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Abstract

The learning of predictive models that guarantee monotonicity in the
input variables has received increasing attention in machine learning in
recent years. By trend, the difficulty of ensuring monotonicity increases
with the flexibility or, say, nonlinearity of a model. In this paper, we
advocate the so-called Choquet integral as a tool for learning monotone
nonlinear models. While being widely used as a flexible aggregation op-
erator in different fields, such as multiple criteria decision making, the
Choquet integral is much less known in machine learning so far. Apart
from combining monotonicity and flexibility in a mathematically sound
and elegant manner, the Choquet integral has additional features making
it attractive from a machine learning point of view. Notably, it offers mea-
sures for quantifying the importance of individual predictor variables and
the interaction between groups of variables. Analyzing the Choquet inte-
gral from a classification perspective, we provide upper and lower bounds
on its VC-dimension. Moreover, as a methodological contribution, we pro-
pose a generalization of logistic regression. The basic idea of our approach,
referred to as choquistic regression, is to replace the linear function of pre-
dictor variables, which is commonly used in logistic regression to model
the log odds of the positive class, by the Choquet integral. First ex-
perimental results are quite promising and suggest that the combination
of monotonicity and flexibility offered by the Choquet integral facilitates
strong performance in practical applications.



1 Introduction

A proper specification of the type of dependency between a set of predictor
(input) variables X1, . . . , Xm and the target (output) variable Y is an important
prerequisite for successful model induction. The specification of a corresponding
hypothesis space imposes an inductive bias that, amongst others, allows for the
incorporation of background knowledge in the learning process. An important
type of background knowledge is monotonicity : Everything else being equal, the
increase (decrease) of a certain input variable Xi can only produce an increase
in the output variable Y (e.g., a real number in regression, a class in ordered
classification, or the probability of the positive class in binary classification).
Adherence to this kind of background knowledge may not only be beneficial for
model induction, but is often even considered as a hard constraint. For example,
no medical doctor will accept a model in which the probability of cancer is not
monotonically increasing in tobacco consumption.

The simplest type of dependency is a linear relationship:

Y =

m∑
i=1

αiXi + ε , (1)

where α1, . . . , αm are real coefficients and ε is an error term. Monotonicity can
be guaranteed quite easily for (1), since monotonicity in Xi is equivalent to the
constraint αi ≥ 0. Another important advantage of (1) is its comprehensibility.
In particular, the direction and strength of influence of each predictor Xi are
directly reflected by the corresponding coefficient αi.

Perhaps the sole disadvantage of a linear model is its inflexibility and, coming
along with this, the supposed absence of any interaction between the variables:
The effect of an increase of Xi is always the same, namely ∂Y/∂Xi = αi,
regardless of the values of all other attributes. In many real applications, this
assumption is not tenable. Instead, more complex, nonlinear models are needed
to properly capture the dependencies between the inputs Xi and the output Y .

An increased flexibility, however, typically comes at the price of a loss in terms
of the two previous criteria: comprehensibility is hampered, and monotonicity
is more difficult to assure. In fact, as soon as an interaction between attributes
is allowed, the influence of an increase in Xi may depend on all other variables,
too. As a simple example, consider the extension of (1) by the addition of
interaction terms, a model which is often used in statistics:

Y =

m∑
i=1

αiXi +
∑

1≤i<j≤m

αijXiXj + ε . (2)

For this model, ∂Y/∂Xi is given by αi+
∑
j 6=i αijXj and depends on the values of

all other attributes, which means that, depending on the context as specified by
these values, the monotonicity condition may change from one case to another.
Consequently, it is difficult to find simple global constraints on the coefficients
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that assure monotonicity. For example, assuming that all attributes are non-
negative, it is clear that αi ≥ 0 and αij ≥ 0 for all 1 ≤ i ≤ j ≤ m will
imply monotonicity. While being sufficient, however, these constraints are non-
necessary conditions, and may therefore impose restrictions on the model space
that are more far-ranging than desired; besides, negative interactions cannot be
modeled in this way. Quite similar problems occur for commonly used nonlinear
methods in machine learning, such as neural networks and kernel machines.

In this paper, we advocate the use of the (discrete) Choquet integral as a tool
that is interesting in this regard. As will be argued in more detail later on,
the Choquet integral combines the aforementioned properties in a quite conve-
nient and mathematically elegant way: By its very nature as an integral, it is
a monotone operator, while at the same time allowing for interactions between
attributes. Moreover, it disposes of natural measures for quantifying the impor-
tance of individual and the interaction within groups of features, which provide
important insights into the model and thereby support interpretability.

The rest of this paper, parts of which have already been presented in [14, 25],
is organized as follows. In the next section, we give a brief overview of related
work. In Section 3, we recall the basic definition of the Choquet integral and
some related notions. In Section 4, we analyze the flexibility of binary classifiers
based on the Choquet integral in terms of the notion of VC dimension. In Section
5, we propose a generalization of logistic regression for binary classification, in
which the Choquet integral is used to model the log odds of the positive class. In
Section 6, we elaborate on complexity issues and propose a method for finding a
suitable level of (non-)additivity for the Choquet integral in a concrete learning
task. Experimental results are presented in Section 7, prior to concluding the
paper with a few remarks in Section 8.

2 Related Work

As already mentioned, the problem of monotone classification has received in-
creasing attention in the machine learning community in recent years,1 despite
having been introduced in the literature much earlier [5]. Meanwhile, several
machine learning algorithms have been modified so as to guarantee monotonic-
ity in attributes, including nearest neighbor classification [13], neural networks
[34], decision tree learning [4, 33], rule induction [11], as well as methods based
on isotonic separation [7] and piecewise linear models [10].

Instead of modifying learning algorithms so as to guarantee monotone models,
another idea is to modify the training data. To this end, data pre-processing
methods such as re-labeling techniques have been developed. Such methods
seek to repair inconsistencies in the training data, so that (standard) classifiers
learned on that data will tend to be monotone (although, in general, they still

1For example, a workshop on “Learning Monotone Models from Data” was organized at
ECMLPKDD 2009 in Bled, Slovenia.
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do not guarantee this property) [15, 27].

Although the Choquet integral has been widely applied as an aggregation oper-
ator in multiple criteria decision making [20, 16, 38], it has been used much less
in the field of machine learning so far. There are, however, a few notable excep-
tions. First, the problem of extracting a Choquet integral (or, more precisely,
the non-additive measure on which it is defined) in a data-driven way has been
addressed in the literature [2]. Essentially, this is a parameter identification
problem, which is commonly formalized as a constraint optimization problem,
for example using the sum of squared errors as an objective function [39, 19].
To this end, [31] proposed an approach based on the use of quadratic forms,
while an alternative heuristic, gradient-based method called HLMS (Heuristic
Least Mean Squares) was introduced in [17]. In [1, 3], the Choquet integral is
used in the context of ordinal classification. Besides, the Choquet integral has
been used as an aggregation operator in the context of ensemble learning, i.e.,
for combining the predictions of different classifiers [21].

3 The Discrete Choquet Integral

In this section, we give a brief introduction to the (discrete) Choquet integral,
which, to the best of our knowledge, is not widely known in the field of machine
learning so far. Since the Choquet integral can be seen as a generalization of
the standard (Lebesque) integral to the case of non-additive measures, we start
with a reminder of this type of measure.

3.1 Non-Additive Measures

Let C = {c1, . . . , cm} be a finite set and µ : 2C → [0, 1] a measure on this set.
For each A ⊆ C, we interpret µ(A) as the weight or, say, the importance of the
set of elements A. As an illustration, one may think of C as a set of criteria
(binary features) relevant for a job, like “speaking French” and “programming
Java”, and of µ(A) as the evaluation of a candidate satisfying criteria A (and not
satisfying C\A). The term “criterion” is indeed often used in the decision making
literature, where it suggests a monotone “the higher the better” influence. In
the context of machine learning, to which we shall turn later on, criteria are
playing the role of features (input attributes).

A standard assumption on a measure µ(·), which is, for example, at the core of
probability theory, is additivity: µ(A∪B) = µ(A) +µ(B) for all A,B ⊆ C such
that A ∩ B = ∅. Unfortunately, additive measures cannot model any kind of
interaction between elements: Extending a set of elements A by a set of elements
B always increases the weight µ(A) by the weight µ(B), regardless of A and B.

Suppose, for example, that the elements of two sets A and B are complementary
in a certain sense. For instance, A = {French, Spanish} and B = {Java}
could be seen as complementary, since both language skills and programming
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skills are important for the job. Formally, this can be expressed in terms of
a positive interaction: µ(A ∪ B) > µ(A) + µ(B). In the extreme case, when
language skills and programming skills are indeed essential, µ(A ∪ B) can be
high although µ(A) = µ(B) = 0 (suggesting that a candidate lacking either
language or programming skills is completely unacceptable). Likewise, elements
can interact in a negative way: If two sets A and B are partly redundant or
competitive, then µ(A ∪ B) < µ(A) + µ(B). For example, A = {C, C#} and
B = {Java} might be seen as redundant, since one programming language does
in principle suffice.

