satisfying g(x) 2 eG(x) for all x 2 X.This is meaningful if such a \crisp" function is needed as, e.g., in fuzzy control. Ofcourse, some information is lost in the last step. This can be avoided by taking eGitself instead of a selection g(�) as the output of the fuzzy system in which case thefuzzy function eG is interpreted as a quanti�cation of a vague idea of a functionalrelationship f(�).Consider a fuzzy system S given by n rules of the formRi : If x 2 eAi then y 2 eBi ; (1)where eAi 2 F(Rm), eBi 2 F(Rp) are fuzzy sets representing some linguistic variableslike small or medium. The mapping which is realized by this fuzzy system highlydepends on the choice of� the membership functions � eAi and � eBi ,� the fuzzy inference which speci�es a fuzzy output for each input x 2 Rm,� the defuzzi�cation method which maps a fuzzy set eB 2 F(Rp) to a \crisp"value y 2 Rp.Since we are interested in the fuzzy output of the system, only the �rst two aspectsare relevant here. A defuzzi�cation of the output is not considered.2.1. Rule-based Fuzzy SystemsDenote by Ep the set of fuzzy sets eA 2 F(Rp) which are normal, upper semicon-tinuous, fuzzy convex, and compactly supported. The �-level set of a fuzzy set eAis de�ned as [� eA]� := fx 2 X j� eA(x) � �g. The set [� eA]0 is de�ned as the closureof supp( eA) := fx 2 X j� eA(x) > 0g. We consider m input variables xk 2 R andan output y 2 Rp with corresponding domains Xk � R and Y � Rp, respectively,where Xk is compact. Let x := (x1; : : : ; xm) and X := X1 � : : :�Xm. Thus, thefuzzy system S consisting of n rules (1) realizes a fuzzy function eG : X ! F(Y ).We suppose eBi 2 Ep (i = 1; : : : ; n). Furthermore, the membership functions � eAiare supposed to satisfy the following consistency condition:8 x 2 X 9 j 2 f1; : : : ; ng : � eAj (x) > 0 : (2)Usually, (1) takes the formRi : If x1 2 eAi1 and x2 2 eAi2 and : : : and xm 2 eAim then y 2 eBi ;



4 Modelling and Simulation of Uncertain Dynamicswhere the eAik 2 F(R) are characterized by membership functions � eAik : Xk ! [0; 1]for k 2 f1; : : : ;mg. Then, � eAi is a function of � eAi1 ; : : : ; � eAim . For example,� eAi(x) := Tmk=1� eAik (xk) for some t-norm >. Normally, the single output case(p = 1) is considered in rule-based modelling 48. This is justi�ed by the following:For y = (y1; : : : ; yp) the conclusion (y 2 eB) is equivalent toy1 2 eB1 and y2 2 eB2 and : : : and yp 2 eBp ;where eBj 2 F(R) (j = 1; : : : ; p). That is, a rule R : If (x 2 eA) then (y 2 eB) can besplit into p rules R1 : If x 2 eA then y1 2 eB1R2 : If x 2 eA then y2 2 eB2... ... ... ... ...Rp : If x 2 eA then yp 2 eBp ;which leads to p separate rule-based fuzzy systems. However, here the implicit as-sumption is made that the variables y1; : : : ; yp are noninteractive 15, which meansthat eB = P1( eB)�: : :�Pp( eB), where Pk( eB) is the projection of the fuzzy relation eBto Yk, the domain of the variable yk. Thus, noninteractivity of y1; : : : ; yp or separa-bility of eB means nothing else than � eB(y) = minf� eB1(y1); : : : ; � eBp(yp)g. However,this assumption is not always justi�ed. Consider the vague description of a positionin the plane as an example. A membership value of a point (u; v) is determinedbest as a function of the Euklidean distance from a reference point (u0; v0), whichmeans that the variables u and v are interactive. Thus, it is advantageous to takethe more general multi-output case into account.2.2. Fuzzy InferenceWe will de�ne the output eY = eG(x) of a fuzzy system S for an input x 2 X asthe weighted average of the reference output values eBi (i = 1; : : : ; n).De�nition 1 (fuzzy basic function (FBF)) For a fuzzy system S described aboven fuzzy basic functions 45;48 bj (j = 1; : : : ; n) are de�ned by means ofbj : X ! [0; 1] ; x 7! � eAj (x)Pni=1 � eAi(x) :From (2) follows that the FBFs are well de�ned. Obviously,Pni=1 bi(x) = 1 for allx 2 X. FBFs can be seen as nonlinear combinations of radial basis functions 31.The output eY = eG(x) of the fuzzy system S is de�ned byeG : X ! F(Y ) ; x 7! nXi=1 bi(x) � eBi :That is, the weight of a rule Ri (i = 1; : : : ; n) in the fuzzy inference process isde�ned by the relation of the values of the membership functions � eAi at x 2 X



