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Coping with uncertainty in dynamical systems has recently received some attention in
artificial intelligence (AI), particularly in the fields of qualitative and model-based rea-
soning. In this paper, we propose an approach to modelling and simulation of uncertain
dynamics which is based on the following ideas: We consider (linguistic) descriptions of
uncertain functional relationships characterizing the behavior of some dynamical system.
Based on a certain interpretation of such rule-based models, we derive a fuzzy function
F'. Tt will be shown that all (reasonable) fuzzy functions can be approximated to any de-
gree of accuracy in this way. The function F is then used as the “fuzzy” right hand side
of a set of differential equations, which leads us to consider fuzzy initial value problems.
We are going to propose an interpretation of such problems. Moreover, several aspects
of simulation methods for characterizing the set of all system behaviors compatible with
this interpretation will be discussed.
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1. Introduction

Knowledge about dynamical systems modelled by (ordinary) differential equa-
tions (ODEs) is often incomplete or vague. For example, parameter values, func-
tional relationships, or initial conditions may not be known precisely. In this sit-
uation, well-known methods for solving initial value problems analytically or nu-
merically can only be used for finding selected system behaviors, e.g.; by fixing
unknown parameters to some plausible values. But it is generally not possible to
characterize the whole set of system behaviors compatible with our partial knowl-
edge this way. However, it 1s just this kind of information which is often important
in applications of knowledge-based systems, such as, e.g., model-based monitoring
and diagnosis '6.

A special kind of uncertainty is vagueness in natural language. Models based
on natural language can be seen as a vague formalization of mental models, which
i1s in many cases more adequate than precise mathematical models: “When tradi-
tional simulation models of social phenomena are formulated, causal relations are
represented as precise mathematical functions. Such is the case even when the
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modeler has only a vague idea about their nature, a condition which is most often
true ... . To avoid the artificial step of translating vague ideas with an inappro-
priate exactitude, the modeler should instead be allowed to formulate his model
in natural language.” *® Linguistic models have been applied successfully in, e.g.,
fuzzy control. Moreover, natural language simulation has also received attention in
AT 5. Of course, natural language models cannot be used directly for simulating
the behavior of dynamical systems: “Humans speak and write in natural language;
however, there must be a translation process [mapping qualitative to quantitative
models] if this knowledge is to be useful to simulation.” ¥ This leads us to consider
the problem of mapping natural language descriptions of functional relationships,
which we suppose to be given as if-then rules, to a mathematical representation in
form of a fuzzy function F. In Section 3, such rule-based models will be shown
to be capable of approximating all “reasonable” fuzzy functions to any degree of
accuracy.

In this paper, we are going to propose an approach to modelling and simulation
of uncertain dynamical systems. The general idea is to characterize the set of all
system behaviors compatible with (the mathematical interpretation of) a natural
language description of the system. We pass from (ordinary) initial value problems
to fuzzy initial value problems by replacing the right hand side  : [0, 7] x R? — R"
of an ODE system by some fuzzy function F : [0,T] x R" — F(R"™), where F(IR")
is the set of all fuzzy subsets of R™. Likewise, initial system states xg € R™ are
replaced by initial fuzzy sets Xy € F(R™). Of course, mathematical models in form
of fuzzy initial value problems no longer describe a unique system behavior (such
as ODE systems satisfying a uniqueness condition.) The following questions have
to be answered in connection with this kind of mathematical models: What is the
interpretation of the model from a semantical point of view? What is meant by
a solution to a fuzzy initial value problem? How can the set of possible system
behaviors be characterized?

The paper is organized as follows: Methods and results related to modelling
of uncertain functional relationships are presented in Section 2 and Section 3. In
Section 4, we are going to discuss the questions just mentioned in connection with
fuzzy initial value problems. Some aspects of numerical methods for fuzzy initial
value problems as well as an example of it are presented in Section 5. Section 6
gives a brief overview of some related methods proposed in the literature.

2. Linguistic Modelling

Fuzzy systems are widely used for linguistic modelling of functional relationships.
A well-known example is fuzzy control: The incomplete and vague knowledge about
a control function is formulated as a set of linguistic rules by a human expert. Fuzzy
inference is used to transform the set of fuzzy rules into a mathematical function
g(+) which serves as an approximation of the true but unknown function f(-). Fuzzy
systems such as those used in fuzzy control generate real-valued functionsg : X — Y
from an input space X C R™ to an output space ¥ C RP by performing the three
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steps (1) fuzzification of input values, (2) fuzzy inference, (3) defuzzification of output
values. The defuzzification procedure assigns a real vector a € RP to the fuzzy
output A of the inference mechanism. This can be interpreted as follows: First,
the fuzzy system generates a fuzzy function G:X = F(Y') from the input space
X to the space F(Y') of all fuzzy subsets of the set Y. Then, the defuzzification
procedure realizes a selection g : X — Y satisfying g(x) € é(x) for all x € X.
This is meaningful if such a “crisp” function 1s needed as, e.g., in fuzzy control. Of
course, some information is lost in the last step. This can be avoided by taking G
itself instead of a selection g(-) as the output of the fuzzy system in which case the
fuzzy function G is interpreted as a quantification of a vague idea of a functional
relationship f(+).
Consider a fuzzy system S given by n rules of the form

R;: If xEﬁi then yEEi, (1)

where A; € F(R™), B; € F(IRP) are fuzzy sets representing some linguistic variables
like small or medium. The mapping which is realized by this fuzzy system highly
depends on the choice of

o the membership functions p7 and pg ,
e the fuzzy inference which specifies a fuzzy output for each input x € R™,

e the defuzzification method which maps a fuzzy set B e F(RP) to a “crisp”
value y € RP,

Since we are interested in the fuzzy output of the system, only the first two aspects
are relevant here. A defuzzification of the output is not considered.