The above considerations motivate the use of non-additive measures, also called
capacities or fuzzy measures, which are simply normalized and monotone [36]:

µ(∅) = 0, µ(C) = 1, and
µ(A) ≤ µ(B) for all A ⊆ B ⊆ C .

(3)

A useful representation of non-additive measures, that we shall explore later on
for learning Choquet integrals, is in terms of the Möbius transform:

µ(B) =
∑
A⊆B

mµ(A) (4)

for all B ⊆ C, where the Möbius transform mµ of the measure µ is defined as
follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) . (5)

The value mµ(A) can be interpreted as the weight that is exclusively allocated
to A, instead of being indirectly connected with A through the interaction with
other subsets.

A measure µ is said to be k-order additive, or simply k-additive, if k is the
smallest integer such that m(A) = 0 for all A ⊆ C with |A| > k. This property
is interesting for several reasons. First, as can be seen from (4), it means that a
measure µ can formally be specified by significantly fewer than 2m values, which
are needed in the general case. Second, k-additivity is also interesting from a
semantic point of view: As will become clear in the following, this property
simply means that there are no interaction effects between subsets A,B ⊆ C
whose cardinality exceeds k.

3.2 Importance of Criteria and Interaction

An additive (i.e., k-additive with k = 1) measure µ can be written as follows:

µ(A) =
∑
ci∈A

wi ,

with wi = µ({ci}) the weight of ci. Due to (3), these weights are non-negative
and such that

∑m
i=1 wi = 1. In this case, there is obviously no interaction
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between the criteria ci, i.e., the influence of a ci on the value of µ is independent
of the presence or absence of any other cj . Besides, the weight wi is a natural
quantification of the importance of ci.

Measuring the importance of a criterion ci becomes obviously more involved
when µ is non-additive. Besides, one may then also be interested in a measure of
interaction between the criteria, either pairwise or even of a higher order. In the
literature, measures of that kind have been proposed, both for the importance
of single as well as the interaction between several criteria.

Suppose to be given a fuzzy measure µ on C. In order to quantify the weight
of a single criterion ci, it is natural to look at the increase in importance due to
adding ci to another subset A ⊂ C, which comes down to comparing µ(A∪{ci})
and µ(A). While the difference between these two values is always equal to wi
in the additive case, it may depend on the subset A in the non-additive case.
The Shapley value, also called importance index of ci, therefore averages the
difference µ(A ∪ {ci})− µ(A) over all A ⊂ C:

ϕ(ci) =
∑

A⊆C\{ci}

1

m

(
m− 1
|A|

) (µ(A ∪ {ci})− µ(A)
)
. (6)

The Shapley value of µ is the vector ϕ(µ) = (ϕ(c1), . . . , ϕ(cm)). One can show
that 0 ≤ ϕ(ci) ≤ 1 and

∑m
i=1 ϕ(ci) = 1. Thus, ϕ(ci) is a measure of the relative

importance of ci. Obviously, ϕ(ci) = µ({ci}) if µ is additive.

The interaction index between criteria ci and cj , as proposed by [32], is defined
as follows:

Ii,j =
∑

A⊆C\{ci,cj}

(
µ(A ∪ {ci, cj})− µ(A ∪ {ci})− µ(A ∪ {cj}) + µ(A)

)
(m− 1)

(
m− 2
|A|

) .

This index ranges between −1 and 1 and indicates a positive (negative) interac-
tion between criteria ci and cj if Ii,j > 0 (Ii,j < 0). The interaction index can
also be expressed in terms of the Möbius transform:

Ii,j =
∑

K⊆C\{ci,cj}

1

|K|+ 1
m
(
{ci, cj} ∪K

)
.

Furthermore, as proposed by [18], the definition of interaction can be extended
to more than two criteria, i.e., to subsets T ⊆ C:

IT =

m−|T |∑
k=0

1

k + 1

∑
K⊆C\T,|K|=k

m
(
T ∪K

)
.
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3.3 The Choquet Integral

So far, the criteria ci were simply considered as binary features, which are either
present or absent. Mathematically, µ(A) can thus also be seen as an integral
of the indicator function of A, namely the function fA given by fA(c) = 1 if
c ∈ A and = 0 otherwise. Now, suppose that f : C → R+ is any non-negative
function that assigns a value to each criterion ci; for example, f(ci) might be the
degree to which a candidate satisfies criterion ci. An important question, then,
is how to aggregate the evaluations of individual criteria, i.e., the values f(ci),
into an overall evaluation, in which the criteria are properly weighted according
to the measure µ. Mathematically, this overall evaluation can be considered as
an integral Cµ(f) of the function f with respect to the measure µ.

Indeed, if µ is an additive measure, the standard integral just corresponds to
the weighted mean

Cµ(f) =

m∑
i=1

wi · f(ci) =

m∑
i=1

µ({ci}) · f(ci) , (7)

which is a natural aggregation operator in this case. A non-trivial question,
however, is how to generalize (7) in the case where µ is non-additive.

This question, namely how to define the integral of a function with respect
to a non-additive measure (not necessarily restricted to the discrete case), is
answered in a satisfactory way by the Choquet integral, which has first been
proposed for additive measures by [42] and later on for non-additive measures
by [8]. The point of departure of the Choquet integral is an alternative rep-
resentation of the “area” under the function f , which, in the additive case, is
a natural interpretation of the integral. Roughly speaking, this representation
decomposes the area in a “horizontal” instead of a “vertical” manner, thereby
making it amenable to a straightforward extension to the non-additive case.
More specifically, note that the weighted mean can be expressed as follows:

m∑
i=1

f(ci) · µ({ci}) =

m∑
i=1

(
f(c(i))− f(c(i−1))

)(
µ({c(i)}) + . . .+ µ({c(m)})

)
=

m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ
(
A(i)

)
,

where (·) is a permutation of {1, . . . ,m} such that 0 ≤ f(c(1)) ≤ f(c(2)) ≤ . . . ≤
f(c(m)) (and f(c(0)) = 0 by definition), and A(i) = {c(i), . . . , c(m)}; see Figure 1
as an illustration.

Now, the key difference between the left and right-hand side of the above ex-
pression is that, whereas the measure µ is only evaluated on single elements ci
on the left, it is evaluated on subsets of elements on the right. Thus, the right-
hand side suggests an immediate extension to the case of non-additive measures,
namely the Choquet integral, which, in the discrete case, is formally defined as
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Figure 1: Vertical (left) versus horizontal (right) integration. In the first case,
the height of a single bar, f(ci), is multiplied with its “width” (the weight
µ({ci})), and these products are added. In the second case, the height of
each horizontal section, f(c(i))− f(c(i−1)), is multiplied with the corresponding
“width” µ(A(i)).

follows:

Cµ(f) =

m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

In terms of the Möbius transform of µ, the Choquet integral can also be ex-
pressed as follows:

Cµ(f) =

m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

=

m∑
i=1

f(c(i)) · (µ(A(i))− µ(A(i+1)))

=

m∑
i=1

f(c(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆C

m(T )×min
i∈T

f(ci) (8)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.

4 The VC Dimension of the Choquet Integral

Advocating the Choquet integral as a novel tool for machine learning imme-
diately begs an interesting theoretical question, namely the question regarding
the capacity of the corresponding model class. In fact, since the Choquet in-
tegral in its general form (not restricted to k-additive measures) has a rather
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large number of parameters, one may expect it to be quite flexible and, there-
fore, to have a high capacity. On the other hand, the parameters cannot be
chosen freely. Instead, they are highly constrained due to the properties of the
underlying fuzzy measure.

In any case, knowledge about the VC dimension of the Choquet integral (or,
more specifically, a binary classifier based on the Choquet integral as an un-
derlying aggregation function) is not only of theoretical but also of practical
relevance. In particular, it may help finding the right level of flexibility for the
data at hand. As mentioned earlier, because of its highly nonlinear nature, one
may expect the Choquet integral in its most general form comes with a danger
of overfitting the data. On the other hand, a restriction to k-additive measures
may provide a reasonable means for regularization. Both conjectures will be
confirmed in this section.