Modelling and Simulation of Uncertain Dynamics 5which can be interpreted as the truth degrees of the corresponding premises. Theconclusion (y 2 eY ) is a weighted average of the n prede�ned conclusions (y 2 eBi).3. Universal Approximation PropertyIn this section, we will show the rule-based fuzzy systems de�ned in Section 2as capable of approximating any continuous fuzzy function with normal, uppersemicontinuous, fuzzy-convex, and compactly supported values on a compact setto arbitrary degree. The result combines research e�orts from di�erent directions.On the one side, it extends theoretical results concerning the approximation capa-bility of fuzzy systems for real-valued functions 19. Wang 44;45 shows that additivefuzzy systems with Gaussian membership functions and centroid defuzzi�cationcan approximate any real continuous function on a compact set to arbitrary degree.Similar results were obtained by Buckley 9, Kosko 34, and Zeng and Singh 48;49. Ourapproach also uses additive fuzzy systems. However, the crisp output is replacedby a fuzzy one.On the other side, this result is closely related with the analysis of set-valuedfunctions. The approximation of set-valued functions was �rst investigated by Vi-tale 43 and later by Artstein 3 and Keimel and Roth 30. Particularly, we make use ofresults of Diamond and Ramer 14 who generalized the results obtained in 43 and 30for Bernstein approximation and Korovkin systems for fuzzy functions. The inter-polation of fuzzy data was investigated by Lowen 36 and Kaleva 28. Approximationproblems have also been discussed in 2 and 21. Fuzzy interpolation and approxima-tion problems in connection with rules are treated in 1;33;41 and 39;40. However, theapproximation power of fuzzy systems in not addressed in these works.De�nition 2 (Property p("; �)) Let "; � > 0. Let d(:; :) be a metric on X. Afuzzy system S as described above is said to have property p("; �) if the followingholds true:8 i 2 f1; : : : ; ng 9 zi 2 supp( eAi) 8 x 2 X : d(x; zi) � � ) bi(x) � " : (3)For x 2 X, " > 0, let I1(x; ") := fi 2 f1; : : : ; ng j bi(x) > "g. Furthermore, letI2(x; ") := f1; : : : ; ng n I1(x; ").Loosely spoken, property (3) states that the in
uence of each rule in the fuzzysystem S becomes small outside a certain area. Observe that I1(x; ") 6= ; for" < 1=n.The de�nition of property p("; �) is based on the FBFs bi. Thus, it cannot beinfered directly from the membership functions � eAi if p("; �) is satis�ed. However,the following estimation is possible. The value� := minx2X max0�i�n� eAi(x) (4)can be interpreted as a consistency measure. The consistency assumption (2) isequivalent to � > 0. Obviously, the fuzzy system satis�es property p("; �) if8 i 2 f1; : : : ; ng 9 zi 2 supp( eAi) 8 x 2 X : d(x; z) � � ) � eAi(x) � �" :



6 Modelling and Simulation of Uncertain DynamicsIn mathematical approximation theory, some regularity assumptions such ascontinuity of the corresponding functions always are made. Then, it is well knownthat approximation accuracy at a point x 2 X increases if local information aboutthe function f : X ! Y in a neighbourhood U (x) of x is added. Consider piecewiselinear approximation as an example. The more values of f(�) are known, the moreaccurate is the approximation. The same idea is re
ected by the property p("; �).The smaller " and �, the more fuzzy rules are needed in order to satisfy a certainconsistency degree, the more local information is used for approximating a functioneF . Consider the case of a 1-dimensional input space X = [x0; x1]. The membershipfunctions in the premises of the fuzzy rules form a fuzzy partition 32 of X. Asthe partition gets �ner, the approximation power of the fuzzy system improves.Consider the case where " = 0. For a system with property p(0; �) it follows thatdiam(supp( eAi)) � 2 �, where diam([�; �]) = � � �. Thus, in order to satisfy theconsistency condition, n � d(x1 � x0)=(2 �)e is necessary.The properties of the function eG depend more or less obviously on the member-ship functions � eAi (i = 1; : : : ; n). If all these functions are continuous, so is eG. Ofcourse, eG(x) 2 Ep for all x 2 X.A complete metric space (Ep; ~dH) is de�ned on a compact set X by endowingEp with the metric ~dH( eA; eB) := sup�2[0;1] dH([� eA]�; [� eB]�) :Here, dH is the Hausdor� metric on the space of nonempty and compact subsets ofRp: dH(X;Y ) := maxf�(X;Y ); �(Y;X)g ;where �(X;Y ) := supf�(x; Y ) j x 2 Xg and �(x; Y ) = miny2Y jx � yj with a normj:j on Rn. Subsequently, by continuity of fuzzy functions and convergence of fuzzysets we mean continuity and convergence with respect to ~dH .We associate with each eA 2 Ep its support function S eA de�ned byS eA : [0; 1]� Sp ! R ; (�; y) 7! maxfhy; xi j x 2 [� eA]�g ;where h:; :i is the inner product and Sp := fx 2 Rp j jxj2 = 1g is the unit sphere inRp. It is shown in 13 that the map �( eA) = S eA is a linear homeomorphic embeddingfrom Ep into the Banach space H = L1(Sp; BV ([0; 1]))\L1([0; 1]; C(Sp)) with thenorm jS eAj = supy2Sp V (S eA(:; y)) + sup�2[0;1] supy2Sp jS eA(�; y)j ;where V (:) is the total variation,BV ([0; 1]) is the space of functions having boundedvariation on [0; 1], and L1(U; V ) is the space of bounded functions from a compactspace U into a normed space V with norm jf j = supu2U jf(x)jV .Consider a sequence of fuzzy systems Sq with nq the number of rules in Sq . Letthe function eq be de�ned byeq : R! [0; 1] ; � 7! maxi2f1;::: ;nqgfbi(x) j x 2 X; jx� zij � �g :