2.1. Rule-based Fuzzy Systems

Denote by EP the set of fuzzy sets Ae F(IRP) which are normal, upper semicon-
tinuous, fuzzy convex, and compactly supported. The a-level set of a fuzzy set A
is defined as [ 1]a := {x € X |p5(x) > a}. The set [p7]o is defined as the closure
of supp(4) = {x € X | 7(x) > 0}. We consider m input variables 2, € IR and
an output y € RP with corresponding domains X; C R and Y C RP, respectively,
where X} is compact. Let x := (21,...,2m) and X := X3 x ... x X, Thus, the
fuzzy system S consisting of n rules (1) realizes a fuzzy function G:X — F(Y).
We suppose B; € &r (¢ = 1,...,n). Furthermore, the membership functions B3,

are supposed to satisfy the following consistency condition:
VxEXEIjE{l,...,n}:ugj(x)>0. (2)
Usually, (1) takes the form

R;: If xleﬁ“ and xzeﬁiz and ... and xmeﬁim then yeéi,
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where the A;, € [F(IR) are characterized by membership functions B, Xe— [0, 1]
for k € {1,...,m}. Then, pz, is a function of pz ... puz . For example,
pg,(x) = TPl pz, (xx) for some t-norm T. Normally, the single output case
(p = 1) is considered in rule-based modelling *®. This is justified by the following:
Fory = (y1,...,¥p) the conclusion (y € E) Is equivalent to

yleél and yzeéz and ... and ypeép ,

where Ej EFM®)(j=1,...,p). Thatis, arule R: If (x € A) then (y € E) can be
split into p rules
Ry : If xE;lv then y1€§1
Ry If x€ A then yzeéz

Ry If x €A then ypeép

which leads to p separate rule-based fuzzy systems. However, here the implicit as-
sumption is made that the variables y1,. .. ,y, are noninteractive '*, which means
that B = 771(5) X. . X Py (E), where Py, (E) is the projection of the fuzzy relation B
to Yj, the domain of the variable y;,. Thus, noninteractivity of 1,...,y, or separa-
bility of B means nothing else than pz(y) = min{ugl (y1), - - ,ugp(yp)}. However,
this assumption is not always justified. Consider the vague description of a position
in the plane as an example. A membership value of a point (u,v) is determined
best as a function of the Euklidean distance from a reference point (ug, vg), which
means that the variables u and v are interactive. Thus, it is advantageous to take
the more general multi-output case into account.

2.2. Fuzzy Inference
We will define the output Yy = é(x) of a fuzzy system S for an input x € X as
the weighted average of the reference output values B; (i = 1,...,n).

Definition 1 (fuzzy basic function (FBTF)) For a fuzzy system S described above
n fuzzy basic functions 8 b; (j =1,... n) are defined by means of
pz,(x)

Z?:l HZ, (x)

From (2) follows that the FBFs are well defined. Obviously, Y i, b;(x) = 1 for all

31

b+ X —[0,1], x —

x € X. FBFs can be seen as nonlinear combinations of radial basis functions
The output Y = G/(x) of the fuzzy system S is defined by

G:X =5 F(Y), x> Y bi(x) B .
i=1

That is, the weight of a rule R; (¢ = 1,...,n) in the fuzzy inference process is
defined by the relation of the values of the membership functions pz; at x € X
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which can be mterpreted as the truth degrees of the corresponding premises. The
conclusion (y € Y) is a weighted average of the n predefined conclusions (y € B ).

3. Universal Approximation Property

In this section, we will show the rule-based fuzzy systems defined in Section 2
as capable of approximating any continuous fuzzy function with normal, upper
semicontinuous, fuzzy-convex, and compactly supported values on a compact set
to arbitrary degree. The result combines research efforts from different directions.
On the one side, 1t extends theoretical results concerning the approximation capa-
bility of fuzzy systems for real-valued functions '*. Wang **° shows that additive
fuzzy systems with Gaussian membership functions and centroid defuzzification
can approximate any real continuous function on a compact set to arbitrary degree.
Similar results were obtained by Buckley *, Kosko 3%, and Zeng and Singh *34°. Qur
approach also uses additive fuzzy systems. However, the crisp output is replaced
by a fuzzy one.

On the other side, this result is closely related with the analysis of set-valued
functions. The approximation of set-valued functions was first investigated by Vi-
tale *3 and later by Artstein ® and Keimel and Roth 3%, Particularly, we make use of
results of Diamond and Ramer % who generalized the results obtained in *3 and 3°
for Bernstein approximation and Korovkin systems for fuzzy functions. The inter-
polation of fuzzy data was investigated by Lowen 3¢ and Kaleva 2%, Approximation
problems have also been discussed in 2 and ?'. Fuzzy interpolation and approxima-
tion problems in connection with rules are treated in »334! and 3%4°. However, the
approximation power of fuzzy systems in not addressed in these works.
Definition 2 (Property p(¢,0)) Let €,6 > 0. Let d(.,.) be a metric on X. A
fuzzy system S as described above is said to have property p(e,d) if the following
holds true:

vie{l,..., n}EIzZEsupp( JVxeX 1 d(xz;) > 8= bi(x) <¢e. (3)

Forx € X, e > 0, let I1(x,e) := {i € {1,...,n}|b;i(x) > €}. Furthermore, let
L(x,e) :={1,...,n}\ Ii(x,¢).

Loosely spoken, property (3) states that the influence of each rule in the fuzzy
system S becomes small outside a certain area. Observe that I;(x,£) # @ for
e < 1/n.