In what follows, we are going to analyze the capacity of the Choquet integral
in terms of the VC dimension [41]. To this end, we consider a setting in which
the Choquet integral is used to classify instances represented in the form of
m-dimensional vectors x = (x1, x2, . . . , xm) ∈ Rm+ , where xi = f(ci) can be
thought of as the evaluation of the criterion ci. More specifically, we consider
the model class H consisting of all threshold classifiers of the form

x = (x1, x2, . . . , xm) 7→ I
(
Cµ(x) > β

)
, (9)

where I maps truth degrees {false, true} to {0, 1} as usual, µ is a fuzzy measure,
Cµ(x) is the Choquet integral of the (normalized) attribute values x1, x2, . . . , xm,
and β ∈ [0, 1] is a threshold value (as will be seen below, (9) corresponds to the
“decision making” part of the choquistic regression model to be introduced in
the next section; since this part is responsible for the classification decision,
results on the VC dimension of H directly apply to choquistic regression, too).
Note that the class H is parametrized by µ and β.

Theorem 1 For the model class H as defined above, V C(H) = Ω(2m/
√
m).

That is, the VC dimension of H grows asymptotically at least as fast as 2m/
√
m.

Proof: In order to prove this claim, we construct a sufficiently large data set D
and show that, despite its size, it can be shattered by H. In this construction,
we restrict ourselves to binary attribute values, which means that xi ∈ {0, 1} for
all 1 ≤ i ≤ m. Consequently, each instance x = (x1, . . . , xm) ∈ {0, 1}m can be
identified with a subset of indices Sx ⊆ X = {1, 2, . . . ,m}, namely its indicator
set Sx = {i |xi = 1}.
In combinatorics, an antichain of X = {1, 2, . . . ,m} is a family of subsets A ⊂
2X such that, for all A,B ∈ A, neither A ⊆ B nor B ⊆ A. An interesting
question related to the notion of an antichain concerns its potential size, that
is, the number of subsets in A. This number is obviously restricted due to the
above non-inclusion constraint on pairs of subsets. An answer to this question
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is given by a well-known result of Sperner [35], who showed that this number is(
m
bm/2c

)
. (10)

Moreover, Sperner has shown that the corresponding antichain A is given by
the family of all q-subsets of X with q = bm/2c, that is, all subsets A ⊂ X such
that |A| = q.

Now, we define the data set D in terms of the collection of all instances x =
(x1, . . . , xm) ∈ {0, 1}m whose indicator set Sx is a q-subset of X. Recall that,
from a decision making perspective, each attribute can be interpreted as a cri-
terion. Thus, each instance in our data set satisfies exactly q of the m criteria,
and there is not a single “dominance” relation in the sense that the set of crite-
ria satisfied by one instance is a superset of those satisfied by another instance.
Intuitively, the instances in D are therefore maximally incomparable. This is
precisely the property we are now going to exploit in order to show that D can
be shattered by H.
Recall that a set of instances D can be shattered by a model class H if, for each
subset P ⊆ D, there is a model H ∈ H such that H(x) = 1 for all x ∈ P and
H(x) = 0 for all x ∈ D \ P. Now, take any such subset P from our data set D
as constructed above, and recall that the Choquet integral in (9) can be written
as

Cµ(x) =
∑
T⊆C

m(T )× fT (x) , (11)

where fT (x) = 1 if T ⊆ Sx and fT (x) = 0 otherwise. We define the values
m(T ), T ⊆ C, of the Möbius transform as follows:

m(T ) =

{
|P|−1 if T = Sx for some x ∈ P

0 otherwise .

Obviously, this definition of the Möbius transform is feasible and yields a proper
fuzzy measure µ: The sum of masses is equal to 1, and since all masses are
non-negative, monotonicity is guaranteed right away. Moreover, from the con-
struction of m and the fact that, for each pair x 6= x′ ∈ D, neither Sx ⊆ Sx′

nor Sx′ ⊆ Sx, the Choquet integral is obviously given as follows:

Cµ =

{
|P|−1 if x ∈ P

0 otherwise .

Thus with β = 1/(2|P|), the classifier (9) behaves exactly as required, that is,
it classifies all x ∈ P as positive and all x 6∈ P as negative.

Noting that the special case where P = ∅ is handled correctly by the Möbius
transform m such that m(C) = 1 and m(T ) = 0 for all T ( C (and any
threshold β > 0), we can conclude that the data set D can be shattered by H.
Consequently, the VC dimension of H is at least the size of D, whence (10) is a
lower bound of V C(H).
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For the asymptotic analysis, we make use of Sterling’s approximation of large
factorials (and hence binomial coefficients). For the sequence (b1, b2, . . .) of the
so-called central binomial coefficients bn, it is known that

bn =

(
2n
n

)
=

(2n)!

(n!)2
≥ 1

2

4n√
π · n

. (12)

Thus, the fact that V C(H) grows asymptotically at least as fast as 2m/
√
m

immediately follows by setting n = m/2 and ignoring constant terms. Q.E.D.

Remark 1 Recall the expression (8) of the Choquet integral in terms of its
Möbius transform. This expression shows that the Choquet integral corresponds
to a linear function, albeit a constrained one, in the feature space spanned by
the set of features {fT |T ⊆ {1, 2, . . . ,m}} (already used in (11)), where each
feature is a min-term

fT = fT (x) = fT (x1, . . . , xm) = min
i∈T

xi . (13)

The dimensionality of this feature space is 2m− 1. Thus, it follows immediately
that V C(H) ≤ 2m (the class of linear hyperplanes in Rn has VC-dimension
n + 1). Together with the lower bound 2m/

√
m, which is not much smaller

(despite the restriction to binary attribute vectors), we thus dispose of a relatively
tight approximation of V C(H).

Remark 2 Interestingly, the proof of Theorem 1 does not exploit the full non-
additivity of the Choquet integral. In fact, the measure we constructed there is
bm/2c-additive, since m(T ) = 0 for all T ⊆ C with |T | > bm/2c. Consequently,
the estimation of the VC-dimension still applies to the restricted case of k-
additive measures, provided k ≥ bm/2c. For smaller k, it is not difficult to
adapt the proof so as to show that

V C(H) ≥
(
m
k

)
. (14)

5 Choquistic Regression

Consider the standard setting of binary classification, where the goal is to predict
the value of an output (response) variable y ∈ Y = {0, 1} for a given instance

x = (x1, . . . , xm) ∈ X = X1 ×X2 × . . .×Xm

represented in terms of a feature vector. More specifically, the goal is to learn
a classifier L : X → Y from a given set of (i.i.d.) training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n
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so as to minimize the risk

R(L) =

∫
X×Y

`(L(x), y) dPXY (x, y) ,

where `(·) is a loss function (e.g., the simple 0/1 loss given by `(ŷ, y) = 0 if
ŷ = y and = 1 if ŷ 6= y).

Logistic regression is a well-established statistical method for (probabilistic)
classification [23]. Its popularity is due to a number of appealing properties,
including monotonicity and comprehensibility: Since the model is essentially
linear in the input attributes, the strength of influence of each predictor is
directly reflected by the corresponding regression coefficient. Moreover, the
influence of each attribute is monotone in the sense that an increase of the
value of the attribute can either only increase or only decrease the probability
of the positive class (depending on whether the associated regression coefficient
is positive or negative).

Formally, the probability of the positive class (and hence of the negative class)
is modeled as a generalized linear function of the input attributes, namely in
terms of the logarithm of the probability ratio:

log

(
P(y = 1 |x)

P(y = 0 |x)

)
= w0 + w>x , (15)

where w = (w1, w2, . . . , wm) ∈ Rm is a vector of regression coefficients and
w0 ∈ R a constant bias (the intercept). A positive regression coefficient wi > 0
means that an increase of the predictor variable xi will increase the probability
of a positive response, while a negative coefficient implies a decrease of this prob-
ability. Besides, the larger the absolute value |wi| of the regression coefficient,
the stronger the influence of xi.

Since P(y = 0 |x) = 1 − P(y = 1 |x), a simple calculation yields the posterior
probability

πl
df
= P(y = 1 |x) =

(
1 + exp(−w0 −w>x)

)−1
. (16)

The logistic function z 7→ (1 + exp(−z))−1, which has a sigmoidal shape, is a
specific type of link function.

Needless to say, the linearity of the above model is a strong restriction from
a learning point of view, and the possibility of interactions between predictor
variables has of course also been noticed in the statistical literature [26]. A
standard way to handle such interaction effects is to add interaction terms to the
linear function of predictor variables, like in (2). As explained earlier, however,
the aforementioned advantages of logistic regression will then be lost.

In the following, we therefore propose an extension of logistic regression that
allows for modeling nonlinear relationships between input and output variables
while preserving the advantages of comprehensibility and monotonicity. As
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Figure 2: Probability of a positive decision, P(y = 1 |x), as a function of the
estimated degree of utility, u = U(x), for a threshold β = 0.7 and different
values of γ.

mentioned earlier, the monotonicity constraint is important if the direction of
influence of an input attribute is known beforehand and needs to be reflected
by the model, an assumption that we shall make in the following. As an aside,
we note that one may also envision the case where an attribute is known to
have a monotone influence, although the direction of influence is unknown. The
learning problem then becomes slightly more difficult, since the learner has to
figure out whether the influence is positive (increasing) or negative (decreasing).
We shall not consider this problem any further, however, and instead assume
the direction of influence to be given as prior knowledge.