Modelling and Simulation of Uncertain Dynamics 7When proving Theorem 1 below, we face the following problem: For "; � > 0 wehave to �nd a fuzzy system S satisfying property p("=n; �), with n the number ofrules in S. The question arises if such a fuzzy system exists regardless of the values" and �. This question is equivalent to the claim that a sequence of systems Sqexists for a compact set X � Rm with eq(�) = o(1=nq) for �xed � > 0. Thatis, limn!1 nq eq(�) = 0. Of course, this follows at once from the possibility ofconstructing a fuzzy system with property p(0; �) based on triangular membershipfunctions and product inference logic. However, we would like to demonstrate thatsuch a sequence Sq can also be found in the \nontrivial" case where bi(x) > 0 on X(i = 1; : : : ; n).Lemma 1 Let � > 0, X � Rm with X � [x10; x11]� : : :� [xm0; xm1]. A sequenceof fuzzy systems Sq with domain X exists such that eq(�) = o(1=nq) with nq thenumber of rules in Sq .Proof. We will prove this lemma by constructing explicitely a sequence Sq offuzzy systems which has the desired property. Let � > 0 be �xed. For � > 0 de�nerk := d(xk1�xk0)=�e and dk := (xk1�xk0)=rk � �, k 2 f1; : : : ;mg. Let J := fj =(j1; : : : ; jm) j 0 � j1 � r1; : : : ; 0 � jm � rmg and zj := (x10+j1 d1; : : : ; xm0+jm dm)for 1 � k � m, 0 � jk � rk. Consider the fuzzy sets eAj de�ned by� eAj(x) := exp��4 ln(2) jx� zjj22m�2 � :The number of rules in Sq depends on � and is given by nq = r1 � r2 � : : : � rk.From the construction above follows that for each x 2 X we �nd j 2 J such thatjx� zjj2 � pm�=2. Thus, for the value � in (4) we get � � 1=2. Therefore,eq(�) � 2 exp��4 ln(2) �2m�2 � = exp(�O((1=�)2)) :Thus, the result follows from nq = nq(�) = O((1=�)m) and xa = o(exp(xb)) fora; b 2 N. �.Theorem 1 Let X � Rm be compact. Let eF : X ! Ep be a continuous fuzzyfunction. Then, a sequence of fuzzy systems Sq exists, the associated fuzzy functionseGq of which satisfy limq!1 eGq = eF uniformly in X. That is, ~dH ( eGq(x); eF (x))! 0uniformly in X as q!1.Proof. Continuity of eF is equivalent to continuity of S eF 14. Consider the set ofvalues z1; : : : ; zn from (3) and let eBi := eF (zi) (i = 1; : : : ; n) in the fuzzy system S.For the corresponding fuzzy function eG, we haveS eG(x) = nXi=1 bi(x)S eBi :Theorem 1 follows from S eG(x) ! S eF (x) uniformly in X, which will now be shown.FromPni=1 bi � 1 and (�+ �) eA = � eA+ � eA for eA 2 Ep follows thateF (x) = nXi=1 bi(x) � eF (x) :



8 Modelling and Simulation of Uncertain DynamicsSince S eF is continuous,8 " > 0 9 � > 0 : jx1 � x2j � � ) jS eF (x1) � S eF (x2)j � " : (5)Furthermore, M > 0 exists such that jS eF (x)j �M on X. Now, let " > 0 and choose� > 0 from (5) for "=2. Consider the fuzzy function eG associated with a fuzzysystem S satisfying property p("1; �), where "1 = "=(4nM ). The existence of sucha system is guaranteed by Lemma 1. It follows that���S eG(x) � S eF (x)��� = mXi=1 bi(x) ���S eF (zi) � S eF (x)���= Xi2I1(x;"1) bi(x) ���S eF (zi) � S eF (x)��� + Xi2I2(x;"1) bi(x) ���S eF (zi) � S eF (x)���� "=2 + 2nM"1 � " :Since eF is continuous on X, it is uniformly continuous. Thus, the estimates aboveare uniform in X. �.4. Simulation of Uncertain Dynamical SystemsIn this section, we are going to propose a method for simulating dynamicalsystems modelled by di�erential equations with set-valued or \fuzzy" right handside. The method is based on the theory of di�erential inclusions. First, we are goingto consider generalized initial value problems. Here, the model of a dynamical systemis given in the form of a di�erential inclusion and an initial system state restrictedby some set X0 � Rn. Then, fuzzy initial value problems will be introduced asa further generalization: Set-valued functions are replaced by fuzzy functions andinitial sets by fuzzy initial sets. Based on a probabilistic interpretation of this kindof model, we establish a certain relation between \set-valued" and \fuzzy" models.4.1. Generalized Initial Value ProblemsOne possibility of modelling (bounded) uncertainty in a dynamical system is toreplace functions and initial values in the problem_x(t) = f0(t; x(t)); x(t0) = x0 2 Rn (6)by set-valued functions and initial sets. This leads to the following (generalized)initial value problem: _x(t) 2 F (t; x(t)); x(t0) 2 X0 � Rn ; (7)where F : [t0; T ] � Rn ! 2Rn n f;g is a set-valued function, X0 is compact andconvex. A solution x(�) of (7) is understood to be an absolutely continuous functionx : [t0; T ]! Rn which satis�es (7) almost everywhere. The function F is taken to beset-valued in order to represent the (bounded) uncertainty of the dynamical system:



Modelling and Simulation of Uncertain Dynamics 9For each system state (t; x) 2 [t0; T ]�Rn the derivative is not known precisely, butan element of the set F (t; x). LetX := fx : [t0; T ]! Rn j x(�) is a solution of (7)g : (8)Then, the reachable set X(t) at time t 2 [t0; T ] is de�ned asX(t) = X(t; t0; X0) := fx(t) j x(�) 2 Xg :The function X(t; t0; X0) satis�es a semigroup property 47, namelyX(t; �;X(� ; t0; X0)) = X(t; t0; X0) (9)for t0 � � � t � T . If we regard the whole set of real-valued solutions (8) as oneset-valued trajectory, (9) can be interpreted as a generalized dynamical system.The reachable set X(t) is the set of all possible system states at time t. Knowl-edge about X(t) is important for many applications. Thus, it seems meaningfulto characterize the behavior of uncertain dynamical systems by means of reachablesets. Our objective is to �nd approximations of these sets for the system (7) usingnumerical methods. In order to de�ne meaningful approximation procedures, it isnecessary to know some properties of these sets. Furthermore, we need a theoreti-cal basis which allows solving (7) numerically, i.e., a discrete approximation of (7).Before we turn to these aspects, however, we will consider a further generalizationof (7).4.2. Fuzzy Initial Value ProblemsA reasonable generalization of \set-valued" modelling, which takes aspects ofgradedness into account, is the replacement of sets by fuzzy sets, i.e., (7) becomesthe fuzzy initial value problem_x(t) 2 eF (t; x(t)); x(0) 2 eX0 (10)on J = [0; T ] with a fuzzy function eF : J � Rn ! En and a fuzzy set eX0 2 En,where En is the set of normal, upper semicontinuous, fuzzy convex, and compactlysupported fuzzy sets eX 2 F(Rn).In order to de�ne the meaning of a solution to (10), we consider this kind of mod-elling from a semantic point of view. Our interpretation is a probabilistic one. Weassume the existence of a probability space (C �D;A; �) modelling the uncertaintyconcerning the unknown function f0 and the unknown initial system state x0 in (6).Here, C is a certain class of functions, and D is a set of possible initial system states.The tuple (f0; x0) can be thought of as a �xed but unknown \parameter" of the ini-tial value problem (6). In this case, the probability � is interpreted (in a subjectivesense) as a (conditional) distribution based on a body of knowledge, i.e., as a (sub-jective) quanti�cation of a degree of con�rmation concerning the \value" of (f0; x0).For instance, the knowledge that x0 = 0 and f0(t; x) = x+� with unknown � 2 [0; 1]



10 Modelling and Simulation of Uncertain Dynamicscan be modelled by means of C = ff : J � Rn ! Rn ; (t; x) 7! x + � j� 2 [0; 1]g,D = f0g, and � the uniform measure on C �D.The fuzzy right hand side in (10) is regarded as \weak" information about theprobability �: For certain values � 2 [0; 1], the set-valued (1 � �)-section F1��of eF together with the (1 � �)-cut [� eX0 ]1�� are associated with an �-con�denceregion C��D� � C �D for the true but unknown tuple (f0; x0). More precisely, C�will be de�ned as the set of all functions f 2 C satisfying graph(f) � graph(F1��).Likewise, D� is de�ned as [� eX0 ]1�� � Rn. Thus, we obtainProb �graph(f0) � graph(F�) ^ x0 2 [� eX0 ]�� = 1� � :It should be noted that an alternative interpretation of (f0; x0) (in an objectivesense) as a random variable modelled by the probability space (C �D;A; �) is justas well possible.According to our interpretation, it is logical to consider the generalized initialvalue problems _x(t) 2 F�(t; x(t)); x(0) 2 [� eX0 ]� ; (11)where F�(t; z) := [� eF (t;z)]� is the �-cut of the fuzzy set eF (t; z). F0 is de�nedpointwise as F0(t; x) := supp( eF (t; x)). We call a function x : J ! Rn an �-solutionto (10) if it is absolutely continuous and satis�es (11) almost everywhere on J . Theset of all �-solutions to (10) is denoted X�, and the �-reachable sets X�(t) arede�ned as X�(t) := fx(t) j x(�) 2 X�g :Loosely spoken, X� is thought of as an (1��)-con�dence region for the (unknown)solution�x0 : J ! Rn to (6) and de�nes the �-section of the fuzzy set eX of solutionsto (10). Likewise, X�(t) is a con�dence region for the value x0(t) 2 Rn. X�(t)de�nes the �-cut of the fuzzy reachable set eX(t).y The following results providethe formal basis for this interpretation. Firstly, it will be shown that the set X ofsolutions of a generalized initial value problem corresponds with the set of solutionsassociated with \ordinary" problems _x = f(t; x), where f is a Carath�eodory selectionof F . Therefore, we will de�ne C as the class of all functions f(t; x) measurable int and continuous in x. Secondly, the existence of a probability measure compatiblewith the con�dence regions associated with a fuzzy function eF will be shown.Proposition 1 Let F be continuous, bounded with compact convex values. Con-sider a generalized initial value problem (7). Then X = X 0, where X 0 is the set ofall functions solving an initial value problem_x = f(t; x) almost everywhere on [0; T ]; x(0) 2 X0with f 2 F , whereF := fg : [0; T ]�Rn! Rn j g is a Carath�eodory selection of Fg : (12)�Actually, we should speak of the set of solutions, since (6) need not have a unique solution.yThe system fX�(t) j0 < � � 1g completely determines eX(t).