The definition of property p(e,d) is based on the FBFs b;. Thus, it cannot be
infered directly from the membership functions P, if p(e,d) is satisfied. However,
the following estimation is possible. The value

A= min max g (x) (4)
can be interpreted as a consistency measure. The consistency assumption (2) is
equivalent to A > 0. Obviously, the fuzzy system satisfies property p(e,d) if

Vie{l, ..., n}EIzZEsupp( ) VxE€X 1d(x2) > =pz(x) < Ae.
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In mathematical approximation theory, some regularity assumptions such as
continuity of the corresponding functions always are made. Then, it is well known
that approximation accuracy at a point # € X increases if local information about
the function f: X — Y in a neighbourhood U () of  is added. Consider piecewise
linear approximation as an example. The more values of f(:) are known, the more
accurate is the approximation. The same idea is reflected by the property p(e,d).
The smaller € and 4, the more fuzzy rules are needed in order to satisfy a certain
consistency degree, the more local information is used for approximating a function
F. Consider the case of a 1-dimensional input space X = [2g, #1]. The membership
functions in the premises of the fuzzy rules form a fuzzy partition 32 of X. As
the partition gets finer, the approximation power of the fuzzy system improves.
Consider the case where ¢ = 0. For a system with property p(0,d) it follows that
diam(supp(ﬁi)) < 24, where diam([a, 8]) = # — «. Thus, in order to satisfy the
consistency condition, n > [(x1 — #0)/(24)] is necessary.

The properties of the function G depend more or less obviously on the member-
ship functions B, (i =1,...,n). If all these functions are continuous, so is G. Of

course, é(x) € &P for all x € X.
A complete metric space (EP,dyr) is defined on a compact set X by endowing
EP with the metric
dir(A,B) = sup du([uzla: [15la) -
a€l0,1]
Here, dg 1s the Hausdorff metric on the space of nonempty and compact subsets of
R?:
dp(X,Y) = max{8(X,Y),8(Y, X))} ,
where S(X,Y) := sup{p(x,Y) |x € X} and p(x,Y) = mingey |x — y| with a norm
|.| on R™. Subsequently, by continuity of fuzzy functions and convergence of fuzzy
sets we mean continuity and convergence with respect to dg.
We associate with each A € £? its support function S5 defined by

S7:00,1]x SP = R, (a,y) = max{(y,x) |x € [tt7]a} ,

where (.,.) is the inner product and SP := {x € R?||x|os = 1} is the unit sphere in
RP. It is shown in 3 that the map 7(A) = S'7 is a linear homeomorphic embedding
from &P into the Banach space H = Lo (S?, BV ([0, 1])) N Loo([0, 1], C(SP)) with the
norm

|S7] = sup V(Sz(.,y)) + sup sup [Sz(a,y)|,
yeSP a€l0,1]yesr

where V(.) is the total variation, BV ([0, 1]) is the space of functions having bounded
variation on [0, 1], and L, (U, V) is the space of bounded functions from a compact
space U into a normed space V' with norm |f| = sup ¢y | f(x)]v-

Consider a sequence of fuzzy systems S, with n, the number of rules in 5,. Let
the function e, be defined by

eg:R—1[0,1],0 = max }{bi(x)|xEX,|x—zi|Z(5}.
1€{1 ng

RN
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When proving Theorem 1 below, we face the following problem: For ¢,§ > 0 we
have to find a fuzzy system S satisfying property p(s/n,d), with n the number of
rules in S. The question arises if such a fuzzy system exists regardless of the values
¢ and J. This question is equivalent to the claim that a sequence of systems S,
exists for a compact set X C R” with e,(6) = o(1/n,) for fixed § > 0. That
is, lim, o ngeq(d) = 0. Of course, this follows at once from the possibility of
constructing a fuzzy system with property p(0,d) based on triangular membership
functions and product inference logic. However, we would like to demonstrate that
such a sequence S, can also be found in the “nontrivial” case where b;(x) > 0 on X
(i=1,...,n).

Lemma 1 Let § >0, X C R™ with X C [z10,211] X ... X [@mo, ¥m1]. A sequence
of fuzzy systems S, with domain X exists such that eq( ) = o(1/ng) with ng the
number of rules in Sy.

Proof. We will prove this lemma by constructing explicitely a sequence S, of
fuzzy systems which has the desired property. Let § > 0 be fixed. For A > 0 define
i = [(xp1—2ro) /A and di, := (xp1— ko) /re <Ak e {l,...,;m}. Let J :={j =
(Ji,- 5 dm)|0<ji <ri,00,0< jpy <7} andg ::~(x10—|—j1 diy. . Zmo+im dm)
for 1 <k <m, 0 < jp <rp. Consider the fuzzy sets A; defined by

—41n(2) |x — z2
/JA"J_(X) ‘= exp (%) .

The number of rules in S; depends on A and is given by ng = r1 -ra - ... 7.
From the construction above follows that for each x € X we find j € J such that
Ix — zj]» < /m A/2. Thus, for the value A in (4) we get A > 1/2. Therefore,
2
c4(6) < 2exp (D) < exp(-0((1/a)7)

Thus, the result follows from n, = ny(A) = O((1/A)™) and z% = o(exp(z®)) for
a,beN. O
Theorem 1 Let X C R™ be compact. Let F : X — & be a continuous fuzzy
functzon Then, a sequence offuzzy systems Sy exrists, the associated fuzzy functions

q of which satisfy limg_, o0 G = F uniformly in X. That is, dH(G (x), F( )) =0
umformly m X as ¢ — oo.
Proof. Continuity of Fis equivalent to continuity of Sz 14 Consider the set of
values z1, ...z, from (3) and let B; = F(zz) (i=1,...,n) in the fuzzy system S.
For the corresponding fuzzy function é, we have

= Z bZ(X)S

Theorem 1 follows from Sé(x) — Sﬁ(x) uniformly in X, which will now be shown.