5.1 The Choquistic Model

In order to model nonlinear dependencies between predictor variables and the
response, and to take interactions between predictors into account, we propose
to extend the logistic regression model by replacing the linear function x 7→
w0 + w>x in (15) with the Choquet integral. More specifically, we propose the
following model

πc
df
= P(y = 1 |x) =

(
1 + exp(−γ (Cµ(fx)− β))

)−1
, (17)

where Cµ(fx) is the Choquet integral (with respect to the measure µ) of the
function

fx : {c1, . . . , cm} → [0, 1] (18)

that maps each attribute ci to a normalized value xi = fx(ci) ∈ [0, 1]; β, γ ∈ R
are constants.

Recalling the idea of “evaluating” an instance x in terms of a set of criteria, the
model (17) can be seen as a two-step procedure: The first step consists of an
assessment of x in terms of a (latent) utility degree

u = U(x) = Cµ(fx) ∈ [0, 1].
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Then, in a second step, a discrete choice (yes/no decision) is made on the basis of
this utility. Roughly speaking, this is done through a “probabilistic thresholding”
at the utility threshold β. If U(x) > β, then the decision tends to be positive,
whereas if U(x) < β, it tends to be negative. The precision of this decision is
determined by the parameter γ (see Figure 2): For large γ, the decision function
converges toward the step function u 7→ I(u > β), jumping from 0 to 1 at β. For
small γ, this function is smooth, and there is a certain probability to violate the
threshold rule u 7→ I(u > β). This might be due to the fact that, despite being
important for decision making, some properties of the instances to be classified
are not captured by the utility function. In that case, the utility U(x), estimated
on the basis of the given attributes, is not a perfect predictor for the decision
eventually made. Thus, the parameter γ can also be seen as an indicator of the
quality of the classification model.

5.2 Normalization

The normalization (18) is meant to turn each predictor variable into a criterion,
i.e., a “the higher the better” attribute, and to assure commensurability between
the criteria [30]. A simple transformation is given by the mapping

zi =
xi −mi

Mi −mi
, (19)

where mi and Mi are lower and upper bounds for xi, which are either known or
estimated from the data; if the influence of xi is actually negative (i.e., wi < 0),
then the mapping zi = (Mi − xi)/(Mi −mi) is used instead.

The transformation (19) is problematic in the presence of outliers, in which case
the distribution of its image can become extremely skewed. As an alternative,
which is less sensitive in this regard and, moreover, produces a more uniform
distribution of normalized values, we therefore propose the mapping

zi = F−1(xi) , (20)

where F is the cumulative distribution function x 7→ P(Xi ≤ x). Of course,
since this function is in general not known, it has to be replaced by an estimate
F̂ ; to this end, we simply adopt the empirical distribution of the training data
(i.e., F̂ (x) is the relative frequency of instances x = (x1, . . . , xm) in the training
data for which xi ≤ x).

5.3 Logistic Regression as a Special Case

In order to verify that our model (17) is a proper generalization of standard
logistic regression, recall that the Choquet integral reduces to a weighted mean
(7) in the special case of an additive measure µ. Moreover, recall the trans-
formation (19) and consider any linear function x 7→ g(x) = w0 + w>x with
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w = (w1, . . . , wm). This function can also be written in the form

g(x) = w0 +

m∑
i=1

(wipi + |wi|(Mi −mi)zi)

= w0 +

m∑
i=1

wipi +

m∑
i=1

|wi|(Mi −mi)zi

= w′0 +

(
m∑
i=1

ui

)−1 m∑
i=1

u′izi

= γ

(
m∑
i=1

u′izi − β

)
,

where pi = mi if wi ≥ 0 and pi = Mi if wi < 0, ui = |wi|(Mi − mi), γ =

(
∑m
i=1 ui)

−1, u′i = ui/γ, w′0 = w0 +
∑m
i=1 wipi, β = −w′0/γ. By definition, the

u′i are non-negative and sum up to 1, which means that
∑m
i=1 u

′
izi is a weighted

mean of the zi that can be represented by a Choquet integral.

5.4 Parameter Estimation

The model (17) has several degrees of freedom: The fuzzy measure µ (Möbius
transform m = mµ) determines the (latent) utility function, while the utility
threshold β and the scaling parameter γ determine the discrete choice model.
The goal of learning is to identify these degrees of freedom on the basis of the
training data D. Like in the case of standard logistic regression, it is possible
to harness the maximum likelihood (ML) principle for this purpose. The log-
likelihood of the parameters can be written as

l(m, γ, β) = logP(D |m, β, γ)

= log

(
n∏
i=1

P(y(i) |x(i);m, β, γ)

)
(21)

=

n∑
i=1

y(i) log π(i)
c +

(
1− y(i)

)
log
(
1− π(i)

c

)
.

One easily verifies that (21) is convex with respect to m, γ, and β. In principle,
maximization of the log-likelihood can be accomplished by means of standard
gradient-based optimization methods. However, since we have to assure that
µ is a proper fuzzy measure and, hence, that m guarantees the corresponding
monotonicity and boundary conditions, we actually need to solve a constrained

15



optimization problem:

max
m,γ,β

{
− γ

n∑
i=1

(1− y(i))(Cm(x(i))− β) (22)

−
n∑
i=1

log
(

1 + exp(−γ (Cm(x(i))− β))
)
− η

∑
T⊆C

|m(T )|
}

s.t. η, γ > 0, 0 ≤ β ≤ 1,
∑
T⊆C

m(T ) = 1, and

∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ∀ci ∈ C.

The last part of the objective function (22) is a standard L1-regularizer on the
Möbius transform, which is added as a means to prevent over-fitting; moreover,
since many weights are typically set to 0 under L1-regularization, it also serves
as a feature selection mechanism [29].

A solution to the above problem can be produced by standard solvers. Con-
cretely, we used the fmincon function implemented in the optimization toolbox
of Matlab. This method is based on a sequential quadratic programming ap-
proach.

Recall that, once the model has been identified, the importance of each attribute
and the degree of interaction between groups of attributes can be derived from
the Möbius transform m; these are given, respectively, by the Shapley value
and the interaction indexes as introduced in Section 3.2.

6 Complexity Reduction

Obviously, choquistic regression can be interpreted as fitting a (constrained)
linear function in the feature space spanned by the set of features fT defined by
(13), with one feature for each subset of criteria T ⊆ {1, 2, . . . ,m}. Since the
dimensionality of this feature space is 2m−1, the method is clearly critical from
a complexity point of view. It was already mentioned that an L1-regularization
in (22) may shrink some coefficients to 0 and, therefore, some of the features
fT may disappear. Although this may help to simplify the choquistic model,
that is, the result produced by the learning algorithm, it does not simplify the
optimization problem itself.

Thus, one may wonder whether some of the features (13) could not even be
eliminated prior to solving the actual optimization problem. Specifically inter-
esting in this regard is a possible restriction of the choquistic model to k-additive
measures, for a suitable value of k < m. Since this means that significantly less
parameters (namely 2k−1) need to be identified, the computational complexity
might be reduced drastically. Besides, a restriction to k-additive measures may
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also have advantages from a learning point of view, as it reduces the capacity of
the underlying model class (cf. Section 4) and thus may prevent from over-fitting
the data in cases where the full flexibility of the Choquet integral is actually
not needed. Of course, the key problem to be addressed concerns the question
of how to choose k in the most favorable way.

6.1 Exploiting Equivalence of Features for Dimensionality
Reduction

In the following, we shall elaborate on the following question: Is it possible to
find an upper bound on the required level of complexity of the model, namely the
level of additivity k, prior to fitting the Choquet integral to the data? Or, more
specifically, can we determine the value k in such a way that fitting a k-additive
measure is definitely enough, in the sense that each labeling of the training
data produced by the full Choquet integral (k = m) can also be produced by a
Choquet integral based on a k-additive measure?

In this regard, it is noticeable that, for a given instance x = (x1, . . . , xm), many
of the min-terms (13) will assume the same value (in fact, there are 2m−1 such
terms but only m possible values). Consequently, in the expression

Cµ(x) =
∑
T⊆C

m(T )× fT (x) (23)

of the Choquet integral, many coefficients m(T ) can be grouped and, in princi-
ple, be replaced by a single one. The groups thus defined solely depend on the
order of the values x1, . . . , xm of the original attributes. The number of terms
in (23) will thus reduce from 2m − 1 to at most m. However, since the order
may change from instance to instance, different groupings may be obtained for
different instances.