Modelling and Simulation of Uncertain Dynamics 11Proof. Evidently, X 0 � X holds. Let x(�) 2 X . Since x(�) is absolutely continuous,_x(�) has the Lusin property, i.e., for all " > 0 a closed set J" � [0; T ] exists such that�([0; T ] n J") � " and _x(�)jJ" is continuous (� is the Lebesgue measure). The set[0; T ] can therefore be written as [0; T ] = Sm�0 Jm with disjoint sets Jm � [0; T ]such that �(J0) = 0, Jm is closed and _x(�)jJm is continuous for any m � 1. De�neG : [0; T ]�Rn! 2Rn n f;g by means ofG(t; u) = � f _x(t)g if t 2 Sm�1 Jm; x(t) = uF (t; u) otherwise :Gj(Jm�Rn) is lsc for allm � 1. Thus, Michael's selection theorem (see 4) guaranteesthe existence of a continuous selection gm of Gj(Jm �Rn). Now, letf(t; u) = � fgm(t; u)g if t 2 Jm0 if t 2 J0 :We have f(t; u) 2 F (t; u) for all t 2 Sm�1 Jm and x 2 Rn, and f(t; x(t)) = _x(t)almost everywhere. Moreover, f is \almost continuous," i.e., for all " > 0 a closedset J" � [0; T ] exists such that f is continuous on J" � Rn and �([0; T ] n J") � ".Hence, f is Carath�eodory. �.According to Proposition 1, we consider the set of all Carath�eodory selectionsof the set-valued function F as possible candidates for the unknown right hand sidef0 in (6) when solving a generalized initial value problem. Denote by C the classof all functions f : [0; T ] � Rn ! Rn which are measurable in the �rst argumentand continuous in the second one. Consider a fuzzy initial value problem withcontinuous eF . For all � 2 [0; 1] letC� := ff : [0; T ]�Rn! Rn j f 2 C ^ f is a selection of F1��g � C :Obviously, we have C� � C� for � � �. As already mentioned above, C� is thought ofas a con�dence region for the unknown function f0. Our objective is to guarantee theexistence of a probabilitymeasure on the set C of Carath�eodory functions compatiblewith the restrictions imposed by these con�dence regions. Since we may have C� =C� for � 6= �, we cannot require Prob(f0 2 C�) = � for all 0 � � � 1. Rather, theprobability associated with a set C� should be de�ned as ~� = ~�(C�) = maxf� 2[0; 1] j C� = C�g. Therefore, let A0 := fC� j� 2 [0; 1]g and A := f~�(C0) j C0 2 A0g.Observe that the assumptions concerning the values of eF guarantee the existenceof the maximum in the de�nition of ~�(C�).A0 is the set of con�dence regions associated with the fuzzy function eF . Forthis interpretation to make sense, we have to show the existence of an underlyingprobability space (C1;A; �) such that A0 � A and �(C0) = ~�(C0) for all C0 2 A0.Proposition 2 Let A = �(A0) � 2C1 be the �-algebra generated by A0. There is aprobability measure � on (C1;A) such that �(C0) = ~�(C0) for all C0 2 A0.Proof. The ring R generated by A0 is the set of all D � C1 which can be writtenas D = D(�1; �1) [ : : :[D(�m; �m) [Dm+1 ;



12 Modelling and Simulation of Uncertain Dynamicswhere m 2 N0, �� � �1 < �1 < �2 < : : : < �m < �m � 1, �k; �k 2 A, D(�; �) :=C� nC�, and Dm+1 = ; or Dm+1 = C�� , where �� := minf� j� 2 Ag. The extensionof ~� : A0 ! [0; 1] to R, again denoted ~�, is given by~�(D) := (�1 � �1) + : : :+ (�m � �m) + �� (1� �f;g(Dm+1)) :Since ~� is a pre-measure on R, it can be extended to a probability measure � onA = �(R) = �(A0). �.Remark 1 So far, we have ignored the uncertain information eX0 concerning theinitial system state, i.e., we principally assumed eX0 to be a crisp system statex0 2 Rn in Proposition 2. However, it is not di�cult to generalize this resultto guarantee the existence of a probability measure on (C1 � D1; �(A00)). Here,D1 := supp( eX0), and A00 is de�ned as a set of elements C� �D� in the same wayas A0.According to the de�nition of X�(t) and the fact that Prob(f0 2 C0) = ~�(C0) forall C0 2 A0, we have Prob(x0(t) 2 X�(t)) � ~�(C1��) � 1� � : (13)The � relation in (13) can be seen as a general implication of our \set-valued" ap-proach to modelling of uncertain dynamics: Our estimation of the system behavioris an outer estimation in the sense that the whole class F of functions associatedwith a set-valued function F by means of (12) is taken into account. However, theclass F 0 of functions we actually have in mind as possible candidates for f0 mightbe smaller than F . This interpretation problem can be formulated as follows: Let
(F 0) denote the set-valued function F associated with a class F 0 of functions,i.e., F (t; x) = ff(t; x) j f 2 F 0g. Moreover, denote by 
0(F ) the class of functionsassociated with a set-valued function by means of (12). Then, we generally haveF 0 � 
0(
(F 0)), but F 0 6= 
0(
(F 0)). In the context of probabilistic interpretationsof fuzzy functions this problem appears in the following way: In passing from aprobability measure �0 on C1 to a model in form of a fuzzy function, i.e., a systemA0 of con�dence regions, some information is lost. Proposition 2 only guaranteesthe existence of a probability measure � compatible with the constraints imposedby A0. However, since this measure need not be uniquely de�ned, it is generally notpossible to recover �0 from A0.Example 1 Let F 0 := ff : R! R jf � c; c 2 [�1; 1]g be a parameterized family offunctions. Then, F := 
(F 0) � [�1; 1] and sin(t) 2 F = 
0(F ), although sin(t) 62F 0. Thus, � cos(t) is an element of the set X of possible solutions to the initialvalue problem _x(t) 2 F (x(t)), x(0) = �1. However, the set of solutions to theproblem _x 2 F 0 (the function _x : [0;1)! R is an element of F 0) and x(0) = �1 isgiven by X 0 = fx : [0;1)! R jx(t) = c t� 1; c 2 [�1; 1]g :Obviously, X 0 ( X . Observe that X is compatible with the assumption of a uniformprobability measure � on F in the probabilistic setting, whereas X 0 is associated witha measure �0 concentrated on F 0 � F .



