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Department of Mathematics and Computer Science
Marburg University, Germany

{shaker,eyke}@mathematik.uni-marburg.de

1 Background: Earthquake Data

Earthquakes are natural disasters with an effect proportional to their causalities
and caused destruction. Although the media report about only a few earth-
quakes in different regions of the world every year, earthquakes actually occur
much more frequently, with varying impacts on their surrounding regions. One
of the trusted sources of information about earthquakes is the USGS (United
States Geological Survey) and its section NEIC (National Earthquake Informa-
tion Center), whose missions are to quickly discover the most recent destructive
earthquakes in terms of location and magnitude, and to broadcast this informa-
tion to international agencies and scientists.1 The USGS offers an online catalog,
the ANSS Comprehensive Catalog (ComCat), which stores information about
earthquake source parameters (e.g., hypocenters, magnitudes, phase picks and
amplitudes) as well as other summaries and moments. This data is produced
from a large network of seismic stations scattered around the globe.

The seismic signals of an earthquake reach few seismic stations, which ma-
nage to locate its hypocenter by analyzing the seismic P-wave, one of the different
seismic waves created by an earthquake. The P-wave is the fastest wave, spread-
ing with a speed of about 5−8 km/s. From the list of the arrival times of P-waves
at different stations, an estimate of the hypocenter is produced. Another type of
seismic wave is the S-wave, which spreads slower than the P-waves in about 3−5
km/s. Despite being slow, these waves hold most of the seismic energy gener-
ated by the earthquake, which can be used to estimate its magnitude. Different
updates on the location and the magnitude of an earthquake are performed as
more information is gathered. These updates are done in the next hours and days
after the earthquake. Further updates on the estimated magnitude are possible
after more sophisticated analysis.

2 Challenges

From a stream analysis point of view, earthquakes provide a potentially inter-
esting source of data, especially since earthquake data is produced continuously

1 http://www.usgs.gov/, http://earthquake.usgs.gov/regional/neic/
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in the course of time. More importantly, this type of data exhibits a number of
characteristics that make is specifically challenging:

1. Event data: The data produced by earthquake monitoring essentially cor-
responds to event data, i.e., information about the time points at which a
specific type of event occurs. This type of temporal data is well known in
statistics but has received little (or actually no) attention in data mining
and machine learning (on streams) so far.

2. Spatio-temporal analysis: The data does not only have a temporal but also
a spatial dimension, namely the location of an earthquake. Considering both
dimensions simultaneously leads to spatio-temporal data analysis, which has
been studied extensively in the static setting but much less in a dynamic
or online setting. Moreover, the effect of the spatial dimension is highly
nonlinear and hence calls for an appropriate modeling of its influence.

3. Delayed observations: Information about earthquakes often arrives with a
delay of non-constant length. These delays could range from hours to days,
as they are provided by a wider contributing network of seismic stations.

We elaborate on each of these challenges in Sections 3, 4 and 5, respectively.

3 Event History Analysis on Data Streams

Event history analysis is an established statistical method for the study of tem-
poral “events” or, more specifically, questions regarding the temporal distribu-
tion of the occurrence of events and their dependence on covariates of the data
sources. In [Shaker and Hüllermeier, 2013], we made a first step toward analyz-
ing this type of data in the context of data streams. To this end, we develop
an incremental, adaptive version of event history analysis (EHA), which is a
standard statistical method for event analysis. The basic mathematical tool in
EHA is the hazard function, which models the “propensity” of the occurrence of
an event (marginal probability of an event conditional to no event so far) as a
function of time.

To the best of our knowledge, EHA has not received much attention in the
stream setting so far, which is arguably surprising for several reasons. Most
notably, the temporal nature of event data naturally fits the data stream model,
and indeed, “event data” is naturally produced by many data sources, including
but not limited to earthquake data.