Now, imagine that a subset of features F = {fT1
, . . . , fTr

} assumes the same
value, not only for a single instance, but for all instances in the training data.
Then, this set can be said to form an equivalence class. Thus, one of the
features could in principle be selected as a representative, absorbing all the
weights of the others; more specifically, the weight of this feature would be set
to m(T1) + m(T2) + . . .+ m(Tr), while the weights of the other features in F
would be set to 0.

Note, however, that this “transfer of Möbius mass” will in general not be feasible,
as it may cause a violation of the monotonicity constraint on the fuzzy mea-
sure µ. As a side remark, we also note that, from a learning point of view, the
equivalence of features may obviously cause problems with regard to the iden-
tifiability of coefficients; due to the monotonicity constraints just mentioned,
however, this is not necessarily the case.

More generally, for two features fA and fB (A,B ⊆ C), denote by v(A,B) ∈
[0, 1] the fraction of training examples on which they assume the same value. We
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say that fA covers fB (and, vice versa, fB covers fA) if v(A,B) = 1. Moreover,
for a feature fA, we denote by C(fA) ⊆ 2C the set of features it covers. A
straightforward way to find a sufficiently large k then consists of finding the
smallest k such that ⋃

T⊆C, |T |≤k

C(fT ) = 2C . (24)

From the above construction, it follows that working with the corresponding
k-additive measure, for k thus defined, is theoretically sound and guarantees
that there is no loss in terms of expressivity of the model on the training data.
We summarize this finding in terms of the following proposition.

Proposition 1 Consider a set of training instances x(1), . . . ,x(n) and let k∗ be
the smallest value in {1, . . . ,m} satisfying (24). Moreover, let µ be any measure
on the set of criteria {c1, . . . , cm}, and Cµ the Choquet integral with respect to
this measure. Then, there exists a k-additive measure µ∗ such that

Cµ∗(x(i)) = Cµ(x(i)) (25)

for all i ∈ {1, . . . , n}.

We like to emphasize that k∗ is only an upper bound on the complexity needed
to fit the training data. Thus, it is not necessarily the optimal k from the point
of view of model induction (which might be figured out by the regularizer in
(22)). In particular, note that the computation of k∗ does not refer to the output
values y(i). Instead, it should be considered as a measure of the complexity of
the training instances. As such, it is obviously connected to the notion of VC
dimension.

Since the exact reproducibility (25) may appear overly stringent or, stated dif-
ferently, a small loss may actually be acceptable, we finally propose a relaxation
somewhat in line with idea of probably approximately correct (PAC) learning
[40]. First, noting that the Choquet integral may change by at most ε when
combining features fA and fB such that |fA−fB | < ε, one may think of relaxing
the definition of equivalence as follows: fA and fB are ε-equivalent (on a given
training instance x) if |fA(x) − fB(x)| < ε. Second, we relax the condition
of coverage. Denoting by v(A,B) ∈ [0, 1] the fraction of training examples on
which fA and fB are ε-equivalent, we say that fA ε-δ-covers fB if v(A,B) ≥ 1−δ.
Roughly speaking, for a small ε and δ close to 0, this means that, with only a
few exceptions, the values of fA and fB are almost the same on the training
data (we used ε = δ = 0.1 is our experiments below). In order to find a proper
upper bound k∗, the principle (24) can be used as before, just replacing coverage
with ε-δ-coverage.
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Table 1: Data sets and their properties.

data set #instances #attributes source
Den Bosch (DBS) 120 8 [9]
CPU 209 6 UCI
Breast Cancer (BCC) 286 7 UCI
Auto MPG 392 7 UCI
Employee Selection (ESL) 488 4 WEKA
Mammographic (MMG) 961 5 UCI
Employee Rejection/Acceptance (ERA) 1000 4 WEKA
Lecturers Evaluation (LEV) 1000 4 WEKA
Car Evaluation (CEV) 1728 6 UCI

7 Experiments

In this section, we present the results of an experimental study that was con-
ducted in order to validate the practical performance of our choquistic regression
(CR) method. The goal of this study is twofold. First, we would like to show
that CR is competitive in terms of predictive accuracy. To this end, we compare
it with several alternative methods on a number of (monotone) benchmark data
sets. Second, we would like to corroborate our claim that the CR model pro-
vides interesting information about attribute importance and interaction. To
this end, we discuss some examples showing that the corresponding Shapley and
interaction values produced by CR are indeed meaningful and plausible.

7.1 Data Sets

Although the topic is receiving increasing interest in the machine learning com-
munity, benchmark data for monotone classification is by far not as abundant as
for conventional classification. In total, we managed to collect 9 data sets from
different sources, notably the UCI repository2 and the WEKA machine learning
framework [22], for which monotonicity in the input variables is a reasonable
assumption; see Table 1 for a summary. All the data sets can be downloaded
from our website.3 Many of them have also been used in previous studies on
monotone learning. Some of them have a numerical or ordered categorical out-
put, however, which was hence binarized. Moreover, all input attributes were
normalized using (20).

Den Bosch (DBS). This data set contains 8 attributes describing houses
in the city of Den Bosch: area, number of bedrooms, type of house, volume,

2http://archive.ics.uci.edu/ml/
3http://www.uni-marburg.de/fb12/kebi/
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storeys, type of garden, garage, and price. The output is a binary variable
indicating whether the price of the house is low or high (depending on whether
or not it exceeds a threshold).

CPU. This is a standard benchmark data set from the UCI repository. It con-
tains eight input attributes, two of which were removed since they are obviously
of no predictive value (vendor name, model name). The problem is to predict
the (estimated) relative performance of a CPU (binarized by thresholding at
the median) based on its machine cycle time in nanoseconds, minimum main
memory in kilobytes, maximum main memory in kilobytes, cache memory in
kilobytes, minimum channels in units, maximum channels in units.

Breast Cancer (BCC). This dataset was obtained from the University Med-
ical Center, Institute of Oncology, Ljubljana, Yugoslavia. There are 7 attributes,
namely menopause gain, tumor-size, inv-nodes, node-caps, deg-malig, breast
cost, irradiat gain. The output is a binary variable, namely no-recurrence-events
and recurrence-events.

Auto MPG. This data set was used in the 1983 American Statistical Associ-
ation Exposition. The problem is to predict the city-cycle fuel consumption in
miles per gallon (binarized by thresholding at the median) based on the following
attributes of a car: cylinders, displacement, horsepower, weight, acceleration,
model year, origin. We removed incomplete instances.

Employee Selection (ESL). This data set contains profiles of applicants for
certain industrial jobs. The values of the four input attributes were determined
by expert psychologists based upon psychometric test results and interviews
with the candidates. The output is an overall score on an ordinal scale between
1 and 9, corresponding to the degree of suitability of each candidate to this type
of job. We binarized the output value by distinguishing between suitable (score
6-9) and unsuitable (score 1-5) candidates.

Mammographic (MMG). This data set is about breast cancer screening
by mammography. The goal is to predict the severity (benign or malignant)
of a mammographic mass lesion from BI-RADS attributes (mass shape, mass
margin, density) and the patient’s age.

Employee Rejection/Acceptance (ERA). This data set originates from
an academic decision-making experiment. The input attributes are features of
a candidate such as past experience, verbal skills, etc., and the output is the
subjective judgment of a decision-maker, measured on an ordinal scale from 1
to 9, to which degree he or she tends to accept the applicant for the job. We
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binarized the output value by distinguishing between acceptance (score 5-9) and
rejection (score 1-4).

Lecturers evaluation (LEV). This data set contains examples of anony-
mous lecturer evaluations, taken at the end of MBA courses. Students were
asked to score their lecturers according to four attributes such as oral skills and
contribution to their professional/general knowledge. The output was a total
evaluation of each lecturer’s performance, measured on an ordinal scale from 0
to 4. We binarized the output value by distinguishing between good (score 3-4)
and bad evaluation (score 0-2).

Car Evaluation (CEV). This data set contains 6 attributes describing a
car, namely, buying price, price of the maintenance, number of doors, capacity
in terms of persons to carry, the size of luggage boot, estimated safety of the
car. The output is the overall evaluation of the car: unacceptable, acceptable,
good, very good. We binarized this evaluation into unacceptable versus not
unacceptable (acceptable, good or very good).

