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Abstract. The idea of using the Choquet integral as an aggregation op-
erator in machine learning has gained increasing attention in recent years,
and a number of corresponding methods have already been proposed.
Complementing these contributions from a more theoretical perspective,
this paper addresses the following question: What is the VC dimension
of the (discrete) Choquet integral when being used as a binary classi-
fier? The VC dimension is a key notion in statistical learning theory and
plays an important role in estimating the generalization performance of
a learning method. Although we cannot answer the above question ex-
actly, we provide a first interesting result in the form of (relatively tight)
lower and upper bounds.

1 Introduction

While being widely used and well-known as a flexible aggregation operator in
different research fields and application areas, such as multiple criteria decision
making [1–3], the Choquet integral is much less common in machine learning so
far. Nevertheless, the interest in using the Choquet integral as a mathematical
tool in machine learning is increasing, and several papers on its use for problems
like classification and regression have been published recently [4–8].

Indeed, the Choquet integral exhibits a number of properties that appear to
be appealing from a machine learning point of view. For example, the authors
in [9] especially advocate the Choquet integral as a tool for learning monotone
nonlinear models. They specifically emphasize the fact that, by its very nature
as an integral, the Choquet integral is a monotone operator and hence assures a
monotone behavior in each individual attribute; this property is often desirable
and sometimes even requested by the application [10–12]. At the same time, how-
ever, the Choquet integral also allows for modeling interactions between different
attributes. Moreover, thanks to the existence of natural measures for quantify-
ing the influence of individual and the interaction between groups of features, it
provides important insights into the model, thereby supporting interpretability.

The use of the Choquet integral in the context of machine learning begs an
interesting theoretical question, namely the question concerning its “expressive
power” or, say, “flexibility” for modeling functional dependencies (in regression)
and decision boundaries (in classification). This question is closely connected
to the notion of the capacity of a model class (hypothesis space) in machine



learning, which is a key notion in statistical learning theory and plays an impor-
tant role in estimating the generalization performance of a learning method [13].
An important measure of the capacity of a model class is the so-called Vapnik–
Chervonenkis (VC) dimension. In this paper, we therefore address the following
question: What is the VC dimension of the (discrete) Choquet integral when be-
ing used as a binary classifier? Although we cannot answer this question exactly,
we provide a first interesting result in the form of (relatively tight) lower and
upper bounds.

The rest of this paper is organized as follows. In the next section, we briefly
recall the basic definition of the (discrete) Choquet integral and some related
notions. In Section 3, we sketch the idea of using the Choquet integral for mod-
eling decision boundaries in the setting of binary classification. In Section 4, we
introduce the definition of VC dimension. Our main result in then presented in
Section 5, prior to concluding the paper with a few remarks in Section 6.

2 The Discrete Choquet Integral

To make the paper self-contained and, moreover, to recall the basic mathematical
notation to be used later on, this section starts with a brief introduction to the
(discrete) Choquet integral.

2.1 Non-Additive Measures

Let X = {x1, . . . , xm} be a finite set and µ(·) a measure 2X → [0, 1]. For each
A ⊆ X, we interpret µ(A) as the weight or, say, the importance of the set of
elements A. A standard assumption on a measure µ(·), which is, for example,
at the core of probability theory, is additivity: µ(A ∪ B) = µ(A) + µ(B) for all
A,B ⊆ X such that A ∩B = ∅. Unfortunately, additive measures cannot model
any kind of interaction between elements: Extending a set of elements A by a set
of elements B always increases the weight µ(A) by the weight µ(B), regardless
of A and B.

Non-additive measures, also called capacities or fuzzy measures, are simply
normalized and monotone [14]:

µ(∅) = 0, µ(X) = 1 and µ(A) ≤ µ(B) for all A ⊆ B ⊆ X . (1)

A useful representation of non-additive measures, that we shall explore later on,
is in terms of the Möbius transform:

µ(B) =
∑
A⊆B

mµ(A) (2)

for all B ⊆ X, where the Möbius transform mµ of the measure µ is defined as
follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) . (3)



The value mµ(A) can be interpreted as the weight that is exclusively allocated
to A, instead of being indirectly connected with A through the interaction with
other subsets.

A measure µ is said to be k-order additive, or simply k-additive, if k is the
smallest integer such that mµ(A) = 0 for all A ⊆ X with |A| > k. This property
is interesting for several reasons. First, as can be seen from (2), it means that
a measure µ can formally be specified by significantly fewer than 2m values,
which are needed in the general case. Second, k-additivity is also interesting
from a semantic point of view: This property simply means that there are no
interaction effects between subsets A,B ⊆ X whose cardinality exceeds k.