To make event history analysis applicable in the setting of data streams, we
develop an adaptive (online) variant of a model that is closely related to the
well-known proportional hazard model proposed by Cox [Cox and Oakes, 1984].
In this model, the hazard rate may depend on one or more covariates associated
with a statistical entity. More specifically, in the proportional hazard model, the
effect of an increase of a covariate by one unit is multiplicative with respect to the
hazard rate. We estimate the influence of the covariates by adopting the sliding
window approach, assuming that the hazard rate is constant on every window.
To this end, an online version of a maximum likelihood estimation procedure
has been developed.
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4 Event History Analysis for Earthquake Data

We applied our streaming version of EHA to the analysis of earthquake data.
The earthquakes were collected in the time period between the 1st Jan 2000 and
the end of 27th Mar 2012. In total, we collected 319,884 earthquakes around the
entire globe. While the temporal aspect is naturally captured by the hazard rate
model, the spatial aspect is incorporated through the use of spatial information
as covariates of the data streams. In other words, the vector of covariates is
describing the spatial location of a data source.

In our setting, we assume to observe event sequences for a fixed set of sources,
each of which corresponds to a data stream. In order to define these sources, we
discretize the globe both in terms of longitude and latitude, and associate one
source with each intersection point. Moreover, in order to account for possibly
nonlinear dependencies between spatial coordinates and risk of earthquake, we
define the features of the data sources in terms of a fuzzy partition, that is, a
partition defined in terms of fuzzy sets as shown in Figure 1(c). In contrast to
a standard partition defined in terms of intervals, this allows for a smooth tran-
sition between spatial regions. A two-dimensional (fuzzy) discretization of the
globe is defined in terms of the Cartesian product of these two one-dimensional
discretizations, using the minimum operator for fuzzy set intersection.

Deriving time-dependent estimates of the model parameters on time windows
of 180 days shifting every 30 days, several interesting observations could be made
for data from the last decade. For example, as can be seen in Figure 1(a), the oc-
currence of Tohoku’s earthquake in March 2011 comes with a significant increase
in the coefficients of the fuzzy sets covering that area. The coefficient of the green
line increases by a factor of 4 till few hours before the earthquake, indicating an
increased hazard rate for the area where the earthquake has occured.

5 Dealing with Time Delays

As already mentioned, information about earthquakes may arrive with a certain
time delay, and information about past events might be updated in the course
of time when more accurate information is available.

To get an idea of the relevance of this problem, we took different snapshots
of all available earthquakes that occurred during the time interval from A =
1-Jan-2000 till B = 21-May-2013. Repeating this operation every half an hour
for about one month, we generate snapshots of earthquakes on the intervals
[A,B+ i×30 min], i ∈ {0, 1, . . . , 1440}. We can then compare pairs of snapshots
s1 and s2 taken for periods [a, b] and [a, b+∆] on the shared time interval [a−δ, a].
This comparison reveals how many events occurring in [a − δ, a] are contained
in snapshot s2 while being absent from s1. Thus, it allows for discovering the
number of events coming with a delay. Figure 1(c) shows different combinations
of δ and ∆, with δ on the horizontal axes and assigning different colors to the
different values of ∆. As an example, we can see that an average of 193.03
earthquakes are observed with a latency bounded by 6 days. Needless to say, by
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simply ignoring delays of that extent, the results of EHA on data streams might
be strongly biased. The question of how to handle time delays in a proper way
is part of ongoing work, but a convincing solution has not yet been found. In
fact, learning from delayed feedback has not received much attention in the data
stream community so far, despite existing work in the related setting of online
learning (e.g. [Joulani et al., 2013]).
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Fig. 1. The collected earthquakes plotted by their geographic coordinates. (a) earth-
quakes only; (b) with coordinates lines (lat,lng); (c) fuzzy partitions on the two coordi-
nates. (d) The coefficients of features for the region of the 2011 significant earthquake;
(e) The average number of delayed events categorised by their delay.
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