7.2 Methods

Since choquistic regression (CR) can be seen as an extension of standard logis-
tic regression (LR), it is natural to compare these two methods. Essentially,
this comparison should give an idea of the usefulness of an increased flexibility.
On the other side, one may also ask for the usefulness of assuring monotonic-
ity. Therefore, we additionally included two other extensions of LR, which are
flexible but not necessarily monotone, namely kernel logistic regression (KLR)
with polynomial and Gaussian kernels. The degree of the polynomial kernel
was set to 2, so that it models low-level interactions of the features. The
Gaussian kernel, on the other hand, is able to capture interactions of higher
order. For each data set, the width parameter of the Gaussian kernel was
selected from {10−4, 10−3, 10−2, 10−1, 100} in the most favorable way. Like-
wise, the regularization parameter η in choquistic regression was selected from
{10−3, 10−2, 10−1, 100, 101, 102}.
Finally, we also included two methods that are both monotone and flexible,
namely the MORE algorithm for learning rule ensembles under monotonicity
constraints [11] and the LMT algorithm for logistic model tree induction [28].
Following the idea of forward stagewise additive modeling [37], the MORE al-
gorithm treats a single rule as a subsidiary base classifier in the ensemble. The
rules are added to the ensemble one by one. Each rule is fitted by concentrating
on the examples that are most difficult to classify correctly by rules that have
already been generated. The LMT algorithm builds tree-structured models that
contain logistic regression functions at the leaves. It is based on a stagewise fit-
ting process to construct the logistic regression models that can select relevant
attributes from the data. This process is used to build the logistic regression
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models at the leaves by incrementally refining those constructed at higher levels
in the tree structure.

7.3 Results

7.3.1 Performance in Terms of Predictive Accuracy

As performance measures, we determined the standard misclassification rate
(0/1 loss) as well as the AUC. Estimates of both measures were obtained by
randomly splitting the data into two parts, one part for training and one part for
testing. This procedure was repeated 100 times, and the results were averaged.
In order to analyze the influence of the amount of training data, we varied
the proportion between training and test data from 20:80 over 50:50 to 80:20.
In these experiments, we used a variant of CR in which the underlying fuzzy
measure is restricted to be k-additive, with k determined by means of an internal
cross-validation. Compared with other variants (cf. Section 7.3.2), this one
performed best in terms of accuracy.

A possible improvement of CR over its competitors, in terms of predictive accu-
racy, may be due to two reasons: First, in comparison to standard LR, it is more
flexible and has the ability to capture nonlinear dependencies between input at-
tributes. Second, in comparison to non-monotone learners, it takes background
knowledge about the dependency between input and output variables into con-
sideration.

An overview of the results of the experiments is given in Tables 2 and 3. More-
over, a summary in terms of pairwise win statistics is provided in Tables 4 and
5. As can be seen, CR compares quite favorably with the other approaches,
especially with the non-monotone KLR methods, both in terms of 0/1 loss and
AUC. It also outperforms LR, at least for sufficiently extensive training data;
if the amount of training data is small, however, LR is even better, probably
because CR will then tend to overfit the data. This is indeed a general trend
that can be observed both for performance in terms of average ranks and the
number of wins in pairwise comparison with another method: The more train-
ing data is available, the better CR becomes, arguably because its flexibility is
then becoming more and more advantageous.

Needless to say, statistical significance is difficult to achieve due to the limited
number of data sets. In terms of pairwise comparison, for example, a standard
sign test will not report a significant difference (at the 10% significance level)
unless one of the method wins at least 7 of the 9 data sets. For the 0/1 loss, this
is indeed accomplished by CR in all cases except two (comparison with KLR-ply
and MORE on 50% training data); see Table 4. For AUC, CR is superior, too,
but significance is reached less often; see Table 5.

We also applied the two-step procedure recommended by Demsar [12], consisting
of a Friedman test and (provided this one rejects the null-hypothesis of overall
equal performance of all methods) the subsequent use of a Nemenyi test in
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order to compare methods in a pairwise manner; both tests are based on average
ranks. For both 0/1 loss and AUC, the Friedman test finds significant differences
among the six classifiers (at the 10% significance level) when all three different
proportions of data are used for training. The critical distance of ranks in the
Nemenyi test is 2.28 for both measures. In Tables 2 and 3, the average ranks
for which this difference is exceeded are highlighted in bold font.

7.3.2 Variants of Choquistic Regression

In the above experiments, we used CR with a fuzzy measure of optimal or-
der, namely a k-additive measure with k determined through internal cross-
validation. In addition, we also learned with standard CR, i.e., CR using the
full fuzzy measure with k = m (the number of attributes). As can be seen in
Table 6, adapting k does obviously pay off and leads to improved performance
most of the time. For the “full” CR, which is the most flexible variant, there is
obviously a risk to overfit the training data and hence generalize worse.

Moreover, we also combined CR with the complexity reduction method proposed
in Section 6. In addition to the average performance, the results in Table 7 also
show the typical values of k as determined by this method (namely the most
frequently chosen one). As can be seen, the method is indeed effective in the
sense that the order of the fuzzy measure is often significantly reduced without
compromising performance. On the other hand, in terms of performance, this
method is still not competitive with using an optimal (cross-validated) k. This
is not surprising, since the k determined by our complexity reduction method
is only an upper bound (and learned in an unsupervised instead of a supervised
manner).

7.3.3 Model Interpretation

As mentioned earlier, one may expect a close connection between the scaling
parameter γ in the choquistic model and the prediction accuracy of the model.
More specifically, the better the model performs on a particular data set, the
higher γ is expected to be. It is worth mentioning that our experimental results
are in perfect agreement with this expectation. Indeed, comparing the ranking
of the nine data sets in terms of accuracy and in terms of the average values of
γ (shown in Table 8), we obtain a (Kendall tau) correlation of more than 0.8
throughout.

As one of its key features, the Choquet integral offers interesting information
about the importance of individual attributes as well as the interaction between
them; this aspect was highlighted in Section 3.2. In fact, in many practical
applications, this type of information is at least as important as the prediction
accuracy of the model. A detailed analysis of this type of information is difficult
and beyond the scope of this paper. Instead, we just give a few examples showing
the plausibility of the results.
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Regarding the Shapley index that measures the importance of individual at-
tributes, the (average) values on the Car MPG data are as follows: cylinders
≈ 0.13, displacement ≈ 0, horsepower ≈ 0.25, weight ≈ 0.46, acceleration
≈ 0.03, model year ≈ 0.13, origin ≈ 0. In terms of attribute importance,
this conveys the following picture:

weight > horsepower > cylinders | model year > acceleration > displacement | origin

Recalling the meaning of the data set, these weights should reflect the influence
on the fuel consumption, and seen from this point of view, they appear to be
fully plausible.

For the CPU data, the following Shapley values are obtained: machine cycle time
in nanoseconds ≈ 0.07, minimum main memory in kilobytes ≈ 0.24, maximum
main memory in kilobytes ≈ 0.30, cache memory in kilobytes ≈ 0.20, minimum
channels in units ≈ 0.10, maximum channels in units ≈ 0.09. Thus, the most
important properties are those concerning the memory (main and cache). The
influence of the other properties (channels, cycle time) is not as strong, although
they are not completely unimportant either.

Apart from the importance of individual attributes, it is interesting to look at
the interaction between different attributes. As an example, Figure 3 provides a
visualization of the pairwise interaction between attributes for the car evaluation
data, for which CR performs significantly better than LR. Recall that, in this
data set, the evaluation of a car (output attribute) depends on a number of
criteria, namely (a) buying price, (b) price of the maintenance, (c) number of
doors, (d) capacity in terms of persons to carry, (e) size of luggage boot, (f)
safety of the car. These criteria form a natural hierarchy, according to which
the data was produced [6]: (a) and (b) form a subgroup price, whereas the other
properties are of a technical nature and can be further decomposed into comfort
(c–e) and safety (f). Interestingly, the interaction in our model nicely agrees
with this hierarchy or, stated differently, allows for recovering this hierarchy from
the pairwise interactions between attributes: Interaction within each subgroup
tends to be smaller (as can be seen from the darker colors) than interaction
between criteria from different subgroups, suggesting a kind of redundancy in
the former and complementarity in the latter case.