Modelling and Simulation of Uncertain Dynamics 134.3. Properties of Reachable SetsAs already mentioned above, we would like to characterize the behavior of ageneralized or \fuzzy" dynamical system by means of reachable sets. We are nowgoing to consider some properties of these sets. We suppose F : [0; T ]�Rn! 2Rnto satisfy the following:(a) F has nonempty, compact and convex values.(b) F is continuous in t (with respect to dH .)(c) The following Lipschitz condition is satis�ed:dH(F (t; x); F (t; y))� L jx� yjfor all x; y 2 Rn with a (global) Lipschitz constant L > 0.(d) F is bounded.The following proposition follows directly from Corollary 7.1 and Corollary 7.2in 12.Proposition 3 Under assumptions (a), (b), and (c) the reachable sets X(t) � Rnare compact and connected.In order to guarantee convexity ofX(t), additional assumptions have to be madewhich are seldom satis�ed, such as concavity of F 7, i.e.,�F (t; x1) + �F (t; x2) � F (t; �x1 + � x2) (14)for all �; � > 0, �+ � = 1.Since one is often interested in classical solutions, it is interesting to compare theset of solutions (absolutely continuous functions satifying (7) almost everywhere)with the set of classical solutions of (7), i.e., those functions x : [t0; T ] ! Rn 2C1[t0; T ] satisfying (7). According to the following theorem, which is essentiallyTheorem 7 in 17, the reachable sets associated with X resp. X 0 are \almost identi-cal."Theorem 2 Let F satisfy (a), (b), and (c). Then, the set X 0(t) � Rn reachableby classical solutions at time t 2 [t0; T ] � R is a dense subset of the reachable setX(t).4.4. Properties of Fuzzy Reachable SetsProposition 4 Suppose the fuzzy function eF : J �Rn! En to be continuous in tand to satisfy a Lipschitz condition~dH( eF (t; x); eF (t; y)) � L jx� yjon J�Rn with a Lipschitz constant L > 0. Consider the set eX of solutions to (10).The reachable set eX(t) associated with eX is a normal, upper semicontinuous, andcompactly supported fuzzy set for all t 2 [0; T ]. If eF is also concave, then eX(t) 2 En.



14 Modelling and Simulation of Uncertain DynamicsProof. Since eF is normal and continuous on J � Rn, a continuous selectionf : J � Rn ! Rn exists such that f(t; u) 2 [� eF (t;u)]1 on J � Rn. Furthermore,[� eX0 ]1 6= ;. Thus, a solution x(t) to (11) with � = 1 exists (see basic existencetheorems), and this solution belongs to X1, which means that X1(t) 6= ; and eX(t)is normal. The assumptions concerning eF guarantee the reachable set eX(t) tobe contained in a bounded set B � Rn for all t 2 [0; T ]. Since the elementseA 2 En are compact and convex, compactness of X�(t) for all � 2 [0; 1] follows fromCorollary 7.2 in 12. The fact that X�(t) is convex under the additional assumption(14) is Theorem 14 in 7. �.Proposition 4 shows that eX(t) has some nice properties under reasonable as-sumptions. Nevertheless, this fuzzy set will generally have a rather complicatedstructure. For example, since concavity of F� is seldom satis�ed, the �-cuts of eX(t)will usually not be convex. It should also be clear that we cannot expect eX(t)to belong to special classes of fuzzy sets, such as Gaussian, although this may bethe case for the values eF (t; x) and eX0. Furthermore, already the approximationof crisp sets Y � Rn turned out to be complicated, especially for higher dimen-sions. Due to this reason, we will only treat the (set-valued) problem of �nding thereachable sets X�(t) of problem (11) for di�erent values of �. Given reachable setsX�1(t); : : : ; X�m(t), the fuzzy set eX(t) is then approximated by means of� eX(t)(x) = maxf�k j x 2 X�k(t); 1 � k � mg :In this context, it is interesting to know in which way X�(t) depends on �.Lemma 2 Let eA 2 F(Rn) be some fuzzy set and suppose �n ! � as n ! 1 forsome sequence (�n) � [0; 1]. De�ne An := [� eA]�n and A := [� eA]�. Then,�(An; A)! 0 as n!1 : (15)Proof. Suppose (15) not to hold. Then, some � > 0 exists such that for eachn 2 N we can �nd j(n) � n and an 2 Aj(n) satisfying �(an; A) > �. Since eA iscompactly supported, (an) is bounded, i.e., it has a convergent subsequence (ak) �B := Rnn (A+B� (0)), where B�(0) := fx 2 Rn j jxj < �g. Observe that B is closed,and recall that � eA(an) � �j(n) for n 2 N. Thus, we have b := limk!1 ak 2 B and� eA(b) � �, which is a contradiction. �.Lemma 3 Consider a fuzzy set eA with membership function � eA : Rn! [0; 1] suchthat � eA(x) < 1) 8 � > 0 9 y 2 Rn : jx� yj < � ^ � eA(y) > � eA(x) (16)for all x 2 supp( eA). Now, consider some sequence (�n) � [0; 1], �n ! � 2 [0; 1].Let Cn := [�A]�n and C := [�A]�. Then dH(Cn; C)! 0 as n!1.Proof. �(Cn; C) ! 0 follows from Lemma 2. For x 2 C and � > 0 some valuey 2 Rn exists such that jx � yj < � and � eA(y) > � eA(x) � �. Thus, since �n ! �,we have y 2 Cn for almost all n 2 N. Now, suppose �(C;Cn) 6! 0. Then, some