From >, b; =1 and (a + 6)1@ = oA+ ﬁg for A € &P follows that

= Z bi(x)



8 Modelling and Sitmulation of Uncertain Dynamics

Since Sz is continuous,
Ve>036>0: |X1—X2|§(5:>|Sﬁ(xl)—SF(x2)|§6. (5)

Furthermore, M > 0 exists such that |Sﬁ(x)| < M on X. Now, let £ > 0 and choose

d > 0 from (5) for £/2. Consider the fuzzy function G associated with a fuzzy
system S satisfying property p(e1,d), where &1 = ¢/(4nM). The existence of such
a system 1s guaranteed by Lemma 1. It follows that

= Zbi(x)
= Z bZ(X) Sﬁ(z,) -

i€T1(x,e1) i€Tz(x,e1)
/24 2nMey < e

Sz — Sz

()~ SF () SF(z) ~ SF )

SF(z) ~ SF )

IN

Since F' is continuous on X, it is uniformly continuous. Thus, the estimates above
are uniform in X. 0O.

4. Simulation of Uncertain Dynamical Systems

In this section, we are going to propose a method for simulating dynamical
systems modelled by differential equations with set-valued or “fuzzy” right hand
side. The method is based on the theory of differential inclusions. First, we are going
to consider generalized initial value problems. Here, the model of a dynamical system
is given in the form of a differential inclusion and an initial system state restricted
by some set Xy C R”. Then, fuzzy initial value problems will be introduced as
a further generalization: Set-valued functions are replaced by fuzzy functions and
initial sets by fuzzy initial sets. Based on a probabilistic interpretation of this kind
of model, we establish a certain relation between “set-valued” and “fuzzy” models.

4.1. Generalized Initial Value Problems
One possibility of modelling (bounded) uncertainty in a dynamical system is to
replace functions and initial values in the problem

(1) = fo(t,x(1)),  x(to) = x0 € R" (6)

by set-valued functions and initial sets. This leads to the following (generalized)
initial value problem:

(1) € F(t,x(1)), x(to) € Xo CR™, (7)

where I : [to, T] x R? — 28"\ {f)} is a set-valued function, Xy is compact and
convex. A solution x(-) of (7) is understood to be an absolutely continuous function
x : [to, T] = R™ which satisfies (7) almost everywhere. The function F is taken to be
set-valued in order to represent the (bounded) uncertainty of the dynamical system:
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For each system state (¢,x) € [to, 7] x R™ the derivative is not known precisely, but
an element of the set F(¢,x). Let

X = {x:[to,T] = R"|x(-) is a solution of (7)} . (8)
Then, the reachable set X (t) at time ¢ € [ty, T] is defined as
X(t) = X{tit0, Xo) = x{t) [x() € X} |
The function X (t;t9, Xo) satisfies a semigroup property 47, namely
X(t; 7, X(r3t0, X0)) = X(t; 10, Xo) (9)

for tg < 7 <t < T. If we regard the whole set of real-valued solutions (8) as one
set-valued trajectory, (9) can be interpreted as a generalized dynamical system.
The reachable set X (¢) is the set of all possible system states at time ¢. Knowl-
edge about X(¢) is important for many applications. Thus, it seems meaningful
to characterize the behavior of uncertain dynamical systems by means of reachable
sets. Our objective is to find approximations of these sets for the system (7) using
numerical methods. In order to define meaningful approximation procedures, it is
necessary to know some properties of these sets. Furthermore, we need a theoreti-
cal basis which allows solving (7) numerically, i.e., a discrete approximation of (7).
Before we turn to these aspects, however, we will consider a further generalization

of (7).

4.2. Fuzzy Initial Value Problems

A reasonable generalization of “set-valued” modelling, which takes aspects of
gradedness into account, is the replacement of sets by fuzzy sets, i.e., (7) becomes
the fuzzy initial value problem

x(t) € F(t,x(t)), x(0) € Xo (10)

on J = [0,7] with a fuzzy function F:JxR"— & and a fuzzy set Xy € En,
where £7 is the set of normal, upper semicontinuous, fuzzy convex, and compactly
supported fuzzy sets Xe F(R™).

In order to define the meaning of a solution to (10), we consider this kind of mod-
elling from a semantic point of view. Our interpretation is a probabilistic one. We
assume the existence of a probability space (C x D, A, 1) modelling the uncertainty
concerning the unknown function fy and the unknown initial system state xg in (6).
Here, C is a certain class of functions, and D is a set of possible initial system states.
The tuple (fg, xg) can be thought of as a fixed but unknown “parameter” of the ini-
tial value problem (6). In this case, the probability y is interpreted (in a subjective
sense) as a (conditional) distribution based on a body of knowledge, i.e., as a (sub-
jective) quantification of a degree of confirmation concerning the “value” of (fg, xg).
For instance, the knowledge that xg = 0 and fp(¢,x) = x+« with unknown « € [0, 1]
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can be modelled by means of C = {f : J x R” = R"™ (¢,x) = x+ a|a € [0,1]},
D = {0}, and p the uniform measure on C x D.

The fuzzy right hand side in (10) is regarded as “weak” information about the
probability g: For certain values o € [0, 1], the set-valued (1 — «)-section Fj_,
of F together with the (1 — a)-cut [ug ]i-o are associated with an a-confidence
region Co, X Dy C € x D for the true but unknown tuple (fg,xg). More precisely, Cq
will be defined as the set of all functions f € C satisfying graph(f) C graph(F1_.).
Likewise, D, is defined as [“)?0]1—04 C R™. Thus, we obtain

Prob (graph(fo) C graph(Fy) Axg € [uiu]a) =l—-a.

It should be noted that an alternative interpretation of (fg,xp) (in an objective
sense) as a random variable modelled by the probability space (€ x D, A, u) is just
as well possible.