2.2 The Choquet Integral

So far, the criteria xi ∈ X were simply considered as binary features, which
are either present or absent. Mathematically, µ(A) can thus also be seen as an
integral of the indicator function of A, namely the function fA given by fA(x) = 1
if x ∈ A and = 0 otherwise. Now, suppose that f : X → R+ is any non-negative
function that assigns a value to each criterion xi. An important question, then,
is how to aggregate the evaluations of individual criteria, i.e., the values f(xi),
into an overall evaluation, in which the criteria are properly weighted according
to the measure µ. Mathematically, this overall evaluation can be considered as
an integral Cµ(f) of the function f with respect to the measure µ.

Indeed, if µ is an additive measure, the standard integral just corresponds to
the weighted mean

Cµ(f) =
m∑
i=1

wi · f(xi) =
m∑
i=1

µ({xi}) · f(xi) , (4)

which is a natural aggregation operator in this case. A non-trivial question, how-
ever, is how to generalize (4) in the case where µ is non-additive. This question is
answered by the Choquet integral, which, in the discrete case, is formally defined
as follows:

Cµ(f) =
m∑
i=1

(
f(x(i))− f(x(i−1))

)
· µ(A(i)) ,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f(x(1)) ≤ f(x(2)) ≤ . . . ≤
f(x(m)) (and f(x(0)) = 0 by definition), and A(i) = {x(i), . . . , x(m)}. In terms of
the Möbius transform m = mµ of µ, the Choquet integral can also be expressed



as follows:

Cµ(f) =
m∑
i=1

(
f(x(i))− f(x(i−1))

)
· µ(A(i))

=
m∑
i=1

f(x(i)) · (µ(A(i))− µ(A(i+1)))

=
m∑
i=1

f(x(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆X

m(T )×min
i∈T

f(xi) (5)

where T(i) =
{
S ∪ {(i)} |S ⊂ {(i+ 1), . . . , (m)}

}
.

3 The Choquet Integral as a Tool for Classification

As mentioned earlier, the Choquet integral has been used as a tool for different
types of machine learning problems. In the following, we focus on the setting
of binary classification, where the goal is to predict the value of an output (re-
sponse) variable y ∈ Y = {0, 1} for a given instance

x = (x1, . . . , xm) ∈ X = X1 ×X2 × . . .×Xm

represented in terms of a feature vector. More specifically, the goal is to learn a
classifier L : X → Y from a given set of (i.i.d.) training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n (6)

so as to minimize the risk

R(L) =
∫
X×Y

`(L(x), y) dPXY (x, y) , (7)

where `(·) is a loss function (e.g., the simple 0/1 loss given by `(ŷ, y) = 0 if ŷ = y
and = 1 if ŷ 6= y).

In this context, the predictor variables (features) play the role of the criteria
in decision making. The Choquet integral can be used in order to model nonlinear
dependencies between these variables and the response, thus taking interactions
between predictors into account while preserving monotonicity in each individual
feature. This can be done in different ways. In [15], for example, the authors
propose a model that can be seen as an extension of logistic regression. The
basic idea of this approach is to model the log-odds ratio between the positive
(y = 1) and the negative (y = 0) class as a function of the Choquet integral of
the input attributes. This leads to expressing the (posterior) probability of the
positive class (and hence of the negative class) as follows:

P(y = 1 |x) =
(

1 + exp
(
− γ (Cµ(x)− β)

))−1
, (8)



where Cµ(x) is the Choquet integral (with respect to the measure µ) of the
function

fx : {c1, . . . , cm} → [0, 1] (9)

that maps each attribute ci to a normalized feature value xi = fx(ci) ∈ [0, 1];
β, γ ∈ R are constants.

The (machine) learning problem itself can then be stated as follows: Given a
set of training data (6), find a fuzzy measure µ and parameters β, γ, such that
the corresponding model (8) generalizes well in terms of the risk (7).