Modelling and Simulation of Uncertain Dynamics 15� > 0 exists such that for all n 2 N we can �nd j(n) � n and xn 2 C satisfying�(xn; Cj(n)) > �. Since C is compact, (xn) has a convergent subsequence (xk) withxk ! x 2 C, which contradicts the fact that �(x; Cn)! 0. Therefore, �(C;Cn)! 0and hence dH(Cn; C)! 0 as n!1. �.Remark 2 Property (16) is satis�ed if � eA is continuous on Rn and di�erentiableon B := supp( eA) n fx 2 Rn j� eA(x) = 1g, and grad� eA(x) 6= 0 on B.Proof. Since � eA is continuous, B is open. Now, suppose (16) does not holdfor x 2 B, i.e. some � > 0 exists such that B�(x) � B and � eA(x) � � eA(y) for ally 2 B�(x). But in this case x is a local maximumof � eA in contrast to the assumptionthat grad � eA(x) 6= 0. �.Proposition 5 Consider problem (10) and let F� be upper semicontinuous in xand jF�(t; x)j � m(t) on J �Rn with m(t) integrable. Then, the functionG : [0; 1]! 2Rn n f;g ; � 7! X�(t)is upper semicontinuous for all t 2 J .Proof. From Lemma 2 follows that�([� eX0 ]�i ; [� eX0]�)! 0 and �(F�i (t; x); F�(t; x))! 0for all (t; x) 2 J � Rn as �i ! �. Since [� eX0 ]� and [� eF (t;x)]� are also nonempty,closed, and convex for all � 2 [0; 1], the proposition follows from the corollary toLemma 2 in 7. �.Proposition 6 Consider problem (10) and suppose the fuzzy sets eX0 and eF (t; x) tosatisfy (16). Furthermore, let F� be continuous in t and satisfy a Lipschitz condition~dH( eF (t; x); eF (t; y)) � k(t)jx� yj; k(t) 2 L1 :Then, the function G : [0; 1]! 2Rn n f;g ; � 7! X�(t)is continuous for each t 2 J .Proof. From Lemma 3 follows that [� eX0 ]�i ! [� eX0 ]� and F�i ! F� as �i ! �.Since [� eX0 ]� and [� eF (t;x)]� are also nonempty and closed for each � 2 [0; 1], theproposition follows from Theorem 9 in 7. �.5. Implementation and ExampleSince it is generally not possible to �nd analytically the reachable sets associatedwith a generalized or fuzzy initial value problem, we have investigated methodsfor �nding numerical approximations of these sets. In this section, we restrictourselves to a brief description of the basic ideas and a simple example illustratingthis approach.Principally, the numerical methods are based on two kinds of discretization. Thetime interval [0; T ] is replaced by a grid 0 = t0 < t1 < : : : < tN = T with stepsize
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Figure 1: The �-cuts X�(t) (� = 0:7 (left), � = 0:9 (right), t 2 f0;0:1; : : : ; 5g) of thereachable fuzzy sets eX(t).�t = T=N = ti � ti�1 (i = 1; : : : ; N ). A simple �rst order discretization of (7) isthen given by yi+1 � yi�t 2 F (ti; yi) : (17)Based on (17) the following generalized Euler scheme can be de�ned:Y (ti+1) := [y2Y (ti) y +�t F (ti; Y (ti)) ; Y (0) := X0 : (18)Since the sets Y (ti) may have very complicated structures, it is generally not possibleto represent them exactly. Thus, in addition to a discretization with regard to time,we have to perform a second approximation in the form of a discretization of 2Rn.For this purpose, consider a class A � 2Rn of sets which can be represented bymeans of a certain �nite data structure. Denote by A(Y ) 2 A the approximationof a set Y � Rn. We can then de�ne the following approximation of (18):Z(ti+1) := A0@ [z2Z(ti) z +�tA(F (ti; z))1A ; Z(0) := A(X0) : (19)The implementation of our method is based on the iteration scheme (19). Theclass A used in (19) for approximating sets was implemented as di�erent classesof geometrical bodies, such as convex hulls or more general classes including non-convex sets. Under certain conditions, approximations Z(t) of reachable sets X(t)can be found with any degree of accuracy for all t 2 [0; T ].Consider the following example as an illustration of our approach. This exam-ple combines the methods for modelling uncertain functional relationships with thesimulationmethods discussed in this paper. The behavior of a two-dimensional (au-tonomous) system was charcterized by 25 linguistic rules of the form \If x is smalland y is small then _x is large and _y is small." The set of �ve linguistic variables



Modelling and Simulation of Uncertain Dynamics 17used in this example is modelled by Gaussian membership functions. We associatea fuzzy function eF with this set of rules based on the method presented in Sec-tion 2. This function eF then serves as the right hand side of our fuzzy initial valueproblem. The information that the initial system state is approximately (3=2; 3=2)is modelled as a \fuzzy circle" with center (3=2; 3=2). The �-sections of some fuzzyreachable sets characterizing the behavior of this system are shown in Figure 1 fordi�erent values of �. The set of all �-sections of the reachable sets eX(t) forms a\funnel" bounding the true but unknown system trajectory with a certain proba-bility.6. Related MethodsContributions to modelling and simulation of uncertain dynamics have alreadybeen made fromdi�erent directions. Next to well-known probabilistic methods, suchas stochastic di�erential equations, approaches based on \alternative" representa-tions of uncertainty have been considered. Particularly, corresponding methodscan be found in the research �elds of qualitative reasoning and the theory of fuzzysets. This section should serve as a brief overview of such approaches. A detaileddiscussion and comparison of di�erent methods is beyond the scope of this paper.The �rst qualitative simulation algorithm has been