According to our interpretation, it i1s logical to consider the generalized initial
value problems

x(t) € Fa(t,x(t)), x(0) € [pg, Jo (11)

where Fo(t,z) = [l’tﬁ(t Z)]a is the a-cut of the fuzzy set ﬁ(t,z). Fy is defined

pointwise as Fy(t,x) := supp(F'(t,x)). We call a function x : J — R" an a-solution
to (10) if it is absolutely continuous and satisfies (11) almost everywhere on J. The
set of all a-solutions to (10) is denoted X, and the a-reachable sets X, () are
defined as

Ko(t) :={x(8) [x(-) € Xa} .
Loosely spoken, &y, is thought of as an (1 — a))-confidence region for the (unknown)
solution*xg : J — R" to (6) and defines the a-section of the fuzzy set X of solutions
to (10). Likewise, X, (¢) is a confidence region for the value xo(t) € R™. X, (¥)
defines the a-cut of the fuzzy reachable set )?(t).T The following results provide
the formal basis for this interpretation. Firstly, it will be shown that the set A’ of
solutions of a generalized initial value problem corresponds with the set of solutions
associated with “ordinary” problems x = f(¢,x), where f is a Carathéodory selection
of F. Therefore, we will define C as the class of all functions f(¢,x) measurable in
t and continuous in x. Secondly, the existence of a probability measure compatible
with the confidence regions associated with a fuzzy function F will be shown.
Proposition 1 Let F' be continuous, bounded with compact convexr values. Con-
sider a generalized initial value problem (7). Then X = X', where X' is the set of
all functions solving an initial value problem

x =1(t,x) almost everywhere on [0,T], x(0) € X
with f € F, where
F:={g:[0,T]x R"” - R"|g is a Carathéodory selection of F'} . (12)

*Actually, we should speak of the set of solutions, since (6) need not have a unique solution.
tThe system {Xa(¢) |0 < @ < 1} completely determines X (¢).
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Proof. Evidently, X' C X holds. Let x(-) € X. Since x(+) is absolutely continuous,
%(+) has the Lusin property, i.e., for all € > 0 a closed set J, C [0, T] exists such that
#([0, 71\ J:) < ¢ and x(-)|J. is continuous (p is the Lebesgue measure). The set
[0,7] can therefore be written as [0,7] = |J,,,>q Jm with disjoint sets J,, C [0, 7]
such that p(Jo) = 0, Jp, is closed and x(-)|J, is continuous for any m > 1. Define
G :[0,T] x BR® — 28"\ {#} by means of

G(t,u):{ Xt} ift € Unpsy Imox(t) =u

F(t,u) otherwise

G|(JmxR™) is Isc for all m > 1. Thus, Michael’s selection theorem (see *) guarantees
the existence of a continuous selection gy, of G|(Jmn x R™). Now, let

_ [ em(tu)} ifte Jn
ft,w) _{ 0 ift e Jo

We have f(t,u) € F(t,u) for all t € |J,,5; Jm and x € R™, and f(¢,x(t)) = x(1)
almost everywhere. Moreover, f is “almost continuous,” i.e., for all ¢ > 0 a closed
set J. C [0,T] exists such that f is continuous on J. x R™ and p([0,7]\ J.) < .
Hence, f is Carathéodory. 0O.

According to Proposition 1, we consider the set of all Carathéodory selections
of the set-valued function F' as possible candidates for the unknown right hand side
fo in (6) when solving a generalized initial value problem. Denote by C the class
of all functions f : [0,7] x R™ — R” which are measurable in the first argument
and continuous in the second one. Consider a fuzzy initial value problem with
continuous F. For all a € [0,1] let

Co ={f:[0,T] xR - R"|f € CAfis aselection of F1_,} CC .

Obviously, we have Cg C C, for § < a. As already mentioned above, C, is thought of
as a confidence region for the unknown function fy. Our objective is to guarantee the
existence of a probability measure on the set C of Carathéodory functions compatible
with the restrictions imposed by these confidence regions. Since we may have C, =
Cp for 8 # «, we cannot require Prob(fy € C,) = « for all 0 < o < 1. Rather, the
probability associated with a set C, should be defined as i = i(Cy) = max{d €
[0,1]|Co = Cs}. Therefore, let A" := {Cy|a € [0,1]} and A := {g(C")|C € A'}.
Observe that the assumptions concerning the values of F guarantee the existence
of the maximum in the definition of ji(C,).

A’ is the set of confidence regions associated with the fuzzy function F. For
this interpretation to make sense, we have to show the existence of an underlying
probability space (Cy,.A, ) such that A" C A and u(C') = (C’) for all C" € A".
Proposition 2 Let A = o(A’) C 2°t be the o-algebra generated by A’. There is a
probability measure p on (Cy, A) such that u(C') = p(C') for all C' € A'.

Proof. The ring R generated by A’ is the set of all D C €; which can be written
as
D = D(Ozl,ﬁl) U... UD(Ozm,ﬁm) UDm+1 ;
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where m e Ny, o* <oy < fr < as < ... < am < fn <1, 05,6 € A D(a,5) =
Cs\Cao, and Dyy1 = 0 or Dyy1 = Cos, where o := min{e | o € A}. The extension
of i : A —[0,1] to R, again denoted fi, is given by

A(D) = (81 = 1)+ + (B — am) +a* (1= X gy (D)) -

Since fi is a pre-measure on R, it can be extended to a probability measure p on
A=c(R)=0c(A"). O.
Remark 1 So far, we have ignored the uncertain information )?0 concerning the
wmitial system state, i.e., we principally assumed )?0 to be a crisp system state
xg € R™ wn Proposition 2. However, it is not difficult to generalize this result
to guarantee the existence of a probability measure on (Cy x Di,0(A"”)). Here,
Dy = W()?o), and A" is defined as a set of elements C, x Dy, in the same way
as A’