4 The VC Dimension

In machine learning, it is well-known that the generalization performance of a
learning algorithm strongly depends on the capacity1 or, say, flexibility of the
underlying model class H, also called the hypothesis space. In fact, if H is not
flexible enough, the true underlying dependency between predictor variables and
response cannot be captured in a sufficiently accurate way; correspondingly, the
training data will typically be “under-fitted”. For example, if two classes are
separated by a quadratic discriminant function, it is not enough to fit only a
linear decision boundary (i.e., to define H as the set of all linear discriminant
functions). On the other hand, if the flexibility of H is too high, there is a strong
danger of “over-fitting” the training data. The notion of “over-fitting” refers
to situations in which the learned model fails to produce good predictions for
instances not seen so far, although it is able to reproduce the training data quite
accurately.

The question of how to choose a model class H having the right capacity
can be approached in different ways, both theoretically and empirically. From a
theoretical point of view, it is convenient to have a measure that allows one to
quantify the capacity of a model class. One of the most important measures of
that kind, which is often used to estimate the generalization performance of a
learning algorithm, is the so-called Vapnik–Chervonenkis (VC) dimension [13].

Definition 1. The VC dimension of a model class H ⊂ 2X is defined as the
maximum number of instances x ∈ X that can be shattered:

V C(H) = max {|D| | D ⊆ X and D can be shattered by H}

A set of instances D can be shattered by H if, for each subset P ⊆ D, there is a
model H ∈ H such that H(x) = 1 for all x ∈ P and H(x) = 0 for all x ∈ D\P.

In light of the aforesaid, advocating the Choquet integral as a novel tool for
machine learning immediately begs the interesting theoretical question regarding
the capacity of the corresponding model class. In fact, since the Choquet integral
in its general form or, more specifically, the underlying fuzzy measure µ (not
restricted to the k-additive case) has a rather large number of parameters, one
1 Not to be confused with the use of same term for a non-additive measure.



may expect it to be quite flexible and, therefore, to have a high capacity. On
the other hand, the parameters cannot be chosen freely. Instead, they are highly
constrained due to the monotonicity properties that need to be satisfied by µ.

5 The VC Dimension of the Choquet Integral

We consider a setting in which the Choquet integral is used to classify instances
represented in the form of m-dimensional vectors x = (x1, x2, . . . , xm) ∈ Rm+ ,
where xi = f(ci) can be thought of as the evaluation of the criterion ci. More
specifically, we consider the model class H consisting of all threshold classifiers
of the form

x = (x1, x2, . . . , xm) 7→ I
(
Cµ(x) > β

)
, (10)

where I maps truth degrees {false, true} to {0, 1} as usual, µ is a fuzzy measure,
Cµ(x) is the Choquet integral of the (normalized) attribute values x1, x2, . . . , xm,
and β ∈ [0, 1] is a threshold value. Note that the class H is parametrized by µ
and β. In terms of the VC dimension, the model (10) is equivalent to most other
models based on the Choquet integral that have been used in the literature so
far, including (8).

Theorem 1. For the model class H as defined above, V C(H) = Ω(2m/
√
m).

That is, the VC dimension of H grows asymptotically at least as fast as 2m/
√
m.

Proof. In order to prove this claim, we construct a sufficiently large data set D
and show that, despite its size, it can be shattered by H. In this construction,
we restrict ourselves to binary attribute values, which means that xi ∈ {0, 1} for
all 1 ≤ i ≤ m. Consequently, each instance x = (x1, . . . , xm) ∈ {0, 1}m can be
identified with a subset of indices Sx ⊆ X = {1, 2, . . . ,m}, namely its indicator
set Sx = {i |xi = 1}.

In combinatorics, an antichain of X = {1, 2, . . . ,m} is a family of subsets
A ⊂ 2X such that, for all A,B ∈ A, neither A ⊆ B nor B ⊆ A. An interesting
question related to the notion of an antichain concerns its potential size, that
is, the number of subsets in A. This number is obviously restricted due to the
above non-inclusion constraint on pairs of subsets. An answer to this question is
given by a well-known result of Sperner [16], who showed that this number is(

m
bm/2c

)
. (11)

Moreover, Sperner has shown that the corresponding antichain A is given by the
family of all q-subsets of X with q = bm/2c, that is, all subsets A ⊂ X such that
|A| = q.

Now, we define the data set D in terms of the collection of all instances
x = (x1, . . . , xm) ∈ {0, 1}m whose indicator set Sx is a q-subset of X. Recall
that, from a decision making perspective, each attribute can be interpreted as
a criterion. Thus, each instance in our data set satisfies exactly q of the m



criteria, and there is not a single “dominance” relation in the sense that the set
of criteria satisfied by one instance is a superset of those satisfied by another
instance. Intuitively, the instances in D are therefore maximally incomparable.
This is precisely the property we are now going to exploit in order to show that
D can be shattered by H.