proposed by Kuipers 35. Thisalgorithm derives a set of qualitative system behaviors compatible with a di�erentialequation, the right hand side of which is restricted by a set of algebraic, derivative,and monotonicity constraints. Similar methods have been proposed in 20;38. How-ever, these approaches often produce \spurious" system behaviors. A main reasonfor imprecise predictions is the \merging" of di�erent (quantitative) system behav-iors, a general problem of approaches based on a discretization of the state space.Such problems lead to the incorporation of numerical information 6. Moreover, so-called semi-quantitative approaches 8;29;42 with continuous state space have beenconsidered. These methods make use of interval functions for modelling uncertainfunctional relationships. However, the corresponding numerical methods generallyproduce very inaccurate predictions of the system behavior 22. In connection withqualitative reasoning, we should also mention approaches to modelling and simula-tion based on other methodologies, such as inductive reasoning 10;11. Particularly,this last approach is interesting from a modelling point of view: A model is notde�ned explicitely, but infered implictely based on a set of observations. In a cer-tain sense, this \data-driven" method can be seen as the opposite of model-basedapproaches.It is interesting to compare our approach with a special type of fuzzy di�erentialequations proposed in 26;27;37. These approaches to solving di�erential equationswith \fuzzy" right hand side are principally based on the \fuzzi�cation" of thedi�erential operator. The de�nition of this operator makes use of a generalizationof the so-called Hukuhara di�erence of sets X;Y � Rn: A fuzzy set eZ � F(Rn) iscalled the H-di�erence of eX and eY , denoted eX � eY , if eX = eY + eZ. Here, + is theusual addition of fuzzy sets. A fuzzy set eF 0(t0) is de�ned to be the derivative of a



18 Modelling and Simulation of Uncertain Dynamicsfuzzy function eF at t0 if the limitslim�t%0 eF (t0 +�t)� eF (t0)�t ; lim�t%0 eF (t0)� eF (t0 ��t)�t (20)exist and are equal to eF 0(t0). A solution to a di�erential equation based on this kindof derivative is thought of as a single trajectory in the \state space" F(Rn). Thatis, it is interpreted as one single object, whereas our interpretation of solutions tofuzzy initial value problems was that of a (fuzzy) set of \ordinary" functions. Seenfrom this perspective, (20) may lead to results which are not intuitive. Considerthe (crisp) problem _x = �x, x(0) 2 [�1; 1] with an unknown initial system stateas an example. Since x(t) = a exp(�t) is the general solution of the initial valueproblem _x = �x, x(0) = a, and a is restricted to values within the interval [�1; 1],we should expect to obtain the solution x(t) 2 [� exp(�t); exp(�t)]. However, thefuzzy function (which is actually a set-valued function) solving this initial valueproblem in the sense of (20) is eF (t) = [� exp(t); exp(t)]. Particularly, we havediam( eF (t))!1 instead of diam( eF (t))! 0 as t!1.7. ConclusionsIn this paper, we have presented a method for modelling and simulation of uncer-tain dynamical systems. This approach is motivated by applications in knowledge-based systems. However, since uncertainty and incomplete knowledge is an inher-ent characteristic of modelling dynamical systems, many other applications can befound. Particularly, this method is attractive as a methodology for modelling andsimulation in the so-called \soft sciences."It should be noted that the methods for modelling fuzzy functions and for thesimulation of \fuzzy" dynamical systems are principally independent. Of course,the simulation method can use any kind of (reasonable) fuzzy function, regardlessof its origination. Particularly, the right hand side can be de�ned as a combinationof precise and fuzzy functions. Based on other interpretations of the fuzzy systemsdiscussed in Section 2 it is also possible to derive other fuzzy functions 23;24. Par-ticularly, such a system need not be interpreted as a linguistic model. With regardto the probabilistic interpretation of fuzzy functions presented in Section 4, a setof fuzzy rules can simply be seen as a set of input-output pairs (xk; eYk). Then, thefuzzy set eYk can be interpreted as a system of con�dence regions for the unknownvalue f0(xk). In this case, the inference procedure realized by an additive fuzzysystem is nothing but an \interpolation of con�dence regions."According to our opinion, the clear semantical basis and the precision of the pre-dictions are advantages of the simulation method compared with other approaches.The price for this result is an increased complexity, which is principally caused bythe problem of handling complex approximations of reachable sets in n-dimensionalspace. However, the general algorithm based on iteration scheme (19) can be sim-pli�ed for special classes of systems 22;25. The identi�cation of such structures andthe parallelization of the simulation methods are central aspects of future research.
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