According to the definition of X, (¢) and the fact that Prob(fy, € ') = (C’) for
all ¢" € A’, we have

Prob(xg(t) € Xo(t)) > f(Ci_a) > 1 —a . (13)

The > relation in (13) can be seen as a general implication of our “set-valued” ap-
proach to modelling of uncertain dynamics: Qur estimation of the system behavior
is an outer estimation in the sense that the whole class F of functions associated
with a set-valued function ' by means of (12) is taken into account. However, the
class F’ of functions we actually have in mind as possible candidates for fy might
be smaller than F. This wnterpretation problem can be formulated as follows: Let
¥(F’) denote the set-valued function F associated with a class F' of functions,
ie, F(t,x) = {f(t,x)|f € F'}. Moreover, denote by +'(F) the class of functions
associated with a set-valued function by means of (12). Then, we generally have
F' T o (v(F), but F' # 4 (v(F")). In the context of probabilistic interpretations
of fuzzy functions this problem appears in the following way: In passing from a
probability measure gy on C; to a model in form of a fuzzy function, i.e., a system
A’ of confidence regions, some information is lost. Proposition 2 only guarantees
the existence of a probability measure p compatible with the constraints imposed
by A’. However, since this measure need not be uniquely defined, it is generally not
possible to recover po from A’.

Example 1 Let 7/ :={f R > R|f=c,ce[-1,1]} be a paramelerized family of
funetions. Then, F = ~v(F') = [-1,1] and sin(t) € F = ~'(F), although sin(t) ¢
F'. Thus, —cos(t) is an element of the set X of possible solutions to the initial
value problem #(t) € F(x(t)), ©(0) = —1. However, the set of solutions to the
problem & € F' (the function & : [0,00) — R is an element of F'} and z(0) = —1 is
given by

X ={z:[0,00) 5> R|z(t)=ct—1,ce[-1,1]}.

Obviously, X' C X. Observe that X is compatible with the assumption of a uniform

probability measure pr on F in the probabilistic setting, whereas X' is associated with
a measure p' concentrated on F' C F.



Modelling and Simulation of Uncertain Dynamics 13

4.3. Properties of Reachable Sets

As already mentioned above, we would like to characterize the behavior of a
generalized or “fuzzy” dynamical system by means of reachable sets. We are now
going to consider some properties of these sets. We suppose F': [0,7] x R” — o™
to satisfy the following:

(a) F has nonempty, compact and convex values.

(b) I is continuous in ¢ (with respect to dg.)

(c) The following Lipschitz condition is satisfied:
dg(F(t,x), F(t,y)) < L|x—y|

for all x,y € R™ with a (global) Lipschitz constant L > 0.

(d) F' is bounded.

The following proposition follows directly from Corollary 7.1 and Corollary 7.2
in 12,
Proposition 3 Under assumptions (a), (b), and (c) the reachable sets X(t) C R"
are compact and connected.

In order to guarantee convexity of X (¢), additional assumptions have to be made
which are seldom satisfied, such as concavity of F 7, i.e.,

aF(t,x1) 4+ BF(t,x2) C F(t,ax; + Bxo) (14)

forall o, 0> 0, a+ 5 =1.

Since one is often interested in classical solutions, it is interesting to compare the
set of solutions (absolutely continuous functions satifying (7) almost everywhere)
with the set of classical solutions of (7), i.e., those functions x : [tg,T] — R" €
C'to, T satisfying (7). According to the following theorem, which is essentially
Theorem 7 in 7, the reachable sets associated with A’ resp. X’ are “almost identi-
cal.”

Theorem 2 Let F satisfy (a), (b), and (c). Then, the set X'(t) C R"™ reachable
by classical solutions at time t € [to, T] C R is a dense subset of the reachable set
X(%).

4.4. Properties of Fuzzy Reachable Sets

Proposition 4 Suppose the fuzzy function F:JxR"— & to be continuous in t
and to satisfy a Lipschitz condition

du(F(t,%), F(t,y)) < Lix—yl
on J xR™ with a Lipschitz constant L > 0. Consider the set X of solutions to (10).
The reachable set X (1) associated with X is a normal, upper semicontinuous, and
compactly supported fuzzy set for allt € [0,T]. If F' is also concave, then X (t) € £".
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Proof. Since F is normal and continuous on J x R™ a continuous selection
f:JxR® - R" exists such that f(¢,u) € [“ﬁ(t u)]l on J x R™ Furthermore,
[z 1 # 0. Thus, a solution x(t) to (11) with a = 1 exists (see basic existence

theorems), and this solution belongs to A;, which means that Xi(¢) # @ and )?(t)
is normal. The assumptions concerning F guarantee the reachable set )?(t) to
be contained in a bounded set B C R" for all ¢ € [0,7]. Since the elements
A €& are compact and convex, compactness of X (t) for all & € [0, 1] follows from
Corollary 7.2 in *2. The fact that X, () is convex under the additional assumption
(14) is Theorem 14 in 7. 0.

Proposition 4 shows that )?(t) has some nice properties under reasonable as-
sumptions. Nevertheless, this fuzzy set will generally have a rather complicated
structure. For example, since concavity of Fl, is seldom satisfied, the a-cuts of )?(t)
will usually not be convex. It should also be clear that we cannot expect )?(t)
to belong to special classes of fuzzy sets, such as Gaussian, although this may be
the case for the values F(t,x) and X,. Furthermore, already the approximation
of crisp sets Y C R”™ turned out to be complicated, especially for higher dimen-
sions. Due to this reason, we will only treat the (set-valued) problem of finding the
reachable sets X (¢) of problem (11) for different values of a. Given reachable sets
Xo, (), ..., Xa,, (1), the fuzzy set )?(t) is then approximated by means of

15y () = max{on |x € Xo, (1), 1 <k <m} .