8 Concluding Remarks

In this paper, we have advocated the use of the discrete Choquet integral as
an aggregation operator in machine learning, especially in the context of learn-
ing monotone models. Apart from combining monotonicity and flexibility in a
mathematically sound and elegant manner, the Choquet integral offers measures
for quantifying the importance of individual predictor variables and the inter-
action between groups of variables, thereby providing important information
about the relationship between independent and dependent variables.
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Table 2: Classification performance in terms of the mean and standard deviation
of 0/1 loss. From top to bottom: 20%, 50%, and 80% training data. (Average
ranks comparing significantly worse with CR at the 90% confidence level are
put in bold font.)

dataset CR LR KLR-ply KLR-rbf MORE LMT
DBS .1713±.0424(2) .2124±.0650(6) .1695±.0437(1) .1883±.0536(4) .1932±.0511(5) .1779±.0420(3)
CPU .0811±.0103(3) .0711±.0312(1) .0996±.0231(6) .0802±.0292(2) .0829±.0379(4) .0850±.0256(5)
BCC .2775±.0335(2) .2893±.0240(6) .2760±.0243(1) .2787±.0237(3) .2827±.0255(4) .2884±.0306(5)
MPG .0709±.0193(1) .0832±.0151(6) .0788±.0097(4) .0772±.0107(2) .0811±.0119(5) .0773±.0148(3)
ESL .0682±.0129(1) .0733±.0107(2) .1488±.0278(6) .0756±.0167(3) .0838±.0241(5) .0771±.0148(4)

MMG .1725±.0120(1) .1729±.0122(2) .1960±.0160(6) .1791±.0133(4) .1764±.0137(3) .1803±.0171(5)
ERA .2889±.0273(1) .2902±.0317(2) .3001±.0130(5) .2934±.0112(3) .3155±.0150(6) .2963±.0126(4)
LEV .1499±.0122(1) .1655±.0082(3) .1627±.0119(2) .1691±.0125(5) .1707±.0186(6) .1672±.0140(4)
CEV .0448±.0089(3) .1410±.0079(6) .0663±.0130(5) .0618±.0151(4) .0339±.0076(1) .0432±.0116(2)

avg. rank 1.67 3.78 4 3.33 4.33 3.89
DBS .1572±.0416(4) .1708±.0380(6) .1333±.0333(1) .1692±.0382(5) .1457±.0413(3) .1473±.0406(2)
CPU .0464±.0281(1) .0626±.0247(4) .0835±.0264(6) .0547±.0233(3) .0489±.0226(2) .0674±.0243(5)
BCC .2687±.0282(4) .2799±.0245(6) .2591±.0287(1) .2599±.0301(2) .2640±.0288(3) .2717±.0295(5)
MPG .0577±.0251(1) .0654±.0150(2) .0728±.0159(4) .0744±.0151(5) .0751±.0178(6) .0672±.0164(3)
ESL .0601±.0126(1) .0704±.0113(4) .1023±.0225(6) .0682±.0121(2) .0695±.0139(3) .0709±.0135(5)

MMG .1667±.0144(1) .1701±.0158(5) .1721±.0164(6) .1693±.0130(4) .1691±.0140(3) .1671±.0167(2)
ERA .2844±.0306(1) .2851±.0303(2) .2926±.0151(4) .2882±.0142(3) .3037±.0180(6) .2956±.0148(5)
LEV .1372±.0125(1) .1651±.0133(6) .1520±.0160(4) .1493±.0165(3) .1486±.0157(2) .1545±.0142(5)
CEV .0376±.0059(4) .1360±.0101(6) .0328±.0057(3) .0463±.0086(5) .0215±.0053(2) .0174±.0069(1)

avg. rank 2 4.56 3.89 3.56 3.33 3.67
DBS .1416±.0681(4) .1616±.0743(6) .1265±.0663(2) .1343±.0672(3) .1242±.0609(1) .1433±.0667(5)
CPU .0212±.0301(1) .0640±.0335(5) .0754±.0372(6) .0405±.0284(3) .0412±.0299(4) .0338±.0352(2)
BCC .2496±.0485(1) .2773±.0548(6) .2569±.0506(2) .2598±.0529(4) .2570±.0463(3) .2707±.0554(5)
MPG .0551±.0160(1) .0611±.0263(2) .0727±.0268(4) .0740±.0284(6) .0737±.0269(5) .0614±.0251(3)
ESL .0542±.0218(1) .0660±.0203(3) .0922±.0279(6) .0657±.0229(2) .0661±.0219(4) .0691±.0228(5)

MMG .1584±.0251(1) .1657±.0232(4) .1741±.0246(6) .1696±.0271(5) .1645±.0235(3) .1595±.0283(2)
ERA .2813±.0280(1) .2843±.0302(2) .2918±.0290(5) .2905±.0312(3) .2988±.0276(6) .2910±.0290(4)
LEV .1314±.0176(1) .1627±.0249(6) .1472±.0231(3) .1496±.0233(5) .1397±.0214(2) .1474±.0232(4)
CEV .0273±.0089(4) .1328±.0173(6) .0286±.0075(5) .0239±.0066(3) .0190±.0070(2) .0089±.0047(1)

avg. rank 1.67 4.44 4.33 3.78 3.33 3.44
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Table 3: Performance in terms the average AUC ± standard deviation. From
top to bottom: 20%, 50%, and 80% training data. (Average ranks comparing
significantly worse with CR at the 90% confidence level are put in bold font.)

dataset CR LR KLR-ply KLR-rbf MORE LMT
DBS .9290±.0322(2) .8866±.0511(5) .9359±.0218(1) .9053±.0433(4) .8731±.0481(6) .9151±.0228(3)
CPU .9822±.0121(2) .9806±.0124(4) .9716±.0072(6) .9843±.0116(1) .9749±.0235(5) .9816±.0113(3)
BCC .6400±.0641(6) .6970±.0411(3) .6509±.0568(5) .7124±.0290(2) .6639±.0567(4) .7310±.0675(1)
MPG .9788±.0160(1) .9675±.0068(5) .9704±.0075(4) .9741±.0055(3) .9501±.0263(6) .9753±.0092(2)
ESL .9670±.0074(4) .9721±.0060(1) .9638±.0106(5) .9705±.0099(2) .9466±.0484(6) .9696±.0086(3)

MMG .8867±.0123(4) .8962±.0080(1) .8552±.0203(6) .8938±.0121(2) .8754±.0274(5) .8890±.0259(3)
ERA .7669±.0334(1) .7602±.0331(4) .7555±.0139(5) .7662±.0098(2) .7198±.0329(6) .7619±.0160(3)
LEV .8971±.0098(1) .8905±.0081(2) .8870±.0094(3) .8860±.0128(4) .8137±.0621(6) .8797±.0182(5)
CEV .9825±.0080(3) .9332±.0033(6) .9818±.0058(5) .9821±.0076(4) .9888±.0063(2) .9902±.0042(1)

avg. rank 2.67 3.44 4.44 2.67 5.11 2.67
DBS .9341±.0228(2) .9191±.0293(4) .9492±.0198(1) .9174±.0316(6) .9179±.0403(5) .9259±.0289(3)
CPU .9920±.0073(2) .9914±.0056(3) .9771±.0109(6) .9925±.0056(1) .9873±.0149(5) .9883±.0077(4)
BCC .6912±.0469(6) .7184±.0367(3) .7001±.0396(4) .7294±.0344(2) .6980±.0586(5) .7387±.0656(1)
MPG .9818±.0075(1) .9803±.0084(3) .9776±.0083(4) .9752±.0068(5) .9563±.0313(6) .9814±.0074(2)
ESL .9720±.0084(4) .9764±.0062(1) .9726±.0080(3) .9754±.0070(2) .9557±.0301(6) .9707±.0120(5)

MMG .9003±.0132(1) .8972±.0125(4) .8962±.0140(5) .8995±.0091(2) .8839±.0305(6) .8976±.0153(3)
ERA .7705±.0310(4) .7633±.0241(5) .7740±.0148(2) .7745±.0141(1) .7215±.0381(6) .7719±.0144(3)
LEV .9098±.0103(1) .8935±.0113(4) .8999±.0120(3) .9012±.0128(2) .8185±.0580(6) .8920±.0164(5)
CEV .9912±.0024(4) .9362±.0071(6) .9950±.0019(2) .9907±.0031(5) .9921±.0042(3) .9977±.0017(1)

avg. rank 2.78 3.67 3.33 2.89 5.33 3
DBS .9427±.0443(3) .9224±.0514(6) .9608±.0347(1) .9495±.0459(2) .9409±.0539(4) .9343±.0479(5)
CPU .9971±.0063(2) .9907±.0085(5) .9827±.0167(6) .9984±.0052(1) .9909±.0167(4) .9959±.0078(3)
BCC .7349±.0692(1) .7253±.0715(4) .7071±.0720(5) .7335±.0690(3) .7042±.0853(6) .7342±.0791(2)
MPG .9855±.0108(1) .9843±.0138(2) .9797±.0121(4) .9771±.0142(5) .9551±.0372(6) .9841±.0106(3)
ESL .9766±.0150(2) .9722±.0167(4) .9746±.0141(3) .9782±.0126(1) .9507±.0508(6) .9713±.0176(5)

MMG .9135±.0233(1) .9048±.0237(3) .9011±.0199(4) .8991±.0255(5) .8889±.0363(6) .9063±.0215(2)
ERA .7670±.0290(4) .7630±.0281(5) .7731±.0293(3) .7759±.0315(1) .7228±.0475(6) .7735±.0296(2)
LEV .9122±.0202(1) .8928±.0234(5) .9048±.0201(2) .9031±.0172(3) .8078±.0661(6) .8996±.0222(4)
CEV .9959±.0027(3) .9352±.0095(6) .9942±.0018(4) .9970±.0013(2) .9936±.0046(5) .9993±.0017(1)

avg. rank 2 4.44 3.56 2.56 5.44 3

Table 4: Win statistics (number of data sets on which the first method was
better than the second one) for 20%, 50%, and 80% training data for 0/1 loss
case.