Recall that a set of instances D can be shattered by a model class H if, for
each subset P ⊆ D, there is a model H ∈ H such that H(x) = 1 for all x ∈ P
and H(x) = 0 for all x ∈ D \ P. Now, take any such subset P from our data
set D as constructed above, and recall that the Choquet integral in (10) can be
written as

Cµ(x) =
∑
T⊆C

m(T )× fT (x) ,

where fT (x) = 1 if T ⊆ Sx and fT (x) = 0 otherwise. We define the values
m(T ), T ⊆ C, of the Möbius transform as follows:

m(T ) =
{
|P|−1 if T = Sx for some x ∈ P

0 otherwise .

Obviously, this definition of the Möbius transform is feasible and yields a proper
fuzzy measure µ: The sum of masses is equal to 1, and since all masses are non-
negative, monotonicity is guaranteed right away. Moreover, from the construction
of m and the fact that, for each pair x 6= x′ ∈ D, neither Sx ⊆ Sx′ nor Sx′ ⊆ Sx,
the Choquet integral is obviously given as follows:

Cµ =
{
|P|−1 if x ∈ P

0 otherwise .

Thus with β = 1/(2|P|), the classifier (10) behaves exactly as required, that is,
it classifies all x ∈ P as positive and all x 6∈ P as negative.

Noting that the special case where P = ∅ is handled correctly by the Möbius
transform m such that m(C) = 1 and m(T ) = 0 for all T ( C (and any
threshold β > 0), we can conclude that the data set D can be shattered by H.
Consequently, the VC dimension of H is at least the size of D, whence (11) is a
lower bound of V C(H).

For the asymptotic analysis, we make use of Sterling’s approximation of large
factorials (and hence binomial coefficients). For the sequence (b1, b2, . . .) of the
so-called central binomial coefficients bn, it is known that

bn =
(

2n
n

)
= (2n)!

(n!)2 ≥
1
2

4n√
π · n

. (12)

Thus, the fact that V C(H) grows asymptotically at least as fast as 2m/
√
m

immediately follows by setting n = m/2 and ignoring constant terms.

Remark 1. Recall the expression (5) of the Choquet integral in terms of its
Möbius transform. This expression shows that the Choquet integral corresponds



to a linear function, albeit a constrained one, in the feature space spanned by
the set of features {fT |T ⊆ {1, 2, . . . ,m}}, where each feature is a min-term

fT = fT (x1, . . . , xm) = min
i∈T

xi . (13)

The dimensionality of this feature space is 2m − 1. Thus, it follows immediately
that V C(H) ≤ 2m (the class of linear hyperplanes in Rn has VC-dimension n+1).
Together with the lower bound 2m/

√
m, which is not much smaller (despite the

restriction to binary attribute vectors), we thus dispose of a relatively tight
approximation of V C(H).

Remark 2. Interestingly, the proof of Theorem 1 does not exploit the full non-
additivity of the Choquet integral. In fact, the measure we constructed there is
bm/2c-additive, since m(T ) = 0 for all T ⊆ C with |T | > bm/2c. Consequently,
the estimation of the VC-dimension still applies to the restricted case of k-
additive measures, provided k ≥ bm/2c. For smaller k, it is not difficult to adapt
the proof so as to show that

V C(H) ≥
(
m
k

)
. (14)

6 Concluding Remarks

Our result shows that the VC dimension of the Choquet integral, when being
used as a threshold classifier, grows almost exponentially with the number of
attributes. Due to the strong monotonicity constraints on the underlying fuzzy
measure, this level of flexibility was not necessarily expected. Anyway, it suggests
that learning with the Choquet integral may come with the danger of over-fitting
the training data.

On the other hand, one should keep in mind that the notion of VC dimension
is based on a kind of worst case scenario. In fact, there are many examples of
machine learning algorithms with a very high (or even infinite) VC dimension
that practically perform quite well, at least when being combined with suitable
methods for regularization. Thus, it might be of interest to complement our
result with an empirical study, for example along the line of [17]. Moreover, our
result also shows that a restriction to k-additive measures provides a suitable
means for capacity control. An interesting question in this regard concerns the
choice of a proper k providing the right level of flexibility for the data at hand.

Theoretically, it might be interesting to further tighten our bound. Indeed,
since our result also holds for the restriction to binary features, one may expect
that it is actually not as tight as it could be. The question whether or not this
is indeed the case will be addressed in future work.
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