In this context, it is interesting to know in which way X, (¢) depends on .

Lemma 2 Let A € F(R™) be some fuzzy set and suppose a, — « as n — oo for
some sequence (an) C [0,1]. Define A, := [ptz]a, and A = [pz]a. Then,

B(An, A) >0 as n— oo . (15)

Proof. Suppose (15) not to hold. Then, some § > 0 exists such that for each
n € N we can find j(n) > n and a, € Aj(,) satisfying p(a,, A) > J. Since A is
compactly supported, (a,) is bounded, i.e., it has a convergent subsequence (ay) C
B :=R"\ (A4 B;s(0)), where Bs(0) := {x € R | |x| < §}. Observe that B is closed,
and recall that p17(an) > aj(n) for n € N. Thus, we have b := limg_, o, ax € B and
p5(b) > a, which is a contradiction. [OI.

Lemma 3 Consider a fuzzy set A with membership function pz : R™ — [0, 1] such
that

pi(x) <1=Vi>03dyeR" : |x—y|<dApzly) > pzi(x) (16)
for all x € supp(ﬁ). Now, consider some sequence (o) C [0,1], ap = o € [0,1].
Let Cp := [piala, and C = [pale. Then dg(Cp,C) = 0 as n = oo.
Proof. p(C,,C) = 0 follows from Lemma 2. For x € C' and ¢ > 0 some value
y € R™ exists such that [x —y| < § and pz(y) > pz(x) > . Thus, since a, = a,
we have y € ), for almost all n € N. Now, suppose §(C,Cy) 4 0. Then, some



Modelling and Simulation of Uncertain Dynamics 15

d > 0 exists such that for all n € N we can find j(n) > n and x, € C satisfying
p(Xn, Cj(n)) > d. Since C' is compact, (x,) has a convergent subsequence (x) with
xp — x € C', which contradicts the fact that p(x, C,) = 0. Therefore, 8(C,Cy,) — 0
and hence dy(Cp,C) = 0 as n — oco. 0.

Remark 2 Property (16) is satisfied if py is continuous on R" and differentiable
on B :=supp(A) \ {x € R"| pi(x) =1}, and grad pz(x) # 0 on B.

Proof.  Since pz is continuous, B is open. Now, suppose (16) does not hold
for x € B, i.e. some § > 0 exists such that Bs(x) C B and pz(x) > pz(y) for all
y € Bs(x). But in this case x is a local maximum of y ; in contrast to the assumption
that grad pz(x) #0. O.

Proposition 5 Consider problem (10) and let Fy be upper semicontinuous in x
and |Fa(t,x)| < m(t) on J x R™ with m(t) integrable. Then, the function

G:10,1] = 25"\ {0}, a — X, (1)

15 upper semicontinuous for allt € J.

Proof. From Lemma 2 follows that

Bllrg, o [tz,]a) = 0 and B(Fo, (¢,x), Fult,x)) — 0

for all (¢,x) € J x R™ as a; — a. Since [pg ]\ and [“ﬁ(t x)]>\ are also nonempty,
closed, and convex for all A € [0, 1], the proposition follows from the corollary to

Lemma 2 in 7. O.

Proposition 6 Consider problem (10) and suppose the fuzzy sets Xy and ﬁ(t,x) to
satisfy (16). Furthermore, let Fy, be continuous int and satisfy a Lipschitz condition

du(F(t,%), Ft,y)) < k(t)x—yl, k(t)e L.

Then, the function
G:[0,1] = 25"\ {0}, a = X, (1)

1s continuous for eacht € J.

Proof. From Lemma 3 follows that [z ]o, =[5, ]o and Fo, — Fo as a; — a.
Since [pg ]x and [“ﬁ(t x)]>\ are also nonempty and closed for each A € [0, 1], the

proposition follows from Theorem 9 in 7. .

5. Implementation and Example

Since it is generally not possible to find analytically the reachable sets associated
with a generalized or fuzzy initial value problem, we have investigated methods
for finding numerical approximations of these sets. In this section, we restrict
ourselves to a brief description of the basic ideas and a simple example illustrating
this approach.

Principally, the numerical methods are based on two kinds of discretization. The
time interval [0, 7] is replaced by a grid 0 = tg < < ... < iy = T with stepsize
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Figure 1: The a-cuts Xa(t) (o = 0.7 (left), @ = 0.9 (right), t € {0,0.1,...,5}) of the
reachable fuzzy sets X (¢).

At=T/N =t;—t;_1 (i =1,...,N). A simple first order discretization of (7) is
then given by

Yit+1 Yi
THL T iy 17
o € Pty (17)

Based on (17) the following generalized Euler scheme can be defined:

Yitipr) = () y+ AP, Y (), Y(0):= X, . (18)
yEY (t:)

Since the sets Y (¢;) may have very complicated structures, it is generally not possible
to represent them exactly. Thus, in addition to a discretization with regard to time,
we have to perform a second approximation in the form of a discretization of 28",
For this purpose, consider a class A C 28" of sets which can be represented by
means of a certain finite data structure. Denote by A(Y) € A the approximation
of aset Y C R™. We can then define the following approximation of (18):

Z(tip) = A| | 2+ ALAFEWL2) |, 2(0) == A(Xo) - (19)

€7 (t5)

The implementation of our method is based on the iteration scheme (19). The
class A used in (19) for approximating sets was implemented as different classes
of geometrical bodies, such as convex hulls or more general classes including non-
convex sets. Under certain conditions, approximations Z(#) of reachable sets X ()
can be found with any degree of accuracy for all ¢ € [0, T].