CR LR KLR-ply KLR-rbf MORE LMT
CR – 8 | 9 | 9 7 | 6 | 8 8 | 8 | 7 8 | 6 | 7 8 | 7 | 8
LR 1 | 0 | 0 – 4 | 5 | 5 5 | 2 | 3 5 | 2 | 3 5 | 4 | 3
KLR-ply 2 | 3 | 1 5 | 4 | 4 – 3 | 4 | 4 5 | 4 | 3 3 | 4 | 3
KLR-rbf 1 | 1 | 2 4 | 7 | 6 6 | 5 | 5 – 7 | 4 | 3 6 | 5 | 4
MORE 1 | 3 | 2 4 | 7 | 6 4 | 5 | 6 2 | 5 | 6 – 4 | 4 | 4
LMT 1 | 2 | 1 4 | 5 | 6 6 | 5 | 6 3 | 4 | 5 5 | 5 | 5 –
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Table 5: Win statistics (number of data sets on which the first method was
better than the second one) for 20%, 50%, and 80% training data for AUC case.

CR LR KLR-ply KLR-rbf MORE LMT
CR – 6 | 7 | 9 7 | 4 | 7 5 | 5 | 4 7 | 7 | 9 5 | 6 | 7
LR 3 | 2 | 0 – 6 | 5 | 4 3 | 3 | 2 8 | 8 | 6 3 | 3 | 2
KLR-ply 2 | 5 | 2 3 | 4 | 5 – 2 | 3 | 4 5 | 8 | 8 2 | 4 | 3
KLR-rbf 4 | 4 | 5 6 | 6 | 7 7 | 6 | 5 – 8 | 7 | 9 5 | 5 | 5
MORE 2 | 2 | 0 1 | 1 | 3 4 | 1 | 1 1 | 2 | 0 – 0 | 0 | 1
LMT 4 | 3 | 2 6 | 6 | 7 7 | 5 | 6 4 | 4 | 4 9 | 9 | 8 –

Table 6: Performance in terms the average 0/1 loss and AUC ± standard de-
viation for CR using the full fuzzy measure compared with using a k-additive
measure with cross-validated k. From top to bottom: 20%, 50%, and 80%
training data.

dataset 0/1 loss 0/1 loss AUC AUC
full k-additive full k-additive

DBS .2329±.0518 .1713±.0424 .8981±.0135 .9290±.0322
CPU .1341±.0802 .0811±.0103 .9505±.0377 .9822±.0121
BCC .3342±.0252 .2775±.0335 .6112±.0678 .6400±.0641
MPG .0709±.0193 .0709±.0193 .9788±.0182 .9788±.0182
ESL .0730±.0168 .0682±.0129 .9667±.0085 .9670±.0074

MMG .1776±.0101 .1725±.0120 .8899±.0145 .8867±.0123
ERA .2981±.0158 .2889±.0273 .7579±.0103 .7669±.0334
LEV .1526±.0146 .1499±.0122 .8984±.0103 .8971±.0098
CEV .0448±.0089 .0488±.0089 .9825±.0080 .9825±.0080
DBS .2261±.0685 .1572±.0416 .8995±.0486 .9341±.0228
CPU .0702±.0912 .0464±.0281 .9834±.0256 .9920±.0073
BCC .3122±.0324 .2687±.0282 .6596±.0309 .6912±.0469
MPG .0577±.0251 .0577±.0251 .9818±.0075 .9818±.0075
ESL .0711±.0133 .0601±.0126 .9695±.0102 .9720±.0084

MMG .1671±.0139 .1667±.0144 .8940±.0110 .9003±.0132
ERA .2930±.0162 .2844±.0306 .7641±.0146 .7705±.0310
LEV .1421±.0142 .1372±.0125 .9088±.0132 .9098±.0103
CEV .0376±.0059 .0376±.0059 .9912±.0024 .9912±.0024
DBS .2192±.0466 .1416±.0681 .9052±.0210 .9427±.0443
CPU .0241±.0413 .0212±.0301 .9866±.0187 .9971±.0063
BCC .2853±.0592 .2496±.0485 .6945±.0455 .7349±.0692
MPG .0551±.0160 .0551±.0160 . 9855±.0108 .9855±.0108
ESL .0658±.0221 .0542±.0218 .9755±.0160 .9766±.0150

MMG .1628±.0187 .1584±.0251 .8966±.0162 .9135±.0233
ERA .2899±.0191 .2813±.0280 .7687±.0261 .7670±.0290
LEV .1370±.0162 .1314±.0176 .9140±.0124 .9122±.0202
CEV .0273±.0089 .0273±.0089 .9959±.0027 .9959±.0027
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Table 7: Performance in terms the average 0/1 loss and AUC ± standard de-
viation for CR using complexity reduction (ε = δ = 0.1). From top to bottom:
20%, 50%, and 80% training data.

dataset k 0/1 loss AUC
DBS 4 .2286±.0549 .9235±.0489
CPU 4 .0998±.0347 .9664±.0227
BCC 3 .2888±.0578 .6193±.0406
MPG 4 .0719±.0108 .9787±.0067
ESL 3 .0737±.0103 .9663±.0049

MMG 3 .1761±.0107 .8857±.0174
ERA 4 .2981±.0158 .7579±.0103
LEV 4 .1526±.0146 .8984±.0103
CEV 6 .0448±.0089 .9825±.0080
DBS 4 .1944±.0631 .9338±.0368
CPU 4 .0361±.0432 .9902±.0139
BCC 3 .2838±.0448 .6232±.0374
MPG 4 .0570±.0080 .9812±.0044
ESL 3 .0727±.0148 .9740±.0077

MMG 3 .1667±.0130 .8976±.0087
ERA 4 .2930±.0162 .7641±.0146
LEV 4 .1421±.0142 .9088±.0132
CEV 6 .0376±.0059 .9912±.0024
DBS 4 .1939±.0615 .9381±.0471
CPU 4 .0244±.0531 .9962±.0090
BCC 3 .2755±.0404 .7142±.0507
MPG 4 .0597±.0126 .9832±.0057
ESL 3 .0603±.0236 .9769±.0146

MMG 3 .1620±.0250 .9001±.0202
ERA 4 .2899±.0191 .7687±.0261
LEV 4 .1370±.0162 .9140±.0124
CEV 6 .0273±.0089 .9959±.0027

Table 8: Average values of the scaling parameter γ in the choquistic regression
model.

DBS CPU BCC MPG ESL MMG ERA LEV CEV
36.69 691.81 15.30 23.87 45.12 19.05 8.07 15.13 69.23
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Figure 3: Visualization of the interaction index for the car evaluation data
(numerical values are shown in terms of level of gray, values on the diagonal are
set to 0). Groups of related criteria are indicated by the black lines.

We have analyzed several properties of the Choquet integral that appear to be
interesting from a machine learning point of view, notably its capacity in terms
of the VC-dimension. Moreover, we have addressed the issue of complexity
reduction or, more specifically, the restriction of the Choquet integral to k-
additive measures. In this regard, we have proposed a method for finding a
suitable value of k.

As a concrete machine learning application of the Choquet integral, we have
proposed a generalization of logistic regression, in which the Choquet integral
is used for modeling the log odds of the positive class. First experimental
studies have shown that this method, called choquistic regression, compares
quite favorably with other methods. We like to mention again, however, that
an improvement in prediction accuracy should not be seen as the only goal of
monotone learning. Instead, the adherence to monotonicity constraints is often
an important prerequisite for the acceptance of a model by domain experts.

Compared to standard logistic regression, the benefits of choquistic regression
are coming at the expense of an increased computational complexity of the
underlying learning algorithm, which solves a maximum likelihood estimation
problem. This is mainly caused by the large number of parameters of the fuzzy
measure on which the Choquet integral is based, and the complicated depen-
dency between these parameters. In [24], first steps aiming at a reduction of
this complexity are made. Nevertheless, speeding up choquistic regression and
making it scalable toward data sets with many attributes is an important topic
of ongoing and future work.

Needless to say, the Choquet integral can be combined with machine learning
methods other than logistic regression. Moreover, its use is not restricted to
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(binary) classification. In fact, we are quite convinced of its high potential
in machine learning in general, and we are looking forward to exploring this
potential in greater detail.
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