Consider the following example as an illustration of our approach. This exam-
ple combines the methods for modelling uncertain functional relationships with the
simulation methods discussed in this paper. The behavior of a two-dimensional (au-
tonomous) system was charcterized by 25 linguistic rules of the form “If x is small
and y is small then z is large and y is small.” The set of five linguistic variables
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used in this example is modelled by Gaussian membership functions. We associate
a fuzzy function F with this set of rules based on the method presented in Sec-
tion 2. This function F then serves as the right hand side of our fuzzy initial value
problem. The information that the initial system state is approximately (3/2,3/2)
is modelled as a “fuzzy circle” with center (3/2,3/2). The a-sections of some fuzzy
reachable sets characterizing the behavior of this system are shown in Figure 1 for
different values of a. The set of all a-sections of the reachable sets )?(t) forms a
“funnel” bounding the true but unknown system trajectory with a certain proba-
bility.

6. Related Methods

Contributions to modelling and simulation of uncertain dynamics have already
been made from different directions. Next to well-known probabilistic methods, such
as stochastic differential equations, approaches based on “alternative” representa-
tions of uncertainty have been considered. Particularly, corresponding methods
can be found in the research fields of qualitative reasoning and the theory of fuzzy
sets. This section should serve as a brief overview of such approaches. A detailed
discussion and comparison of different methods is beyond the scope of this paper.

The first qualitative simulation algorithm has been proposed by Kuipers 3. This
algorithm derives a set of qualitative system behaviors compatible with a differential
equation, the right hand side of which 1s restricted by a set of algebraic, derivative,
and monotonicity constraints. Similar methods have been proposed in 2938, How-
ever, these approaches often produce “spurious” system behaviors. A main reason
for imprecise predictions is the “merging” of different (quantitative) system behav-
iors, a general problem of approaches based on a discretization of the state space.
Such problems lead to the incorporation of numerical information 6. Moreover, so-

8,29:42 with continuous state space have been

called semi-quantitative approaches
considered. These methods make use of interval functions for modelling uncertain
functional relationships. However, the corresponding numerical methods generally
produce very inaccurate predictions of the system behavior 2. In connection with
qualitative reasoning, we should also mention approaches to modelling and simula-

10,11 Particularly,

tion based on other methodologies, such as inductive reasoning
this last approach is interesting from a modelling point of view: A model is not
defined explicitely, but infered implictely based on a set of observations. In a cer-
tain sense, this “data-driven” method can be seen as the opposite of model-based
approaches.

It is interesting to compare our approach with a special type of fuzzy differential
equations proposed in 292737 These approaches to solving differential equations
with “fuzzy” right hand side are principally based on the “fuzzification” of the
differential operator. The definition of this operator makes use of a generalization
of the so-called Hukuhara difference of sets X, Y C R™ A fuzzy set 7 C F(R™) is
called the H-difference of X and 17, denoted X — 17, ifX =Y+ 7. Here, + 1s the

usual addition of fuzzy sets. A fuzzy set [ (to) is defined to be the derivative of a
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fuzzy function F at tg if the limits

i Flo 80 = Flio) - Fito) = Flto = A1

At 20 At At /0 At

(20)

exist and are equal to F’(to). A solution to a differential equation based on this kind
of derivative is thought of as a single trajectory in the “state space” F(R™). That
is, 1t 18 interpreted as one single object, whereas our interpretation of solutions to
fuzzy initial value problems was that of a (fuzzy) set of “ordinary” functions. Seen
from this perspective, (20) may lead to results which are not intuitive. Consider
the (crisp) problem & = —z, #(0) € [—1, 1] with an unknown initial system state
as an example. Since x(t) = a exp(—t) is the general solution of the initial value
problem # = —z, 2(0) = a, and a is restricted to values within the interval [—1, 1],
we should expect to obtain the solution z(t) € [— exp(—t), exp(—t)]. However, the
fuzzy function (which is actually a set-valued function) solving this initial value
problem in the sense of (20) is ﬁ(t) = [—exp(t),exp(t)]. Particularly, we have

diam(F(t)) — oo instead of diam(F(¢)) = 0 as t — oo.

7. Conclusions

In this paper, we have presented a method for modelling and simulation of uncer-
tain dynamical systems. This approach is motivated by applications in knowledge-
based systems. However, since uncertainty and incomplete knowledge is an inher-
ent characteristic of modelling dynamical systems, many other applications can be
found. Particularly, this method is attractive as a methodology for modelling and
simulation in the so-called “soft sciences.”

It should be noted that the methods for modelling fuzzy functions and for the
simulation of “fuzzy” dynamical systems are principally independent. Of course,
the simulation method can use any kind of (reasonable) fuzzy function, regardless
of its origination. Particularly, the right hand side can be defined as a combination
of precise and fuzzy functions. Based on other interpretations of the fuzzy systems
discussed in Section 2 it is also possible to derive other fuzzy functions 2324, Par-
ticularly, such a system need not be interpreted as a linguistic model. With regard
to the probabilistic interpretation of fuzzy functions presented in Section 4, a set
of fuzzy rules can simply be seen as a set of input-output pairs (xk,?k). Then, the
fuzzy set 17;@ can be interpreted as a system of confidence regions for the unknown
value fy(x;). In this case, the inference procedure realized by an additive fuzzy
system 1s nothing but an “interpolation of confidence regions.”

According to our opinion, the clear semantical basis and the precision of the pre-
dictions are advantages of the simulation method compared with other approaches.
The price for this result is an increased complexity, which is principally caused by
the problem of handling complex approximations of reachable sets in n-dimensional
space. However, the general algorithm based on iteration scheme (19) can be sim-
plified for special classes of systems 2%2°. The identification of such structures and
the parallelization of the simulation methods are central aspects of future research.
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